Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-07-07T14:22:02.418Z Has data issue: false hasContentIssue false

Are Water Framework Directive stream types biologically relevant? The case of the Mondego river, Portugal

Published online by Cambridge University Press:  10 May 2011

Maria L. Chaves*
Affiliation:
Faculdade de Ciências da Universidade de Lisboa, Instituto de Oceanografia, Campo Grande, 1749-016 Lisboa, Portugal
José L. Costa
Affiliation:
Faculdade de Ciências da Universidade de Lisboa, Instituto de Oceanografia, Campo Grande, 1749-016 Lisboa, Portugal Universidade Lusófona de Humanidades e Tecnologias, Campo Grande, 1749-016 Lisboa, Portugal
Paula Chainho
Affiliation:
Faculdade de Ciências da Universidade de Lisboa, Instituto de Oceanografia, Campo Grande, 1749-016 Lisboa, Portugal
Maria J. Costa
Affiliation:
Faculdade de Ciências da Universidade de Lisboa, Instituto de Oceanografia, Campo Grande, 1749-016 Lisboa, Portugal Faculdade de Ciências da Universidade de Lisboa, Departamento de Biologia Animal, Campo Grande, 1749-016 Lisboa, Portugal
Narcís Prat
Affiliation:
Departament d'Ecologia, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, España
*
*Corresponding author: [email protected]
Get access

Abstract

Typology schemes are useful in partitioning natural spatial variability and thus helping implementing bioassessment methods. They have become widely accepted in Europe after the publication of the Water Framework Directive (WFD). The major objective of this study was to test if six Portuguese pre-defined physical stream-types (using System-B of the WFD) are concordant with macroinvertebrate assemblages collected in 31 undisturbed sites in a Portuguese river basin. A top-down (stream types defined by physical attributes) and a bottom-up approach (river classes defined by biological communities) were used. No significant differences were found in the mean number of taxa and abundance of different physical stream types and few taxa are characteristic of specific stream types. Discriminant analysis (DA) considering family-level composition revealed that all stream-types were significantly different and the cross-validation process showed that all stream-types had more than 50% of their samples correctly assigned. On the other hand, the bottom-up approach based on a correspondence analysis (CA) showed some overlap of the  macroinvertebrate communities of pre-defined stream types, indicating that variations in the macroinvertebrate community structure was primarily related to altitude, mineralisation and a temporal gradient. DA cross-validation and CA results suggest that tested stream types do not account for natural temporal changes known to affect macroinvertebrate communities in this Mediterranean basin and that the WFD typology should account for these natural variations. The exclusion of natural variability could indicate impairment when it does not exist or no impairment when it does exist (type I and II statistical errors).

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afifi, A.A. and Clark, V., 1990. Computer-aided multivariate analysis, 2nd edition, Chapman & Hall, New York.Google Scholar
Alves, M.H., Bernardo, J.M., Figueiredo, H.D., Pádua, J., Pinto, P. and Rafael, M.T., 2004. Aplicação do sistema B da Directiva-Quadro da água na identificação de tipos de rios em Portugal continental, Actas do 7° Congresso da Água: Água – Qualidade de toda a Vida, Associação Portuguesa dos Recursos Hídricos, Lisboa.Google Scholar
AMBIO, CHI, AGRIPRO, DRENA, HLC and FBO, 1999. Plano de bacia hidrográfica do Mondego, INAG, Lisboa.
Anonymous, 1997. SPSS base 7.5 applications guide, SPSS, Chicago.
