Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T23:41:17.857Z Has data issue: false hasContentIssue false

The effect of alkaline hydrolysis of maize on the availability of its nicotinic acid to the pig

Published online by Cambridge University Press:  09 March 2007

E. Kodicek
Affiliation:
Dunn Nutritional Laboratory, University of Cambridge and Medical Research Council
R. Braude
Affiliation:
National Institute for Research in Dairying, University of Reading
S. K. Kon
Affiliation:
National Institute for Research in Dairying, University of Reading
K. G. Mitchell
Affiliation:
National Institute for Research in Dairying, University of Reading
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © The Nutrition Society 1956

References

Anonymous (1950). Nutr. Rev. 8, 241.Google Scholar
Aykroyd, W. R. & Swaminathan, M. (1940). Indian J. med. Res. 27, 667.Google Scholar
Birch, T. W., Chick, H. & Martin, C. J. (1937). Biochem. J. 31, 2065.Google Scholar
Borrow, A., Fowden, L., Stedman, M. M., Waterlow, J. C. & Webb, R. A. (1948). Lancet, 254, 752.Google Scholar
Braude, R. (1954).In Progress in the Physiology of Farm Animals, Vol. 1, p. 40. [Hammond, J., editor.] London: Butterworth Scientific Publications.Google Scholar
Braude, R., Kon, S. K., Mitchell, K. G. & Kodicek, E. (1955). Lancet, 269, 898.CrossRefGoogle Scholar
Braude, R., Kon, S. K. & White, E. G. (1946). Biochem. J. 40, 843.CrossRefGoogle Scholar
Chaudhuri, D. K. (1953). Sci. and Cult. 19, 409.Google Scholar
Chaudhuri, D. K. & Kodicek, E. (1949). Biochem. J. 44, 343.CrossRefGoogle Scholar
Chaudhuri, D. K. & Kodicek, E. (1950 a). Biochem. J. 47, xxxiv.Google Scholar
Chaudhuri, D. K. & Kodicek, E. (1950 b). Nature, Lond., 165, 1022.Google Scholar
Chick, H., Macrae, T. F., Martin, A. J. P. & Martin, C. J. (1938 a). Biochem. J. 32, 10.Google Scholar
Chick, H., Macrae, T. F., Martin, A. J. P. & Martin, C. J. (1938 b). Biochem. J. 32, 844.Google Scholar
Clegg, K. M., Kodicek, E. & Mistry, S. P. (1952). Biochem. J. 50, 326.Google Scholar
Coates, M. E., Ford, J. E., Harrison, G. F., Kon, S. K., Shepheard, E. E. & Wilby, F. W. (1952). Brit. J. Nutr. 6, 75.Google Scholar
Cravioto, R. O., Massieu, G. H., Cravioto, O. Y. & Figueroa, F. de M. (1952). J. Nutr. 48, 453.Google Scholar
Goldsmith, G. A., Gibbens, J., Rosenthal, H. L., Unglaub, W. G. & Miller, O. N. (1954). Fed. Proc. 13, 458.Google Scholar
Goldsmith, G. A., Rosenthal, H. L., Gibbens, J. & Unglaub, W. G. (1955). J. Nutr. 56, 371.Google Scholar
Graham, C. E., Smith, E. P., Hier, S. W. & Klein, D. (1947). J. biol. Chem. 168, 711.Google Scholar
Harris, L. J. & Wang, Y. L. (1941). Biochem. J. 35, 1050.Google Scholar
Heathcote, J. G., Hinton, J. J. C. & Shaw, B. (1952). Proc. Roy. Soc. B, 139, 276.Google Scholar
Heuser, G. F. & Scott, M. L. (1953). Poult. Sci. 32, 137.CrossRefGoogle Scholar
Holman, W. I. M. (1954). In Spec. Rep. Ser. med. Res. Coun., Lond., no. 287, p. 92.Google Scholar
Kodicek, E. (1940). Biochem. J. 34, 712.Google Scholar
Kodicek, E. (1951 a). Rep. Progr. Chem. 48, 276.Google Scholar
Kodicek, E. (1951 b). Biochem. J. 48, viii.Google Scholar
Kodicek, E. & Pepper, C. R. (1948). J. gen. Microbiol. 2, 306.Google Scholar
Kodicek, E. & Reddi, K. K. (1951). Nature, Lond., 168, 475.CrossRefGoogle Scholar
Kodicek, E. & Wang, Y. L. (1949). Biochem. J. 44, 340.Google Scholar
Krehl, W. A. (1949). Vitam. & Horm. 7, III.Google Scholar
Krehl, W. A., Elvehjem, C. A. & Strong, F. M. (1944). J. biol. Chem. 156, 13.Google Scholar
Krehl, W. A., Henderson, L. M., de la Huerga, J. & Elvehjem, C. A. (1946). J. biol. Chem. 166, 531.CrossRefGoogle Scholar
Krehl, W. A., Sarma, P. S., Teply, L. J. & Elvehjem, C. A. (1946). J. Nutr. 31, 85.Google Scholar
Krehl, W. A. & Strong, F. M. (1944). J. biol. Chem. 156, 1.CrossRefGoogle Scholar
Krehl, W. A., Teply, L. J., Sarma, P. S. & Elvehjem, C. A. (1945). Science, 101, 489.Google Scholar
Laguna, J. & Carpenter, K. J. (1951). J. Nutr. 45, 21.Google Scholar
Luecke, R. W., McMillen, W. N., Thorp, F. Jr. & Tull, C. (1947). J. Nutr. 33, 251.Google Scholar
Luecke, R. W., McMillen, W. N., Thorp, F. Jr. & Tull, C. (1948). J. Nutr. 36, 417.Google Scholar
Neilands, J. B. & Strong, F. M. (1948). Arch. Biochem. 19, 287.Google Scholar
Obel, A. (1953). Acta path. microbiol. scand. Suppl. 94.Google Scholar
Reddi, K. K. (1952). Nature, Lond., 170, 745.Google Scholar
Richey, F. D. & Dawson, R. F. (1948). Plant Physiol. 23, 238.Google Scholar
Richey, F. D. & Dawson, R. F. (1951). Plant Physiol. 26, 475.Google Scholar
Roberts, E. C. & Snell, E. E. (1946). J. biol. Chem. 163, 499.Google Scholar
Rose, W. C., Lambert, G. F. & Coon, M. J. (1954). J. biol. Chem. 211, 815.CrossRefGoogle Scholar
Sarett, H. P. & Goldsmith, G. A. (1947). J. biol. Chem. 167, 293.Google Scholar
Sarett, H. P. & Goldsmith, G. A. (1949). J. biol. Chem. 177, 461.Google Scholar
Teas, H. J. & Newton, A. C. (1951). Plant Physiol. 26, 494.Google Scholar
Wang, Y. L. & Kodicek, E. (1943). Biochem. J. 37, 530.Google Scholar
Williams, R. R. (1950). Int. Z. Vitaminforsch. 22, 35.Google Scholar
Woolley, D. W. (1946). J. biol. Chem. 163, 773.Google Scholar