Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-07T15:01:47.711Z Has data issue: false hasContentIssue false

Successful development of microsatellite markers in a challenging species: the horizontal borer Austroplatypus incompertus (Coleoptera: Curculionidae)

Published online by Cambridge University Press:  11 April 2011

S. Smith*
Affiliation:
Department of Biological Sciences, Macquarie University, NSW, Australia, 2109
T. Joss
Affiliation:
Department of Biological Sciences, Macquarie University, NSW, Australia, 2109
A. Stow
Affiliation:
Department of Biological Sciences, Macquarie University, NSW, Australia, 2109
*
*Author for correspondence Fax: +61 (0) 2 9850 9395 E-mail: [email protected]

Abstract

The analysis of microsatellite loci has allowed significant advances in evolutionary biology and pest management. However, until very recently, the potential benefits have been compromised by the high costs of developing these neutral markers. High-throughput sequencing provides a solution to this problem. We describe the development of 13 microsatellite markers for the eusocial ambrosia beetle, Austroplatypus incompertus, a significant pest of forests in southeast Australia. The frequency of microsatellite repeats in the genome of A. incompertus was determined to be low, and previous attempts at microsatellite isolation using a traditional genomic library were problematic. Here, we utilised two protocols, microsatellite-enriched genomic library construction and high-throughput 454 sequencing and characterised 13 loci which were polymorphic among 32 individuals. Numbers of alleles per locus ranged from 2 to 17, and observed and expected heterozygosities from 0.344 to 0.767 and from 0.507 to 0.860, respectively. These microsatellites have the resolution required to analyse fine-scale colony and population genetic structure. Our work demonstrates the utility of next-generation 454 sequencing as a method for rapid and cost-effective acquisition of microsatellites where other techniques have failed, or for taxa where marker development has historically been both complicated and expensive.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdelkrim, J., Robertson, B.C., Stanton, J.L. & Gemmell, N.J. (2009) Fast, cost-effective development of species specific microsatellite markers by genomic sequencing. BioTechniques 46(3), 185192.CrossRefGoogle ScholarPubMed
Arthofer, W., Schlick-Steiner, B.C., Steiner, F.M., Avtzis, D.N., Crozier, R.H. & Stauffer, C. (2007) Lessons from a beetle and an ant: coping with taxon-dependent differences in microsatellite development success. Journal of Molecular Evolution 65, 304307.CrossRefGoogle Scholar
Banks, S.C., Piggott, M.P., Williamson, J.E. & Beheregaray, L.B. (2007) Microsatellite DNA markers for analysis of population structure in the sea urchin Centrostephanus rodgersii. Molecular Ecology Notes 7, 321323.CrossRefGoogle Scholar
Bruford, M.W., Hanotte, O., Brookfield, J.F.Y. & Burke, T. (1998) Multilocus and single-locus DNA fingerprinting. pp. 287336in Hoelzel, A.R. (Ed.) Molecular Genetic Analysis of Populations: A Practical Approach. 2nd edn. Oxford, UK, IRL Press.CrossRefGoogle Scholar
Boomer, J.J. & Stow, A.J. (2010) Rapid isolation of the first set of polymorphic microsatellite loci from the Australian gummy shark, Mustelus antarcticus and their utility across divergent shark taxa. Conservation Genetics Resources 2, 393395.CrossRefGoogle Scholar
Clay, C., Gleeson, D., Howitt, R., Lawrence, H., Abdelkrim, J. & Gemmell, N. (2010) Characterisation of microsatellite markers for the primitive New Zealand frog, Leiopelma hochstetteri. Conservation Genetics Resources 2, 301303.CrossRefGoogle Scholar
Csencsics, D., Brodbeck, S. & Holderegger, R. (2010) Cost-effective, species-specific microsatellite development for the endangered dwarf bulrush (Typha minima) using next-generation sequencing technology. Journal of Heredity 101(6), 789793.CrossRefGoogle ScholarPubMed
Duckett, P.E. & Stow, A.J. (2010) Rapid isolation and characterization of microsatellite loci from a widespread Australian gecko, the Tree Dtella, Gehyra variaegata. Conservation Genetics Resources 2, 349351.CrossRefGoogle Scholar
Ellis, J.S., Blackshaw, R., Parker, W., Hicks, H. & Knight, M.E. (2009) Genetic identification of morphologically cryptic agricultural pests. Agricultural and Forest Entomology 11, 115121.CrossRefGoogle Scholar