Bailey, R.C., Norris, R.H. and Reynoldson, T.B., 2004. Bioassessment of freshwater ecosystems using the reference condition approach, Kluwer Academic Publishers, Boston.CrossRefGoogle Scholar
Barbour, M.T., Gerritsen, J., Snyder, B.D. and Stribling, J.B., 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: Peryphiton, benthic macroinvertebrates and fish, 2nd edition, EPA/841-B-99–002, US Environmental Protection Agency, Office of Water, Washington DC.Google Scholar
Beisel, J.-N., Usseglio-Polatera, P. and Moreteau, J.C., 2000. The spatial heterogeneity of a river bottom: a key factor determining macroinvertebrate communities. Hydrobiologia, 422/423, 163171.CrossRefGoogle Scholar
Boyero, L., 2003. Multiscale patterns of spatial variation in stream macroinvertebrate communities. Ecol. Res., 18, 365379.CrossRefGoogle Scholar
Chaves, M.L., Chainho, P.M., Costa, J.L., Prat, N. and Costa, M.J., 2005. Regional and local environmental factors structuring undisturbed benthic macroinvertebrate communities in the Mondego River basin, Portugal. Arch. Hydrobiol., 163, 497523.CrossRefGoogle Scholar
Chaves, M.L., Costa, J.L., Chainho, P., Costa, M.J. and Prat, N., 2006. Selection and validation of reference sites in small river basins. Hydrobiologia, 573, 133154.CrossRefGoogle Scholar
Chaves, M.L., Rieradevall, M., Chainho, P., Costa, J.L., Costa, M.J. and Prat, N., 2008. Macroinvertebrate communities of non-glacial high altitude intermittent streams. Freshw. Biol., 53, 5576.Google Scholar
Dodkins, I., Rippey, B., Harrington, T.J., Bradley, C., Chathain, B.N., Kelly-Quinn, M., McGarrigle, M., Hodge, S. and Trigg, D., 2005. Developing an optimal river typology for biological elements within the Water Framework Directive. Water Res., 39, 34793486.CrossRefGoogle ScholarPubMed
Dufrêne, M. and Legendre, P., 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr., 67, 345367.Google Scholar
Economou, A.N., 2002. Defining reference conditions (D3). Development, evaluation and implementation of a standardised fish-based assessment method for the ecological status of European rivers – a contribution to the Water Framework Directive, Institute for Hydrobiology and Aquatic Ecosystem Management, University of Natural Resources and Applied Life Sciences, Vienna.Google Scholar
Ehlert, T., Hering, D., Koenzen, U., Pottgiesser, T., Schuhmacher, H. and Friedrich, G., 2002. Typology and type specific reference conditions for medium sized and large rivers in Northrhine-Westphalia: Methodological and biological aspects. Int. Rev. Hydrobiol., 87, 151163.3.0.CO;2-A>CrossRefGoogle Scholar
European Commission, 2000. Directive 2000/60/EC of the European Parliament and of the Council – Establishing a framework for Community action in the field of water policy, European Commission, Brussels.
Feio, M.J., Vieira-Lanero, R., Ferreira, V. and Graça, M.A.S., 2005. The role of the environment in the distribution and composition of Trichoptera assemblages in streams. Arch. Hydrobiol., 164, 493512.CrossRefGoogle Scholar
Feio, M.J., Reynoldson, T.B. and Graça, M.A.S., 2006. Effect of seasonal changes on predictive model assessments of streams water quality with macroinvertebrates. Int. Rev. Hydrobiol., 91, 509520.CrossRefGoogle Scholar
Ferréol, M., Dohet, A., Cauchie, H.M. and Hoffmann, L., 2005. A top-down approach for the development of a stream typology based on abiotic variables. Hydrobiologia, 551, 193208.CrossRefGoogle Scholar
Gerritsen, J., Barbour, M.T. and King, K., 2000. Apples, oranges and ecoregions: on determining pattern in aquatic assemblages. J. N. Am. Benthol. Soc., 19, 487497.CrossRefGoogle Scholar
Hair, J.F. Jr., Anderson, R.E., Tatham, R.L. and Black, W.C., 1998. Multivariate data analysis, 5th edition, Prentice-Hall, Upper Saddle River.Google Scholar
