Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-06T02:34:03.563Z Has data issue: false hasContentIssue false

15 - Characterization of the tick–pathogen–host interface of the tick-borne rickettsia Anaplasma marginale

Published online by Cambridge University Press:  21 August 2009

K. M. Kocan
Affiliation:
Department of Veterinary Pathobiology 250 McElroy Hall Center for Veterinary Health Sciences Oklahoma State University Stillwater OK 74078 USA
J. De La Fuente
Affiliation:
Department of Veterinary Pathobiology 250 McElroy Hall Center for Veterinary Health Sciences Oklahoma State University
Blouin E. F.
Affiliation:
Department of Veterinary Pathobiology 250 McElroy Hall Center for Veterinary Health Sciences Oklahoma State University Stillwater
Alan S. Bowman
Affiliation:
University of Aberdeen
Patricia A. Nuttall
Affiliation:
Centre for Ecology and Hydrology, Swindon
Get access

Summary

INTRODUCTION

Anaplasma marginale is a tick-borne pathogen that causes the disease anaplasmosis in cattle (Bram, 1975; Ristic, 1968). This pathogen is classified within the Order Rickettsiales which was recently reorganized into two families, Anaplasmataceae and Rickettsiaceae, based on genetic analyses of 16S rRNA, groELS and surface protein genes (Dumler et al., 2001) (Table 15.1). Organisms of the family Anaplasmataceae are obligate intracellular organisms that are found exclusively within membrane-bound vacuoles in the host cell cytoplasm. Phylogenetic analyses consistently supported the formation of four distinct genetic groups of the organisms: (1) Anaplasma (96.1% similarity), (2) Ehrlichia (97.7%), (3) Wolbachia (minimum of 95.6% similarity) and (4) Neorickettsia (minimum of 94.9% similarity) (Dumler et al., 2001). The genus Anaplasma currently includes the three pathogens of ruminants, A. marginale, A. centrale and A. ovis, together with A. bovis (formerly Ehrlichia bovis), A. phagocytophilum (formerly E. phagocytophilum, E. equi and the HGE agent), and A. platys (formerly E. platys). Aegyptianella, also included in this genus, was retained as a genus incertae sedis due to lack of sequence information.

Anaplasma marginale is distributed worldwide in tropical and subtropical regions of the New World, Europe, Africa, Asia and Australia. Several geographical isolates of A. marginale have been identified in North and South America, which differ in morphology, protein sequence, antigenic characteristics and their ability to be transmitted by ticks (Smith et al., 1986; Wickwire et al., 1987; Allred et al., 1990; Rodriguez Camarilla et al., 2000; Palmer, Rurangirwa & McElwain, 2001; de la Fuente et al.

Type
Chapter
Information
Ticks
Biology, Disease and Control
, pp. 325 - 343
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allred, D. R., McGuire, T. C., Palmer, G. H., et al. (1990). Molecular basis for surface antigen size polymorphisms and conservation of a neutralization- sensitive epitope in Anaplasma marginale. Proceedings of the National Academy of Sciences of the USA 87, 3220–3224.CrossRefGoogle ScholarPubMed
Anthony, D. W. & Roby, T. O. (1962). Anaplasmosis transmission studies with Dermacentor variabilis (Say) and Dermacentor andersoni (Stiles) (= D. venustus Marx) as experimental vectors. In Proceedings of the 4th National Anaplasmosis Research Conference, Reno, NV, pp. 78–81.Google Scholar
Anthony, D. W. & Roby, T. O. (1966). The experimental transmission of bovine anaplasmosis by three species of North American ticks. American Journal of Veterinary Research 27, 191–198.Google Scholar
Barbet, A. F., Blentlinger, R., Yi, J., et al. (1999). Comparison of surface proteins of Anaplasma marginale grown in tick cell culture, tick salivary glands, and cattle. Infection and Immunity 67, 102–107.Google ScholarPubMed
Barbet, A. F., Yi, J., Lundgren, A., et al. (2001). Antigenic variation of Anaplasma marginale: MSP2 diversity during cyclic transmission between ticks and cattle. Infection and Immunity 69, 3057–3066.CrossRefGoogle ScholarPubMed
