Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-09T19:24:27.043Z Has data issue: false hasContentIssue false

5 - Role of the Epididymis in Sperm Maturation

Published online by Cambridge University Press:  25 May 2017

Christopher J. De Jonge
Affiliation:
University of Minnesota
Christopher L. R. Barratt
Affiliation:
University of Dundee
Ryuzo Yanagimachi
Affiliation:
University of Hawaii, Manoa
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Sperm Cell
Production, Maturation, Fertilization, Regeneration
, pp. 73 - 87
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Vasectomy reversal. Fertil Steril 2004; 82 Suppl 1: S194–8.Google Scholar
Cooper, TW. Epididymis. In: Knobil, ENJ (Ed.), Encyclopedia of Reproduction. Academic Press, 1998: 117.Google Scholar
Jones, RC. Evolution of the vertebrate epididymis. J Reprod Fertil Suppl 1998; 53: 163–81.Google ScholarPubMed
Jones, RC, Dacheux, JL, Nixon, B, Ecroyd, HW. Role of the epididymis in sperm competition. Asian J Androl 2007; 9: 493–9.CrossRefGoogle ScholarPubMed
Orgebin-Crist, MC. Sperm maturation in rabbit epididymis. Nature 1967; 216: 816–8.CrossRefGoogle ScholarPubMed
Bedford, JM. Effects of duct ligation on the fertilizing ability of spermatozoa from different regions of the rabbit epididymis. J Exp Zool 1967; 166: 271–81.CrossRefGoogle ScholarPubMed
Cooper, TG. The human epididymis–Is it necessary? Int J Androl 1993; 16: 245300.CrossRefGoogle ScholarPubMed
Cooper, TG. In defense of a function for the human epididymis. Fertil Steril 1990; 54: 965–75.Google ScholarPubMed
Bedford, JM. The status and the state of the human epididymis. Hum Reprod 1994; 9: 2,187–99.CrossRefGoogle ScholarPubMed
Belleannee, C, Thimon, V, Sullivan, R. Region-specific gene expression in the epididymis. Cell Tissue Res 2012; 349: 717–31.CrossRefGoogle ScholarPubMed
Cornwall, GA. New insights into epididymal biology and function. Hum Reprod Update 2009; 15: 213–27.Google ScholarPubMed
Turner, TT. Exploring the epididymis: A personal perspective on careers in science. Asian J Androl 2015; 17: 704–7.CrossRefGoogle ScholarPubMed
Hirsh, AV. The anatomical preparations of the human testis and epididymis in the Glasgow Hunterian Anatomical Collection. Hum Reprod Update 1995; 1: 515–21.CrossRefGoogle ScholarPubMed
Yeung, CH, Cooper, TG, Bergmann, M, Schulze, H. Organization of tubules in the human caput epididymidis and the ultrastructure of their epithelia. Am J Anat 1991; 191: 261–79.CrossRefGoogle ScholarPubMed
Hess, RA, Fernandes, SA, Gomes, GR, Oliveira, CA, Lazari, MF, Porto, CS. Estrogen and its receptors in efferent ductules and epididymis. J Androl 2011; 32: 600–13.CrossRefGoogle ScholarPubMed
Yeung, CH, Sonnenberg-Riethmacher, E, Cooper, TG. Receptor tyrosine kinase c-ros knockout mice as a model for the study of epididymal regulation of sperm function. J Reprod Fertil Suppl 1998; 53: 137–47.Google Scholar
Legare, C, Sullivan, R. Expression and localization of c-ros oncogene along the human excurrent duct. Mol Hum Reprod 2004; 10: 697703.CrossRefGoogle ScholarPubMed
Cyr, DG. Connexins and pannexins: Coordinating cellular communication in the testis and epididymis. Spermatogenesis 2011; 1: 325–38.CrossRefGoogle ScholarPubMed