Hawkins, C.P., Norris, R.H., Gerritsen, J., Hughes, R.M., Jackson, S.K., Johnson, R.K. and Stevenson, R.J., 2000. Evaluation of the use of landscape classifications for the prediction of freshwater biota: Synthesis and recommendations. J. N. Am. Benthol. Soc., 19, 541556.CrossRefGoogle Scholar
Heino, J. and Mykra, H., 2006. Assessing physical surrogates for biodiversity: Do tributary and stream type classifications reflect macroinvertebrate assemblage diversity in running waters? Biol. Conserv., 129, 418426.CrossRefGoogle Scholar
Heino, J., Muotka, T., Mykra, H., Paavola, R., Hämäläinen, H. and Koskenniemi, E., 2003. Defining macroinvertebrate assemblage types of headwater streams: Implications for bioassessment and conservation. Ecol. Appl., 13, 842852.CrossRefGoogle Scholar
Hellawell, J.M., 1986. Biological indicators of freshwater pollution and environmental management, Elsevier, New York.CrossRefGoogle Scholar
Hering, D., Buffagni, A., Moog, O., Sandin, L., Sommerhäuser, M., Stubauer, I., Feld, C., Johnson, R., Pinto, P., Skoulikidis, N., Verdonschot, P.F.M. and Zahrádková, S., 2003. The development of a system to assess the ecological quality of streams based on macroinvertebrates – Design of the sampling programme within the AQEM project. Int. Rev. Hydrobiol., 88, 345361.CrossRefGoogle Scholar
Hering, D., Moog, O., Sandin, L. and Verdonschot, P.F.M., 2004. Overview and application of the AQEM assessment system. Hydrobiologia, 516, 120.CrossRefGoogle Scholar
Illies, J. (ed.), 1978. Limnofauna Europaea, Gustav Fischer Verlag, Stuttgart.Google Scholar
Jáimez-Cuéllar, P., Vivas, S., Bonada, N., Robles, S., Mellado, A., Alvarez, M., Avilés, J., Casas, J., Ortega, M., Pardo, I., Prat, N., Rieradevall, M., Sáinz-Cantero, C., Sánchez-Ortega, A., Suárez, M.L., Toro, M., Vidal-Abarca, M.R., Zamora-Muñoz, C. and Alba-Tercedor, J., 2002. Protocolo Guadalmed (PRECE). Limnetica, 21, 187204.Google Scholar
Lima, M.I. and Lima, J.L., 2002. Precipitation and the hydrology of the Mondego catchment: A scale-invariant study. In: Pardal, M.A., Marques, J.C. and Graça, M.A.S. (eds.), Aquatic ecology of the Mondego River basin: Global importance of local experience, Imprensa da Universidade de Coimbra, Coimbra, 1328.Google Scholar
Lorenz, A., Feld, K.C. and Hering, D., 2004. Typology of streams in Germany based on benthic invertebrates: Ecoregions, zonation, geology and substrate. Limnologica, 34, 379389.CrossRefGoogle Scholar
Loureiro, J.J., Almeida, M.C., Machado, M.L. and Teixeira, E., 1986. Bacia hidrográfica do rio Mondego. In: DGRAH, (ed.), Monografias hidrológicas dos principais cursos de água de Portugal continental, DGRAH, Lisboa, 240278.Google Scholar
Marchant, R., Hirst, A., Norris, R.H., Metzeling, L. and Tiller, D., 1997. Classification and prediction of macroinvertebrate assemblages from running waters in Victoria, Australia. J. N. Am. Benthol. Soc., 16, 664681.CrossRefGoogle Scholar
Moog, O., Schmidt-Kloiber, A., Ofenböck, T. and Gerritsen, J., 2004. Does the ecoregion approach support the typological demands of the EU Water Framework Directive? Hydrobiologia, 516, 2133.CrossRefGoogle Scholar
Moreno, J.L., Navarro, C. and Herasas, J., 2006. Abiotic ecotypes in south-central Spanish rivers: Reference conditions and pollution. Environ. Pollut., 143, 388396.CrossRefGoogle ScholarPubMed
Munné, A. and Prat, N., 2004. Defining river types in Mediterranean area: A methodology for the implementation of the EU Water Framework Directive. Environ. Manage., 33, 119.Google Scholar
Parsons, M. and Norris, R.H., 1996. The effect of habitat-specific sampling on biological assessment of water quality. Freshw. Biol., 36, 419434.CrossRefGoogle Scholar
Parsons, M., Thoms, M.C. and Norris, R.H., 2004. Using hierarchy to select scales of measurement in multiscale studies of stream macroinvertebrate assemblages. J. N. Am. Benthol. Soc., 23, 157170.2.0.CO;2>CrossRefGoogle Scholar
R Development Core Team, 2006. R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Accessed online 8 February 2008, http://www.R-project.org.