Barbet, A. F., Lundgren, A., Yi, J., Rurangirwa, F. R. & Palmer, G. H. (2000). Antigenic variation of Anaplasma marginale by expression of MSP2 mosaics. Infection and Immunity 68, 6133–6138.CrossRefGoogle ScholarPubMed
Barbet, A. F., Palmer, G. H., Myler, P. J. & McGuire, T. C. (1987). Characterization of an immunoprotective protein complex of Anaplasma marginale by cloning and expression of the gene coding for polypeptide Am105L. Infection and Immunity 55, 2428–2435.Google ScholarPubMed
Bell-Sakyi, L. M., Paxton, E. A., Munderloh, U. G. & Sumption, K. J. (2000). Growth of Cowdria ruminantium, the causative agent of heartwater, in a tick cell line. Journal of Clinical Microbiology 38, 1238–1240.Google Scholar
Blouin, E. F. & Kocan, K. M. (1998). Morphology and development of Anaplasma marginale (Rickettsiales: Anaplasmataceae) in cultured Ixodes scapularis (Acari: Ixodidae) cells. Journal of Medical Entomology 35, 788–797.CrossRefGoogle ScholarPubMed
Blouin, E. F, Barbet, A. F., Yi, J., Kocan, K. M. & Saliki, J. T. (1999). Establishment and characterization of an Oklahoma isolate of Anaplasma marginale in cultured Ixodes scapularis cells. Veterinary Parasitology 87, 301–313.CrossRefGoogle Scholar
Blouin, E. F., Fuente, J., Garcia-Garcia, J. C., et al. (2002 a). Use of a cell culture system for studying the interaction of Anaplasma marginale with tick cells. Animal Health Research Reviews 3, 57–68.CrossRefGoogle ScholarPubMed
Blouin, E. F., Kocan, K. M., Fuente, J. & Saliki, J. T. (2002 b). Effect of tetracycline on development of Anaplasma marginale in cultured Ixodes scapularis cells. Veterinary Parasitology 107, 115–126.CrossRefGoogle ScholarPubMed
Blouin, E. F., Saliki, J. T., Fuente, J., Garcia-Garcia, J. C. & Kocan, K. M. (2003). Antibodies to Anaplasma marginale Major Surface Protein 1a and 1b inhibit infectivity for cultured tick cells. Veterinary Parasitology 91, 265–283.Google Scholar
Bock, R. E. & Vos, A. J. (1999). Effect of cattle on innate resistance to infection with Anaplasma marginale transmitted by Boophilus microplus. Australian Veterinary Journal 77, 748–751.CrossRefGoogle ScholarPubMed
Bock, R. E. & Vos, A. J. (2001). Immunity following use of Australian tick fever vaccine: a review of the evidence. Australian Veterinary Journal 79, 832–839.CrossRefGoogle Scholar
Bowie, J. V., Fuente, J., Kocan, K. M., Blouin, E. F. & Barbet, A. F. (2002). Conservation of major surface protein 1 genes of the ehrlichial pathogen Anaplasma marginale during cyclic transmission between ticks and cattle. Gene 282, 95–102.CrossRefGoogle Scholar
Boynton, W. H., Hermes, W. B., Howell, D. E. & Woods, G. M. (1936). Anaplasmosis transmission by three species of ticks in California. Journal of the American Veterinary Medical Association 88, 500–502.Google Scholar
Bram, R. A. (1975). Tick-borne livestock diseases and their vectors. I. The global problem. World Animal Review 6, 1–5.Google Scholar
Brayton, K. A., Knowles, D. P., McGuire, T. C. & Palmer, G. H. (2001). Efficient use of a small genome to generate antigenic diversity in tick-borne ehrlichial pathogens. Proceedings of the National Academy of Sciences of the USA 98, 4130–4135.CrossRefGoogle ScholarPubMed
Brayton, K. A., Palmer, G. H., Lundgren, A., Yi, J. & Barbet, A. F. (2002). Antigenic variation of Anaplasma marginale msp2 occurs by combinatorial gene conversion. Molecular Microbiology 43, 1151–1159.CrossRefGoogle ScholarPubMed
Brown, W. C., Palmer, G. H., Lewin, H. A. & McGuire, T. C. (2001). CD4(+) Tlymphocytes from calves immunized with Anaplasma marginale major surface protein 1 (MSP1), a heteromeric complex of MSP1a and MSP1b, preferentially recognize the MSP1a carboxyl terminus that is conserved among strains. Infection and Immunity 69, 6853–6862.CrossRefGoogle Scholar
Brumpt, E. (1931). Transmission d'Anaplasma marginale par Rhipicephalus bursa et par margraopus. Annuals de Parasitologie 9, 4–9.Google Scholar