Cooper, TG. Immunology of the epididymis. Andrologia 1999; 31: 322.Google ScholarPubMed
Guiton, R, Henry-Berger, J, Drevet, JR. The immunobiology of the mammalian epididymis: The black box is now open! Basic and Clinical Andrology 2013; 23: 8.CrossRefGoogle ScholarPubMed
Dacheux, JL, Belghazi, M, Lanson, Y, Dacheux, F. Human epididymal secretome and proteome. Mol Cell Endocrinol 2006; 250: 3642.CrossRefGoogle ScholarPubMed
Legare, C, Thabet, M, Picard, S, Sullivan, R. Effect of vasectomy on P34H messenger ribonucleic acid expression along the human excurrent duct: A reflection on the function of the human epididymis. Biol Reprod 2001; 64: 720–7.CrossRefGoogle ScholarPubMed
Hinton, BT, Pryor, JP, Hirsh, AV, Setchell, BP. The concentration of some inorganic ions and organic compounds in the luminal fluid of the human ductus deferens. Int J Androl 1981; 4: 457–61.CrossRefGoogle ScholarPubMed
Cooper, TG, Yeung, CH. Acquisition of volume regulatory response of sperm upon maturation in the epididymis and the role of the cytoplasmic droplet. Microsc Res Technique 2003; 61: 2838.CrossRefGoogle ScholarPubMed
Rowley, MJ, Teshima, F, Heller, CG. Duration of transit of spermatozoa through the human male ductular system. Fertil Steril 1970; 21: 390–6.CrossRefGoogle ScholarPubMed
Amann, RP, Howards, SS. Daily spermatozoal production and epididymal spermatozoal reserves of the human male. J Urol 1980; 124: 211–5.CrossRefGoogle ScholarPubMed
Johnson, L. A re-evaluation of daily sperm output of men. Fertil Steril 1982; 37: 811–6.CrossRefGoogle ScholarPubMed
Johnson, L, Varner, DD. Effect of daily spermatozoan production but not age on transit time of spermatozoa through the human epididymis. Biol Reprod 1988; 39: 812–7.CrossRefGoogle Scholar
Bedford, JM, Calvin, H, Cooper, GW. The maturation of spermatozoa in the human epididymis. J Reprod Fertil Suppl 1973; 18: 199213.Google ScholarPubMed
Haidl, G, Badura, B, Schill, WB. Function of human epididymal spermatozoa. J Androl 1994; 15 Suppl: 23S-7S.CrossRefGoogle ScholarPubMed
Cooper, TG, Raczek, S, Yeung, CH, Schwab, E, Schulze, H, Hertle, L. Composition of fluids obtained from human epididymal cysts. Urol Res 1992; 20: 275–80.CrossRefGoogle ScholarPubMed
Jelinsky, SA, Turner, TT, Bang, HJ, Finger, JN, Solarz, MK, Wilson, E et al. The rat epididymal transcriptome: comparison of segmental gene expression in the rat and mouse epididymides. Biol Reprod 2007; 76: 561–70.CrossRefGoogle ScholarPubMed
Dacheux, JL, Belleannee, C, Jones, R, Labas, V, Belghazi, M, Guyonnet, B et al. Mammalian epididymal proteome. Mol Cell Endocrinol 2009; 306: 4550.CrossRefGoogle ScholarPubMed
Cornwall, GA, Hann, SR. Specialized gene expression in the epididymis. J Androl 1995; 16: 379–83.CrossRefGoogle ScholarPubMed
Li, J, Liu, F, Liu, X, Liu, J, Zhu, P, Wan, F et al. Mapping of the human testicular proteome and its relationship with that of the epididymis and spermatozoa. Mol Cell Proteom: MCP 2011; 10: M110 004630.CrossRefGoogle ScholarPubMed
Liu, X, Liu, F. Indepth mapping of human testicular and epididymal proteins and their functional association with spermatozoa. Mol Med Rep 2015; 12: 173–9.Google ScholarPubMed
