Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-27T03:26:21.490Z Has data issue: false hasContentIssue false

Which animal model for understanding human navigation in a three-dimensional world?

Published online by Cambridge University Press:  08 October 2013

Guy A. Orban*
Affiliation:
Department of Neuroscience, Division of Neurophysiology, Parma University, 43100 Parma, Italy. [email protected]

Abstract

Single-cell studies of monkey posterior parietal cortex (PPC) have revealed the extensive neuronal representations of three-dimensional subject motion and three-dimensional layout of the environment. I propose that navigational planning integrates this PPC information, including gravity signals, with horizontal-plane based information provided by the hippocampal formation, modified in primates by expansion of the ventral stream.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdollahi, R. O., Jastorff, J. & Orban, G. A. (2012) Common and segregated processing of observed actions in human SPL. Cerebral Cortex. E-pub ahead of print, August 23, 2012.Google Scholar
Andersen, R. A. & Buneo, C. A. (2002) Intentional maps in posterior parietal cortex. Annual Review of Neuroscience 25:189220.Google Scholar
Chen, A., DeAngelis, G. C. & Angelaki, D. E. (2010) Macaque parieto-insular vestibular cortex: Responses to self-motion and optic flow. Journal of Neuroscience 30(8):3022–42.CrossRefGoogle ScholarPubMed
Chen, A., DeAngelis, G. C. & Angelaki, D. E. (2011a) Convergence of vestibular and visual self-motion signals in an area of the posterior sylvian fissure. Journal of Neuroscience 31(32):11617–27.Google Scholar
Chen, A., DeAngelis, G. C. & Angelaki, D. E. (2011b) Representation of vestibular and visual cues to self-motion in ventral intraparietal cortex. Journal of Neuroscience 31(33):12036–252.Google Scholar
Gu, Y., Fetsch, C. R., Adeyemo, B., DeAngelis, G. C. & Angelaki, D. E. (2010) Decoding of MSTd population activity accounts for variations in the precision of heading perception. Neuron 66(4):596609.Google Scholar
Indovina, I., Maffei, V., Pauwels, K., Macaluso, E., Orban, G. A. & Lacquaniti, F. (2013 Simulated self-motion in a visual gravity field: Brain sensitivity to vertical and horizontal heading in the human brain. NeuroImage 71C:114–24.CrossRefGoogle Scholar
Jacobs, J., Kahana, M. J., Ekstrom, A. D., Mollison, M. V. & Fried, I. (2010) A sense of direction in human entorhinal cortex. Proceedings of the National Academy of Sciences USA 107(14):6487–92.CrossRefGoogle ScholarPubMed
Killian, N. J., Jutras, M. J. & Buffalo, E. A. (2012) A map of visual space in the primate entorhinal cortex. Nature 491(7426):761–64.Google Scholar
Kravitz, D. J., Saleem, K. S., Baker, C. I. & Mishkin, M. (2011) A new neural framework for visuospatial processing. Nature Reviews Neuroscience 12(4):217–30.Google Scholar
Kravitz, D. J., Saleem, K. S., Baker, C. I., Ungerleider, L. G. & Mishkin, M. (2013) The ventral visual pathway: An expanded neural framework for the processing of object quality. Trends in Cognitive Sciences 17(1):2649.CrossRefGoogle ScholarPubMed
Lagae, L., Maes, H., Raiguel, S., Xiao, D. K. & Orban, G. A. (1994) Responses of monkey STS neurons to optic flow components: A comparison of areas MT and MST. Journal of Neurophysiology 71(5):1597–626.CrossRefGoogle ScholarPubMed
Liang, J. C., Wagner, A. D. & Preston, A. R. (2013) Content representation in the human medial temporal lobe. Cerebral Cortex 23:8096.CrossRefGoogle ScholarPubMed
Liu, Y., Vogels, R. & Orban, G. A. (2004) Convergence of depth from texture and depth from disparity in macaque inferior temporal cortex. Journal of Neuroscience 24(15):3795–800.Google Scholar
Orban, G. A. (2011) The extraction of 3D shape in the visual system of human and nonhuman primates. Annual Review of Neuroscience 34:361–88.Google Scholar
Schaafsma, S. J. & Duysens, J. (1996) Neurons in the ventral intraparietal area of awake macaque monkey closely resemble neurons in the dorsal part of the medial superior temporal area in their responses to optic flow patterns. Journal of Neurophysiology 76(6):4056–68.CrossRefGoogle ScholarPubMed
Squatrito, S., Raffi, M., Maioli, M. G., Battaglia-Mayer, A. (2001) Visual motion responses of neurons in the caudal area PE of macaque monkeys. Journal of Neuroscience 21(4):RC130.Google Scholar
Taira, M., Tsutsui, K. I., Jiang, M., Yara, K. & Sakata, H. (2000) Parietal neurons represent surface orientation from the gradient of binocular disparity. Journal of Neurophysiology 83(5):3140–46.Google Scholar
Takahashi, K., Gu, Y., May, P. J., Newlands, S. D., DeAngelis, G. C. & Angelaki, D. E. (2007) Multimodal coding of three-dimensional rotation and translation in area MSTd: Comparison of visual and vestibular selectivity. Journal of Neuroscience 27(36):9742–56.Google Scholar
Tanaka, K., Hikosaka, K., Saito, H., Yukie, M., Fukada, Y. & Iwai, E. (1986) Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey. Journal of Neuroscience 6(1):134–44.Google Scholar
Todd, J. T. & Norman, J. F. (2003) The visual perception of 3-D shape from multiple cues: Are observers capable of perceiving metric structure? Perception and Psychophysics 65(1):3147.Google Scholar
Torrealba, F. & Valdes, J. L. (2008) The parietal association cortex of the rat. Biological Research 41(4):369–77.Google Scholar
Wall, M. B. & Smith, A. T. (2008) The representation of egomotion in the human brain. Current Biology 18(3):191–94.Google Scholar
Whitlock, J. R., Sutherland, R. J., Witter, M. P., Moser, M.-B. & Moser, E. I. (2008) Navigating from hippocampus to parietal cortex. Proceedings of the National Academy of Sciences USA 105(39):14755–62.CrossRefGoogle ScholarPubMed