Camacho-Nuez, J., Muñoz, Lourdes M., Suarez, C. E., et al. (2000). Expression of polymorphic msp1β genes during acute Anaplasma marginale rickettsemia. Infection and Immunity 68, 1946–1952.CrossRefGoogle ScholarPubMed
Christensen, J. F. & Howard, J. A. (1966). Anaplasmosis transmission by Dermacentor occidentalis taken from cattle in Santa Barbara County, CA. American Journal of Veterinary Research 27, 1473–1475.Google Scholar
Coronado, A. 2001. Is Boophilus microplus the main vector of Anaplasma marginale? Technical note. Revista Científica, FCV-LUZ 11, 408–411.Google Scholar
Fuente, J. & Kocan, K. M. (2001). Expression of Anaplasma marginale major surface protein 2 variants in persistently infected ticks. Infection and Immunity 69, 5151–5156.CrossRefGoogle ScholarPubMed
Fuente, J. & Kocan, K. M. (2003). Advances in the identification and characterization of protective antigens for development of recombinant vaccines against tick infestations. Expert Review of Vaccines 2, 583–593.CrossRefGoogle ScholarPubMed
Fuente, J., & Kocan, K. M. (2006). Strategies for development of vaccines for control of ixodid tick species. Parasite Immunology 28, 275–283.CrossRefGoogle ScholarPubMed
Fuente, J., Almazán, C., Blouin, E. F., Naranjo, V. & Kocan, K. M. (2006). Reduction of tick infections with Anaplasma marginale and A. phagocytophilum by targeting the tick protective antigen subolesin. Parasitology Research 100, 85–91.CrossRefGoogle Scholar
Fuente, J., Blouin, E. F. & Kocan, K. M. (2003). Infection of ticks with the intracellular rickettsia Anaplasma marginale excludes infection with other genotypes. Clinical and Diagnostic Laboratory Immunology 10, 182–184.Google Scholar
Fuente, J., Garcia-Garcia, J. C., Blouin, E. F. & Kocan, K. M. (2001 a). Major surface protein 1a effects tick infection and transmission of the ehrlichial pathogen Anaplasma marginale. International Journal for Parasitology 31, 1705–1714.CrossRefGoogle Scholar
Fuente, J., Garcia-Garcia, J. C., Blouin, E. F. & Kocan, & K. M. (2001 b). Differential adhesion of major surface proteins 1a and 1b of the ehrlichial cattle pathogen Anaplasma marginale to bovine erythrocytes and tick cells. International Journal for Parasitology 31, 145–153.CrossRefGoogle ScholarPubMed
Fuente, J., Garcia-Garcia, J. C., Blouin, E. F., et al. (2001 c). Evolution and function of tandem repeats in the major surface protein 1a of the ehrlichial pathogen Anaplasma marginale. Animal Health Research Reviews 2, 163–173.CrossRefGoogle Scholar
Fuente, J., Garcia-Garcia, J. C., Blouin, E. F. & Kocan, K. M. (2002 a). Characterization of the functional domain of major surface protein 1a involved in adhesion of Anaplasma marginale to host cells. Veterinary Microbiology 91, 265–283.CrossRefGoogle Scholar
Fuente, J., Garcia-Garcia, J. C., Blouin, E. F., Saliki, J. T. & Kocan, K. M. (2002 b). Infection of tick cells and bovine erythrocytes with one genotype of the intracellular ehrlichia Anaplasma marginale excludes infection with other genotypes. Diagnostic Laboratory Immunology 9, 658–668.Google ScholarPubMed
Fuente, J. C., Thomas, Golsteyn E. J., Bussche, A., et al. (2003). Characterization of Anaplasma marginale isolated from North American bison. Applied and Environmental Microbiolology 69, 5001–5005.CrossRefGoogle Scholar
Fuente, J., Kocan, K. M., Garcia-Garcia, J. C., et al. (2002 c). Vaccination of cattle with Anaplasma marginale derived from tick cell culture and bovine erythrocytes followed by challenge-exposure by ticks. Veterinary Microbiology 89, 239–251.CrossRefGoogle ScholarPubMed
Fuente, J., Kocan, K. M., Mangold, A. J., et al. (2007 a). Biogeography and molecular evolution of Anaplasma species. Veterinary Parasitology 119, 382–390.Google Scholar
Fuente, J., Lew, A., Lutz, H., et al. (2005). Genetic diversity of Anaplasma species major surface proteins and implications for anaplasmosis serodiagnosis and vaccine development. Animal Health Reviews 6, 75–89.CrossRefGoogle ScholarPubMed