Kirchhoff, C. Gene expression in the epididymis. Int Rev Cytol 1999; 188: 133202.CrossRefGoogle ScholarPubMed
Kowal, J, Tkach, M, Thery, C. Biogenesis and secretion of exosomes. Curr Opin Cell Biol 2014; 29: 116–25.CrossRefGoogle ScholarPubMed
Thery, C. Exosomes: secreted vesicles and intercellular communications. F1000 Biol Rep 2011; 3: 15.CrossRefGoogle ScholarPubMed
Barkalina, N, Jones, C, Wood, MJ, Coward, K. Extracellular vesicle-mediated delivery of molecular compounds into gametes and embryos: Learning from nature. Hum Reprod Update 2015; 21: 627–39.CrossRefGoogle ScholarPubMed
Saez, F, Frenette, G, Sullivan, R. Epididymosomes and prostasomes: Their roles in posttesticular maturation of the sperm cells. J Androl 2003; 24: 149–54.CrossRefGoogle ScholarPubMed
Yanagimachi, R, Kamiguchi, Y, Mikamo, K, Suzuki, F, Yanagimachi, H. Maturation of spermatozoa in the epididymis of the Chinese hamster. Am J Anat 1985; 172: 317–30.CrossRefGoogle ScholarPubMed
Sullivan, R, Saez, F. Epididymosomes, prostasomes, and liposomes: Their roles in mammalian male reproductive physiology. Reproduction 2013; 146: R2135.CrossRefGoogle ScholarPubMed
Hermo, L, Jacks, D. Nature's ingenuity: Bypassing the classical secretory route via apocrine secretion. Mol Reprod Dev 2002; 63: 394410.CrossRefGoogle ScholarPubMed
Hoog, JL, Lotvall, J. Diversity of extracellular vesicles in human ejaculates revealed by cryo-electron microscopy. J Extracell Vesicles 2015; 4: 28680.CrossRefGoogle ScholarPubMed
Thimon, V, Frenette, G, Saez, F, Thabet, M, Sullivan, R. Protein composition of human epididymosomes collected during surgical vasectomy reversal: A proteomic and genomic approach. Hum Reprod 2008; 23: 1,698870.CrossRefGoogle ScholarPubMed
Belleannee, C, Legare, C, Calvo, E, Thimon, V, Sullivan, R. MicroRNA signature is altered in both human epididymis and seminal microvesicles following vasectomy. Hum Reprod 2013; 28: 1,455–67.CrossRefGoogle ScholarPubMed
Landgraf, P, Rusu, M, Sheridan, R, Sewer, A, Iovino, N, Aravin, A et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007; 129: 1,401–14.CrossRefGoogle ScholarPubMed
Belleannee, C, Calvo, E, Thimon, V, Cyr, DG, Legare, C, Garneau, L et al. Role of microRNAs in controlling gene expression in different segments of the human epididymis. PloS one 2012; 7: e34996.CrossRefGoogle ScholarPubMed
Li, J, Liu, Y, Dong, D, Zhang, Z. Evolution of an X-linked primate-specific micro RNA cluster. Molecular Biol Evol 2010; 27: 671–83.CrossRefGoogle ScholarPubMed
Lewis, BP, Shih, IH, Jones-Rhoades, MW, Bartel, DP, Burge, CB. Prediction of mammalian microRNA targets. Cell 2003; 115: 787–98.CrossRefGoogle ScholarPubMed
Zhang j, LQ, Zhang, W, Li, J, Li, Z, tang, Z, Li, Y, Han, C, Hall, SH, Zhang, Y. Comparative profiling of genes and miRNAs expressed in the newborn, young adult, and aged human epididymis. Acta Biochim Biophys Sin (Shanghai) 2010; 42: 145–53.CrossRefGoogle Scholar
Johnston, DS, Jelinsky, SA, Bang, HJ, Dicandeloro, P, Wilson, E, Kopf, GS et al. The mouse epididymal transcriptome: transcriptional profiling of segmental gene expression in the epididymis. Biol Reprod 2005; 73: 404–13.CrossRefGoogle ScholarPubMed