Reynoldson, T.B., Norris, R.H., Resh, V.H., Day, K.E. and Rosenberg, D.M., 1997. The reference condition: A comparison of multimetric and multivariate approaches to assess water-quality impairment using benthic macroinvertebrates. J. N. Am. Benthol. Soc., 16, 833852.CrossRefGoogle Scholar
Richards, C., Johnson, L.B. and Host, G.E., 1996. Landscape scale influences on stream habitats and biota. Can. J. Fish. Aquat. Sci., 53, 295311.CrossRefGoogle Scholar
Sánchez-Montoya, M.M., Punti, T., Suárez, M.L., Vidal-Abarca, M.R., Rieradevall, M., Poquet, M., Zamora-Muñoz, C., Robles, S., Álvarez, M., Alba-Tercedor, J., Toro, M., Pujante, A.M., Munné, A. and Prat, N., 2007. Concordance between ecotypes and macroinvertebrate assemblages in Mediterranean streams. Freshw. Biol., 52, 22402255.CrossRefGoogle Scholar
Sandin, L., 2003. Benthic macroinvertebrates in Swedish streams: Community structure, taxon richness, and environmental relations. Ecography, 26, 269282.CrossRefGoogle Scholar
Sandin, L. and Johnson, R.K., 2000. Ecoregions and benthic macroinvertebrate assemblages of Swedish streams. J. N. Am. Benthol. Soc., 19, 462474.CrossRefGoogle Scholar
Sandin, L. and Verdonschot, P.F.M., 2006. Stream and river typologies – Major results and conclusions from the STAR project. Hydrobiologia, 566, 3337.CrossRefGoogle Scholar
Sokal, R.R. and Rohlf, F.J., 1995. Biometry, The principles and practice of statistics in biological research, 3rd edition, W. H. Freeman and Company, New York.Google Scholar
Tachet, H., Richoux, P., Bournaud, M. and Usseglio-Polatera, P., 2000. Invertébrés d'eau douce – Systématique, biologie, écologie, CNRS, Paris.Google Scholar
ter Braak, C.J.F. and Šmilauer, P., 2002. CANOCO reference manual and Cano-Draw for Windows user's guide: Software for canonical community ordination (version 4.5), Microcomputer Power, Ithaca.Google Scholar
Turak, E. and Koop, K., 2008. Multi-attribute ecological river typology for assessing ecological condition and conservation planning. Hydrobiologia, 603, 83104.CrossRefGoogle Scholar
Verdonschot, P.F.M., 2006a. Evaluation of the use of Water Framework Directive typology descriptors, reference sites and spatial scale in macroinvertebrate stream typology. Hydrobiologia, 566, 3958.CrossRefGoogle Scholar
Verdonschot, P.F.M., 2006b. Data composition and taxonomic resolution in macroinvertebrate stream typology. Hydrobiologia, 566, 5974.CrossRefGoogle Scholar
Verdonschot, P.F.M. and Nijboer, R.C., 2004. Testing the European stream typology of Water Framework Directive for macroinvertebrates. Hydrobiologia, 516, 3755.CrossRefGoogle Scholar
Vinson, M.R. and Hawkins, C.P., 1998. Biodiversity of stream insects: Variation at local, basin, and regional scales. Annu. Rev. Entomol., 43, 271293.CrossRefGoogle ScholarPubMed
Wallin, M., Wiederholm, T. and Johnson, R.K., 2003. Guidance on establishing reference conditions and ecological status class boundaries for inland surface waters. Final report to the European Commission from CIS Working Group 2.3 – REFCOND, 7th version, Brussels.
Wasson, J.-G., 1989. Éléments pour une typologie fonctionnelle des eaux courantes: 1. Revue critique de quelques approches existantes. Bull. Ecol., 20, 109127.Google Scholar
Wiberg-Larsen, P., Brodersen, K.P., Birkholm, S., Grøms, P.N. and Skriver, J., 2000. Species richness and assemblage structure of Trichoptera in Danish streams. Freshw. Biol., 43, 633647.CrossRefGoogle Scholar
Wright, J.F., Moss, D., Armitage, P.D. and Furse, M.T., 1984. A preliminary classification of running water sites based on macroinvertebrate species and the prediction of community type using environmental data. Freshw. Biol., 14, 221256.CrossRefGoogle Scholar