Fuente, J., Naranjo, V., Ruiz-Fons, F., et al. (2004). Prevalence of tick-borne pathogens in ixodid ticks (Acari: Ixodidae) collected from wild boar (Sus scrofa) and Iberian red deer (Cervus elaphus hispanicus) in central Spain. European Journal of Wildlife Research 50, 187–196.CrossRefGoogle Scholar
Fuente, J., Rodriguez, M., Redondo, M., et al. (1998). Field studies and cost-effectiveness analysis of vaccination with Gavac against the cattle tick Boophilus microplus. Vaccine 16, 366–373.Google ScholarPubMed
Fuente, J., Ruybal, P., Mtshali, M. S., et al. (2007 b). Analysis of world strains of Anaplasma marginale using major surface protein 1a repeat sequences. Veterinary Microbiology 119, 382–390.CrossRefGoogle ScholarPubMed
Fuente, J., Bussche, R. A., Garcia-Garcia, J. C., et al. (2002 d). Phylogeography of New World isolates of Anaplasma marginale (Rickettsiaceae: Ehrlichieae) based on major surface protein sequences. Veterinary Microbiology 88, 275–285.CrossRefGoogle Scholar
Fuente, J., Bussche, R. A. & Kocan, K. M. (2001). Molecular phylogeny and biogeography of North American isolates of Anaplasma marginale (Rickettsiaceae: Ehrlichieae). Veterinary Parasitology 97, 65–76.CrossRefGoogle Scholar
Fuente, J., Bussche, R. A., Prado, T. & Kocan, K. M. (2002 e). Anaplasma marginale major surface protein 1α genotypes evolved under positive selection pressure but are not a marker for geographic isolates. Journal of Clinical Microbiology 41, 1609–1616.CrossRefGoogle Scholar
Dikman, G. (1950). The transmission of anaplasmosis. American Journal of Veterinary Research 11, 5–16.Google Scholar
Dumler, J. S., Barbet, A. F., Bekker, C. P. J., et al. (2001). Reorganization of the genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and “HGE agent” as subjective synonyms of Ehrlichia phagocytophila. International Journal of Systematic Evolutionary Microbiology 51, 2145–2165.CrossRefGoogle ScholarPubMed
Eriks, I. S., Stiller, D. & Palmer, G. H. (1993). Impact of persistent Anaplasma marginale rickettsemia on tick infection and transmission. Journal of Clinical Microbiology 31, 2091–2096.Google ScholarPubMed
Ewing, S. A. (1981). Transmission of Anaplasma marginale by arthropods. In Proceedings of the 7th National Anaplasmosis Conference, pp. 395–423.Google Scholar
Ewing, S. A., Panciera, R. J., Kocan, K. M., et al. (1997). A winter outbreak of anaplasmosis in a non-endemic area of Oklahoma: a possible role for Dermacentor albipictus. Journal of Veterinary Diagnostic Investigation 9, 206–208.CrossRefGoogle Scholar
Figueroa, J. V., Alvarez, J. A., Ramos, J. A., et al. (1998). Bovine babesiosis and anaplasmosis follow-up on cattle relocated in an endemic area for hemoparasitic diseases. Annals of the New York Academy of Science 849, 1–10.CrossRefGoogle Scholar
Foil, L. D. (1989). Tabanids as vectors of disease agents. Parasitology Today 5, 88–96.CrossRefGoogle ScholarPubMed
French, D. M., Brown, W. C. & Palmer, G. H. (1999). Emergence of Anaplasma marginale antigenic variants during persistent rickettsemia. Infection and Immunity 67, 5834–5840.Google ScholarPubMed
French, D. M., McElwain, T. F., McGuire, T. C. & Palmer, G. H. (1998). Expression of Anaplasma marginale major surface protein 2 variants during persistent cyclic rickettsemia. Infection and Immunity 66, 1200–1207. [Published errantum appears in Infection and Immunity (1998) 66, 2400.]Google ScholarPubMed
Futse, J. E., Ueti, M. W., Knowles, D. P. Jr & Palmer, G. H. (2003). Transmission of Anaplasma marginale by Boophilus microplus: retention of vector competence in the absence of vector–pathogen interaction. Journal of Clinical Microbiology 41, 3829–3834.CrossRefGoogle ScholarPubMed
Garcia-Garcia, J. C., Fuente, J., Bell-Eunice, G., Blouin, E. F. & Kocan, K. M. (2004 a). Glycosylation of major surface protein 1a and its putative role in adhesion of Anaplasma marginale to tick cells. Infection and Immunity 72, 3022–3030.CrossRefGoogle ScholarPubMed
