Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T05:39:19.165Z Has data issue: false hasContentIssue false

Scanning movements during haptic search: similarity with fixations during visual search

Published online by Cambridge University Press:  24 May 2017

Achille Pasqualotto*
Affiliation:
Faculty of Arts and Social Sciences, Sabanci University, Tuzla 34956, Istanbul, Turkey. [email protected]

Abstract

Finding relevant objects through vision, or visual search, is a crucial function that has received considerable attention in the literature. After decades of research, data suggest that visual fixations are more crucial to understanding how visual search works than are the attributes of stimuli. This idea receives further support from the field of haptic search.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, M. L. (2010) Neural reuse: A fundamental organizational principle of the brain. Behavioral and Brain Sciences 33:245–66.Google Scholar
Ballesteros, S., Millar, S. & Reales, J. M. (1998) Symmetry in haptic and in visual shape perception. Perception and Psychophysics 60:389404.Google Scholar
Duncan, J. & Humphreys, G. W. (1989) Visual search and stimulus similarity. Psychological Review 96:433–58. doi: 10.1037/0033-295X.96.3.433.Google Scholar
Gibson, J. J. (1962) Observations on active touch. Psychological Review 69:477–91.Google Scholar
Grabowecky, M., List, A., Iordanescu, L. & Suzuki, S. (2011) Haptic influence on visual search. i-Perception 2:824.Google Scholar
He, Z. J. & Nakayama, K. (1992) Surfaces versus features in visual search. Nature 359:231–33.Google Scholar
Heller, M. A. (1984) Active and passive touch: The influence of exploration time on form recognition. Journal of General Psychology 110:243–49.CrossRefGoogle ScholarPubMed
Hickey, C., Chelazzi, L. & Theeuwes, J. (2010) Reward has a larger impact on visual search in people with reward-seeking personalities. Journal of Vision 10:255–55.Google Scholar
Lacey, S., Tal, N., Amedi, A. & Sathian, K. (2009) A putative model of multisensory object representation. Brain Topography 21:269–74.Google Scholar
Lacreuse, A. & Fragaszy, D. M. (1997) Manual exploratory procedures and asymmetries for a haptic search task: A comparison between capuchins (Cebus apella) and humans. Laterality: Asymmetries of Body, Brain and Cognition 2:247–66.Google Scholar
Lederman, S. J. & Klatzky, R. L. (1987) Hand movements: A window into haptic object recognition. Cognitive Psychology 19:342–68.CrossRefGoogle ScholarPubMed
Newell, F. N., Woods, A. T., Mernagh, M. & Bülthoff, H. H. (2005) Visual, haptic, and crossmodal recognition of scenes. Experimental Brain Research 161:233–42.Google Scholar
Overvliet, K. E., Smeets, J. B. & Brenner, E. (2007) Haptic search with finger movements: Using more fingers does not necessarily reduce search times. Experimental Brain Research 182:427–34.CrossRefGoogle Scholar
Overvliet, K. E., Smeets, J. B. & Brenner, E. (2008) The use of proprioception and tactile information in haptic search. Acta Psychologica 129:8390.Google Scholar
Pascual-Leone, A. & Hamilton, R. (2001) The metamodal organization of the brain. Progress in Brain Research 134:427–45.CrossRefGoogle ScholarPubMed
Pasqualotto, A., Dumitru, M. L. & Myachykov, A. (2016) Multisensory integration: Brain, body, and world. Frontiers in Psychology 6:2046.Google Scholar
Pasqualotto, A., Finucane, C. M. & Newell, F. N. (2005) Visual and haptic representations of scenes are updated with observer movement. Experimental Brain Research 166:481–88.CrossRefGoogle ScholarPubMed
Pasqualotto, A., Finucane, C. M. & Newell, F. N. (2013a) Ambient visual information confers a context-specific, long-term benefit on memory for haptic scenes. Cognition 128:363–79.Google Scholar
Pasqualotto, A., Proulx, M. J. & Sereno, M. I. (2013b) Visual experience and the establishment of tactile face-maps in the brain. Perception 39:54.Google Scholar
Pietrini, P., Furey, M. L., Ricciardi, E., Gobbini, M. I., Wu, W. H. C., Cohen, L. G., Guazzelli, M. & Haxby, J. V. (2004) Beyond sensory images: Object-based representation in the human ventral pathway. Proceedings of the National Academy of Sciences of the United States of America 101:5658–63.Google Scholar
Plaisier, M., Kuling, I., Tiest, W. M. B. & Kappers, A. M. (2009) The role of item fixation in haptic search. In: World Haptics 2009 – Third Joint EuroHaptics conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Salt Lake City, UT, March 2009, pp. 417–21. IEEE. doi: 10.1109/WHC.2009.4810798.Google Scholar
Plaisier, M. A., Tiest, W. M. B. & Kappers, A. M. (2008) Haptic pop-out in a hand sweep. Acta Psychologica 128:368–77.Google Scholar
Proulx, M. J., Parker, M. O., Tahir, Y. & Brennan, C. H. (2014) Parallel mechanisms for visual search in zebrafish. PLoS ONE 9:e111540.CrossRefGoogle ScholarPubMed
Sann, C. & Streri, A. (2007) Perception of object shape and texture in human newborns: Evidence from cross-modal transfer tasks. Developmental Science 10:399410.Google Scholar
Tomonaga, M. (2007) Visual search for orientation of faces by a chimpanzee (Pan troglodytes): Face-specific upright superiority and the role of facial configural properties. Primates 48:112.Google Scholar
Treisman, A. (1982) Perceptual grouping and attention in visual search for features and for objects. Journal of Experimental Psychology: Human Perception and Performance 8:194214.Google Scholar
Uesaki, M. & Ashida, H. (2015) Optic-flow selective cortical sensory regions associated with self-reported states of vection. Frontiers in Psychology 6:775.Google Scholar
Van Polanen, V., Tiest, W. M. B. & Kappers, A. M. (2011) Movement strategies in a haptic search task. In: World Haptics Conference, 2011 IEEE, 275–80.CrossRefGoogle Scholar
Wolfe, J. M. (1998b) What can 1 million trials tell us about visual search? Psychological Science 9:3339. doi: 10.1111/1467-9280.00006.CrossRefGoogle Scholar
Wolfe, J. M., Palmer, E. M. & Horowitz, T. S. (2010b) Reaction time distributions constrain models of visual search. Vision Research 50:1304–11.Google Scholar
Young, A. H. & Hulleman, J. (2013) Eye movements reveal how task difficulty moulds visual search. Journal of Experimental Psychology: Human Perception and Performance 39:168–90.Google Scholar
Zelinsky, G. J. (1996) Using eye saccades to assess the selectivity of search movements. Vision Research 36:2177–21.Google Scholar