Faircloth, B.C. (2008) msatcommander: detection of microsatellite repeat arrays and automated, locus-specific primer design. Molecular Ecology Resources 8, 9294.CrossRefGoogle ScholarPubMed
Gao, H., Cai, S., Yan, B., Chen, B. & Yu, F. (2009) Discrepancy variation of dinucleotide microsatellite repeats in eukaryotic genomes. Biological Resources 42, 365375.Google ScholarPubMed
Hudson, M.E. (2008) Sequencing breakthroughs for genomic ecology and evolutionary biology. Molecular Ecology Resources 8, 317.CrossRefGoogle ScholarPubMed
Kalinowski, S.T., Taper, M.L. & Marshall, T.C. (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology 16, 10991106.CrossRefGoogle ScholarPubMed
Kent, D. (1997) Incidence and severity of ambrosia beetle (Austroplatypus incompertus) infestation in regrowth and platation Blackbutt (Eucalyptus pilularis) in the Kendall management area. State Forests, Research and Development, Sydney.Google Scholar
Kent, D.S. (2001) The biology of the ambrosia beetle Austroplatypus incompertus (Schedl). PhD thesis, University of Sydney, Sydney, Australia.CrossRefGoogle Scholar
Kent, D.S. (2008) Distribution and host plant records of Austroplatypus incompertus (Schedl) (Coleoptera: Curculionidae: Platypodinae). Australian Entomologist 35(1), 16.Google Scholar
Kent, D. & Simpson, J. (1992) Eusociality in the beetle Austroplatypus incompertus (Coleoptera: Curcilionidae). Naturwissenschaften 79, 8687.CrossRefGoogle Scholar
Lundquist, J.E. & Klopfenstein, N.B. (2001) Integrating concepts of landscape ecology with molecular biology of forest pathogens. Forest Ecology and Management 150, 213222.CrossRefGoogle Scholar
Margulies, M., Egholm, M., Altman, W.E., Attiya, S., Bader, J.S., Bemben, L.A., Berka, J., Braverman, M.S., Chen, Y-J., Chen, Z., Dewell, S.B., Du, L., Fierro, J.M., Gomes, X.V., Godwin, B.C., He, W., Helgesen, S., Ho, C.H., Irzyk, G.P., Jando, S.C., Alenquer, M.L.I., Jarvie, T.P., Jirage, K.B., Kim, J-B., Knight, J.R., Lanza, J.R., Leamon, J.H., Lefkowitz, S.M., Lei, M., Li, J., Lohman, K.L., Lu, H., Makhijani, V.B., McDade, K.E., McKenna, M.P., Myers, E.W., Nickerson, E., Nobile, J.R., Plant, R., Puc, B.P., Ronan, M.T., Roth, G.T., Sarkis, G.J., Simons, J.F., Simpson, J.W., Srinivasan, M., Tartaro, K.R., Tomasz, A., Vogt, K.A., Volkmer, G.A., Wang, S.H., Wang, Y., Weiner, M.P., Yu, P., Begley, R.F. & Rothberg, J.M. (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376380.CrossRefGoogle ScholarPubMed
Perry, J.C. & Rowe, L. (2010) Rapid microsatellite development for water striders by next-generation sequencing. Journal of Heredity 101(1), 125129.Google Scholar
Raymond, M. & Rousset, F. (1995) GENEPOP (version 1.2): a population genetics software for exact tests and ecumenism. Journal of Heredity 86, 248249.CrossRefGoogle Scholar
Rozen, S. & Skaletsky, H.J. (2000) Primer3 on the WWW for general users and for biologist programmers. pp. 365386in Krawetz, S. & Misener, S. (Eds) Bioinformatics Methods and Protocols: Methods in Molecular Biology. Totowa, NJ, USA, Humana Press.Google Scholar
Santana, Q., Coetzee, M., Steenkamp, E., Mlonyeni, O., Hammond, G., Wingfield, M. & Wingfield, B. (2009) Microsatellite discovery by deep sequencing of enriched genomic libraries. Biotechniques 46(3), 217223.CrossRefGoogle ScholarPubMed
Schmuki, C., Blacket, M.J. & Sunnucks, P. (2006) Anonymous single-copy nuclear DNA (scnDNA) markers for two endemic log-dwelling beetles: Apasis puncticeps and Adelium calosomoides (Tenebrionidae: Lagriinae: Adeliini). Molecular Ecology Notes 6, 362364.CrossRefGoogle Scholar
Schuelke, M. (2000) An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology 18, 233234.CrossRefGoogle ScholarPubMed
Smith, S.M. & Stow, A.J. (2008) Isolation and characterization of microsatellite loci from the coppertail skink (Ctenotus taeniolatus). Molecular Ecology Resources 4, 923925.CrossRefGoogle Scholar
Smith, S.M., Beattie, A.J., Kent, D.S. & Stow, A.J. (2009) Ploidy of the eusocial beetle Austroplatypus incompertus (Schedl) (Coleoptera: Curculionidae) and implications for the evolution of eusociality. Insectes Sociaux 56(3), 285288.CrossRefGoogle Scholar
van Oosterhout, C., Hutchinson, W.F., Wills, D.P.M. & Shipley, P. (2004) MICROCHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4, 535538.CrossRefGoogle Scholar
Zane, L., Bargelloni, L. & Patarnello, T. (2002) Strategies for microsatellite isolation: a review. Molecular Ecology 11, 116.CrossRefGoogle ScholarPubMed