Garcia-Garcia, J. C., Fuente, J., Blouin, E. F., et al. (2004 b). Differential expression of the msp1α gene of Anaplasma marginale occurs in bovine erythrocytes and tick cells. Veterinary Microbiology 98, 261–272.CrossRefGoogle ScholarPubMed
Garcia-Garcia, J. C., Fuente, J., Kocan, K. M., et al. (2004 c). Mapping of B-cell epitopes in the N-terminal repeated peptides of the Anaplasma marginale major surface protein 1a and characterization of the humoral immune response of cattle immunized with recombinant and whole organism antigens. Veterinary Immunology and Immunopathology 98, 137–151.CrossRefGoogle ScholarPubMed
Ge, N. L., Kocan, K. M., Blouin, E. F. & Murphy, G. L. (1996). Developmental studies of Anaplasma marginale (Rickettsiales: Anaplasmataceae) in male Dermacentor andersoni (Acari: Ixodidae) infected as adults by using non-radioactive in situ hybridization and microscopy. Journal of Medical Entomology 33, 911–920.CrossRefGoogle Scholar
Helm, R. (1924). Beitrag zum Anaplasmen-Problem. Zeitschrift für Infektionskr ankheiten 25, 199–226.Google Scholar
Howarth, J. A. & Hokama, Y. (1973). Tick transmission of anaplasmosis under laboratory conditions. In Proceedings of the 6th National Anaplasmosis Research Conference, Las Vegas, NV, pp. 117–120.Google Scholar
Howarth, J. A. & Roby, T. O. (1972). Transmission of anaplasmosis by field collections of Dermacentor occidentalis Marx (Acarina: Ixodidae). In 76th Meeting of the United States Animal Health Association, pp. 98–102.Google Scholar
Howell, D. E., Stiles, G. W. & Moe, L. H. (1941). The fowl tick (Argas persicus), a new vector of anaplasmosis. American Journal of Veterinary Research 4, 73–75.Google Scholar
Kocan, K. M. (1986). Development of Anaplasma marginale in ixodid ticks: coordinated development of a rickettsial organism and its tick host. In Morphology, Physiology, and Behavioral Ecology of Ticks, eds. Sauer, J. R. & Hair, J. A., pp. 472–505. Chichester, UK: Ellis Horwood.Google Scholar
Kocan, K. M., Blouin, E. F. & Barbet, A. F. (2000). Anaplasmosis control: past, present and future. Annals of the New York Academy of Science 916, 501–509.CrossRefGoogle Scholar
Kocan, K. M., Fuente, J., Blouin, E. F. & Garcia-Garcia, J. C. (2002). Adaptation of the tick-borne pathogen, Anaplasma marginale, for survival in cattle and tick hosts. Experimental and Applied Acarology 28, 9–25.CrossRefGoogle Scholar
Kocan, K. M., Fuente, J., Blouin, E. F. & Garcia-Garcia, J. C. (2004). Anaplasma marginale (Rickettsiales: Anaplasmataceae): recent advances in defining host-pathogen adaptations of a tick-borne rickettsia. Parasitology 12, S285–S300.CrossRefGoogle Scholar
Kocan, K. M., Fuente, J., Guglielmone, A. A. & Melendéz, R. D. (2003). Antigens and alternatives for control of Anaplasma marginale infection in cattle. Clinical Microbiology Reviews 16, 698–712.CrossRefGoogle ScholarPubMed
Kocan, K. M., Goff, W. L., Stiller, D., et al. (1992 a). Persistence of Anaplasma marginale (Rickettsiales: Anaplasmataceae) in male Dermacentor andersoni (Acari: Ixodidae) transferred successively from infected to susceptible calves. Journal of Medical Entomology 29, 657–668.CrossRefGoogle ScholarPubMed
Kocan, K. M., Hair, J. A., Ewing, S. A. & Stratton, J. G. (1981). Transmission of Anaplasma marginale Theiler by Dermacentor andersoni Stiles and Dermacentor variabilis (Say). American Journal of Veterinary Research 42, 15–18.Google Scholar
Kocan, K. M., Halbur, T., Blouin, E. F., et al. (2001). Immunization of cattle with Anaplasma marginale derived from tick cell culture. Veterinary Parasitology 102, 151–161.CrossRefGoogle ScholarPubMed
Kocan, K. M., Munderloh, U. G. & Ewing, S. A. (1998). Development of the Ebony isolate of Ehrlichia canis in cultured Ixodes scapularis cells. In 79th Conference of Research Workers in Animal Diseases, Chicago, IL, Abstract 95.Google Scholar
Kocan, K. M., Stiller, D., Goff, W. L., et al. (1992 b). Development of Anaplasma marginale in male Dermacentor andersoni transferred from parasitemic to susceptible cattle. American Journal of Veterinary Research 53, 499–507.Google ScholarPubMed
Labuda, M., Trimnell, A. R., Lickova, M., et al. (2006). An antivector vaccine protects against a lethal vector-borne pathogen. PLoS Pathogens 2, e27.CrossRefGoogle ScholarPubMed
McBride, J. W., Xue-Jie, Yu & Walker, D. H. (2000). Glycosylation of homologous immunodominant proteins of Ehrlichia chaffeensis and Ehrlichia canis. Infection and Immunity 68, 13–18.CrossRefGoogle ScholarPubMed
McGarey, D. J. & Allred, D. R. (1994). Characterization of hemagglutinating components on the Anaplasma marginale initial body surface and identification of possible adhesins. Infection and Immunity 62, 4587–4593.Google ScholarPubMed
McGarey, D. J., Barbet, A. F., Palmer, G. H., McGuire, T. C. & Allred, D. R. (1994). Putative adhesins of Anaplasma marginale: major surface polypeptides 1a and 1b. Infection and Immunity 62, 4594–4601.Google ScholarPubMed
Meeus, P. F. & Barbet, A. F. (2001). Ingenious gene generation. Trends in Microbiology 9, 353–355.CrossRefGoogle ScholarPubMed
Molad, T., Mazuz, M. L., Fleiderovitz, L., et al. (2006). Molecular and serological detection of A. centrale- and A. marginale-infected cattle grazing within an endemic area. Veterinary Microbiololgy 113, 55–62.CrossRefGoogle Scholar
Munderloh, U. G., Blouin, E. F., Kocan, K. M., et al. (1996 a). Establishment of the tick (Acari: Ixodidae)-borne cattle pathogen Anaplasma marginale (Rickettsiales: Anaplasmataceae) in tick cell culture. Journal of Medical Entomology 33, 656–664.CrossRefGoogle Scholar
Munderloh, U. G., Jauron, S. D., Fingerle, V., et al. (1999). Invasion and intracellular development of the human granulocytic ehrlichiosis agent in tick cell culture. Journal of Clinical Microbiology 37, 2518–2524.Google ScholarPubMed
Munderloh, U. G., Madigan, J. E., Dumler, J. S., et al. (1996 b). Isolation of the equine granulocytic ehrlichiosis agent, Ehrlichia equi, in tick cell culture. Journal of Clinical Microbiology 34, 664–670.Google ScholarPubMed
Nuttall, P. A. (1999). Pathogen–tick–host interactions: Borrelia burgdorferi and TBE virus. Zentralblatt für Bakteriologie 289, 492–505.CrossRefGoogle ScholarPubMed
Oberle, S. M., Palmer, G. H., Barbet, A. F. & McGuire, T. C. (1988). Molecular size variations in an immunoprotective protein complex among isolates of Anaplasma marginale. Infection and Immunity 56, 1567–1573.Google Scholar
Pal, U., Li, X., Wang, T., et al. (2004). TROSPA, an Ixodes scapularis receptor for Borrelia burgdorferi. Cell 119, 457–468.CrossRefGoogle ScholarPubMed
Palmer, G. H. (1989). Anaplasmosis vaccines. In Veterinary Protozoan andHemoparasite Vaccines, ed. Wright, I. G., pp. 1–29. Boca Raton, FL: CRC Press.Google Scholar
Palmer, G. H., Knowles, D. P. Jr, Rodriguez, J. L., et al. (2004). Stochastic transmission of multiple genotypically distinct Anaplasma marginale strains in a herd with high prevalence of Anaplasma infection. Journal of Clinical Microbiology 42, 5381–5384.CrossRefGoogle Scholar
Palmer, G. H., Rurangirwa, F. R. & McElwain, T. F. (2001). Strain composition of the ehrlichia Anaplasma marginale within persistently infected cattle, a mammalian reservoir for tick transmission. Journal of Clinical Microbiology 39, 631–635.CrossRefGoogle ScholarPubMed
Palmer, G. H., Waghela, S. D., Barbet, A. F., Davis, W. C. & McGuire, T. C. (1987). Characterization of a neutralization sensitive epitope on the AM 105 surface protein of Anaplasma marginale. Journal of Parasitology 17, 1279–1285.Google Scholar
Parker, R. J. (1982). The Australian brown dog tick Rhipicephalus sanguineus as an experimental parasite of cattle and vector of Anaplasma marginale. Australian Veterinary Journal 58, 47–51.CrossRefGoogle ScholarPubMed
Peterson, K. J., Raleigh, R. J., Stround, R. K. & Goulding, R. L. (1977). Bovine anaplasmosis transmission studies conducted under controlled natural exposure in a Dermacentor andersoni (= venustus) indigenous area of eastern Oregon. American Journal of Veterinary Research 38, 351–354.Google Scholar
Piercy, P. L (1938). Fifty-First Annual Report, Texas Agricultural Experiment Station.Google Scholar
Piercy, P. L. & Schmidt, H. (1941). Fifty-Fourth Annual Report, Texas Agricultural Experiment Station.Google Scholar
Potgieter, F. T. (1979). Epizootiology and control of anaplasmosis in South Africa. Journal of the South African Veterinary Association 504, 367–372.Google Scholar
Potgieter, F. T., can, Ko K. M., McNew, R. W. & Ewing, S. A. (1983). Demonstration of colonies of Anaplasma marginale in the midgut of Rhipicephalus simus. American Journal of Veterinary Research 44, 2256–2261.Google ScholarPubMed
Rees, C. W. (1930). Experimental transmission of anaplasmosis by Rhipicephalus sanguineus. North American Veterinarian 11, 17–20.Google Scholar
Rees, C. W. (1932). The experimental transmission of anaplasmosis by Dermacentor variabilis. Science 75, 318–320.CrossRefGoogle ScholarPubMed
Rees, C. W. (1933). The experimental transmission of anaplasmosis by Dermacentor andersoni. Parasitology 21, 569–573.CrossRefGoogle Scholar
Rees, C. W. (1934). Transmission of Anaplasmosis by Various Species of Ticks, US Department of Agriculture Technical Bulletin No. 418. Washington, DC: US Government Printing Office.Google Scholar
Rees, C. W. & Avery, J. L. (1939). Experiments on the hereditary transmission of anaplasmosis by ticks. North American Veterinarian 20, 35–36.Google Scholar
Richey, E. J. (1981). Bovine anaplasmosis. In Current Veterinary Therapy: Food Animal Practice, ed. Howard, R. J., pp. 767–772. Philadelphia, PA: W.B. Saunders.Google Scholar
Ristic, M. (1968). Anaplasmosis. In Infectious Blood Diseases of Man and Animals, eds. Weinman, D. & Ristic, M., pp. 478–542. New York: Academic Press.Google Scholar
Camarilla, Rodriguez S. D., Ortiz, Garcia M. A., Salgado, Hernández G., et al. (2000). Anaplasma marginale inactivated vaccine: dose titration against a homologous challenge. Comparative Immunology and Microbiology of Infectious Diseases 23, 239–252.Google Scholar
Rosenbusch, F. & Gonzalez, R. (1927). Die Tristeza Übertragung durch Zecken und dessen Immunitätsprobleme. Archiv für Protistenkunde 58, 300–320.Google Scholar
Rozeboom, L. E., Stiles, G. W. & Moe, L. H. (1940). Anaplasmosis transmission by Dermacentor andersoni Stiles. Journal of Parasitology 26, 95–100.CrossRefGoogle Scholar
Rurangirwa, R. T., Stiller, D., French, D. M. & Palmer, G. H. (1999). Restriction of major surface protein 2 (MSP2) variants during tick transmission of the ehrlichia Anaplasma marginale. Proceedings of the National Academy of Sciences of the USA 96, 3171–3176.CrossRefGoogle ScholarPubMed
Rurangirwa, F. R., Stiller, D. & Palmer, G. H. (2000). Strain diversity in major surface protein 2 expression during tick transmission of Anaplasma marginale. Infection and Immunity 68, 3023–3027.CrossRefGoogle ScholarPubMed
Saliki, J. T., Blouin, E. F., Rodgers, S. J. & Kocan, K. M. (1998). Use of tick cell culture-derived Anaplasma marginale antigen in a competitive ELISA for serodiagnosis of anaplasmosis. Annals of the New York Academy of Science 849, 273–281.CrossRefGoogle Scholar
Samish, M., Pipano, E. & Hadani, A. (1993). Intrastadial and interstadial transmission of Anaplasma marginale by Boophilus annulatus ticks in cattle. American Journal of Veterinary Research 54, 411–414.Google ScholarPubMed
Sanborn, C. E. & Moe, L. H. (1934). Anaplasmosis investigations. In Report of the Oklahoma Agricultural and Mining College and Agricultural Experiment Station, 1932–1934, pp. 275–279.Google Scholar
Sanborn, C. E., Stiles, G. W. & Moe, L. H. (1938). Anaplasmosis transmission by naturally infected Dermacentor andersoni male and female ticks. North American Veterinarian 19, 31–32.Google Scholar
Sanders, D. A. (1933). Notes on the experimental transmission of bovine anaplasmosis in Florida. Journal of the American Veterinary Medical Association 88, 799–805.Google Scholar
Schmidt, H. & Piercy, P. L. (1937). In Fiftieth Annual Report, Texas Agricultural Experiment Station.
Scoles, G. A., Broce, A. B., Lysyk, T. J. & Palmer, G. H. (2005 a). Relative efficiency of biological transmission of Anaplasma marginale (Rickettsiales: Anaplasmataceae) by Dermacentor andersoni (Acari: Ixodidae) compared with mechanical transmission by Stomoxys calcitrans (Diptera: Muscidae). Journal of Medical Entomology 42, 668–675.CrossRefGoogle Scholar
Scoles, G. A., Ueti, M. W. & Palmer, G. H. (2005 b). Variation among geographically separated populations of Dermacentor andersoni (Acari: Ixodidae) in midgut susceptibility to Anaplasma marginale (Rickettsiales: Anaplasmataceae). Journal of Medical Entomology 42, 153–162.CrossRefGoogle Scholar
Sergent, E., Dontien, A., Parrot, L. & Lestoquard, F. (In Memoriam): (1945). Etudes sur les piroplasmoses bovines. Institut Pasteur d'Algérie, p. 816.Google Scholar
Shkap, V., Molad, T, Fish, L. & Palmer, G. H. (2002). Detection of the Anaplasma centrale vaccine strain and specific differentiation from Anaplasma marginale in vaccinated and infected cattle. Parasitology Research 88, 546–552.CrossRefGoogle ScholarPubMed
Smith, R., Levy, M. G., Kuhlenschmidt, M. S., et al. (1986). Isolate of Anaplasma marginale not transmitted by ticks. American Journal of Veterinary Research 47, 127–129.Google Scholar
Stich, R. W., Kocan, K. M., Palmer, G. H., et al. (1989). Transstadial and attempted transovarial transmission of Anaplasma marginale Theiler by Dermacentor variabilis (Say). American Journal of Veterinary Research 50, 1386–1391.Google Scholar
Stiller, D. & Johnson, L. W. (1983). Experimental transmission of Anaplasma marginale Theiler by adults of Dermacentor albipictus (Packard) and Dermacentor occidentalis Marx (Acari: Ixodidae). In Proceedings of the 87th Annual Meeting of the US Animal Health Association, pp. 59–65.Google Scholar
Stiller, D., Crosbie, P. R., Boyce, W. M. & Goff, W. E. (1999). Dermacentor hunteri (Acari: Ixodidae): experimental vector of Anaplasma marginale and A. ovis (Rickettsiales: Anaplasmataceae) in calves and sheep. Journal of Medical Entomology 36, 321–324.CrossRefGoogle Scholar
Stiller, D., Leatch, G. & Kuttler, K. (1981). Experimental transmission of bovine anaplasmosis by the winter tick, Dermacentor albipictus (Packard). In Proceedings of the National Anaplasmosis Conference, pp. 463–475.Google Scholar
Theiler, A. (1911). Further investigations into anaplasmosis of South African cattle. In 1st Report of the Director of Veterinary Research, pp. 7–46. Department of Agriculture of the Union of South Africa.Google Scholar
Theiler, A. (1912). Übertragung der Anaplasmosis mittels Zecken. Zeitschrift für Infektionskrankheiten 12, 105–116.Google Scholar
Viseshakul, N., Kamper, S., Bowie, M. V. & Barbet, A. F. (2000). Sequence and expression analysis of a surface antigen gene family of the rickettsia Anaplasma marginale. Gene 253, 45–53.CrossRefGoogle ScholarPubMed
Visser, E. S., McGuire, T. C., Palmer, G. H., et al. (1992). The Anaplasma marginale msp5 gene encodes a 19-kilodalton protein conserved in all recognized Anaplasma species. Infection and Immunity 60, 5139–5144.Google ScholarPubMed
Wickwire, K. B., Kocan, K. M., Barron, S. J., et al. (1987). Infectivity of three Anaplasma marginale isolates for Dermacentor andersoni. American Journal of Veterinary Research 48, 96–99.Google ScholarPubMed
Wikel, S. K., Ramachandra, R. N., Bergman, D. K., Burkot, T. R. & Piesman, J. (1997). Infestation with pathogen-free nymphs of the tick Ixodes scapularis induces host resistance to transmission of Borrelia burgdorferi by ticks. Infection and Immunity 65, 335–338.Google ScholarPubMed
Zeller, H. & Helm, R. (1923). Versuche zur Frage der Übertragbarkeit des Texasfiebers auf deutsche Rinder durch die bei uns vorkommenden Zecken Ixodes ricinus und Haemaphysalis punctata Cinabarina. Berliner tierärztlich Wochenschrift 39, 1–4.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×