Dube, E, Chan, PT, Hermo, L, Cyr, DG. Gene expression profiling and its relevance to the blood–epididymal barrier in the human epididymis. Biol Reprod 2007; 76: 1,034–44.CrossRefGoogle Scholar
Thimon, V, Koukoui, O, Calvo, E, Sullivan, R. Region-specific gene expression profiling along the human epididymis. Mol Hum Reprod 2007; 13: 691704.CrossRefGoogle ScholarPubMed
Zhang, JS, Liu, Q, Li, YM, Hall, SH, French, FS, Zhang, YL. Genome-wide profiling of segmental-regulated transcriptomes in human epididymis using oligo microarray. Mol Cell Endocrinol 2006; 250: 169–77.CrossRefGoogle ScholarPubMed
Bedford, J. Models for investigation of gamete function in the male and female reproductive tracts. In: Serio, M, Martini, L. (Eds.), Animal Models in Human Reproduction. Raven Press, 1980: 233–48.Google Scholar
Schmidt, S, Schoyman, R, Stewart, SH. Surgical approaches to male infertility. In: Hafez, E (Ed.), Human Semen and Fertility Regulation in Men. CV Mosby, 1976: 476–93.Google Scholar
Schoysman, RJ, Bedford, JM. The role of the human epididymis in sperm maturation and sperm storage as reflected in the consequences of epididymovasostomy. Fertil Steril 1986; 46: 293–9.CrossRefGoogle ScholarPubMed
Silber, SJ. Microsurgery for male infertility. Microsurgery 1988; 9: 251–7.CrossRefGoogle ScholarPubMed
Silber, SJ, Grotjan, HE. Microscopic vasectomy reversal 30 years later: A summary of 4010 cases by the same surgeon. J Androl 2004; 25: 845–59.CrossRefGoogle Scholar
Shin, DH, Turek, PJ. Sperm retrieval techniques. Nat Rev Urol 2013; 10: 723–30.CrossRefGoogle ScholarPubMed
Caballero, J, Frenette, G, Sullivan, R. Post testicular sperm maturational changes in the bull: Important role of the epididymosomes and prostasomes. Vet Med Int 2010; 2011: 757194.Google ScholarPubMed
Cooper, TG. The epididymis, sperm maturation and fertilisation. Springer-Verlag, 1986.CrossRefGoogle Scholar
Tezon, JG, Blaquier, JA. The organ culture of hunan epididymal tubules and their response to androgens. Mol Cell Endocrinol 1981; 21: 233–42.CrossRefGoogle ScholarPubMed
Tezon, JG, Cuasnicu, PS, Scorticati, C, Blaquier, JA. Development and characterization of a model system for the study of epididymal physiology in man. Prog Clin Biol Res 1982; 87: 251–75.Google Scholar
Tezon, JG, Vazquez, MH, Pineiro, L, de Larminat, MA, Blaquier, JA. Identification of androgen-induced proteins in human epididymis. Biol Reprod 1985; 32: 584–90.CrossRefGoogle ScholarPubMed
Ross, P, Kan, FW, Antaki, P, Vigneault, N, Chapdelaine, A, Roberts, KD. Protein synthesis and secretion in the human epididymis and immunoreactivity with sperm antibodies. Mol Reprod Dev 1990; 26: 1223.CrossRefGoogle ScholarPubMed
Boue f, DC, Lassalle, B, Lefevre, A, Fina, C. FLB1, a human protein of epididymal origin that is involved in the sperm–oocyte recognition process. Biol Reprod 1995; 52: 267–78.CrossRefGoogle ScholarPubMed
Boue, F, Blais, J, Sullivan, R. Surface localization of P34H an epididymal protein, during maturation, capacitation, and acrosome reaction of human spermatozoa. Biol Reprod 1996; 54: 1,009–17.CrossRefGoogle ScholarPubMed
Boue, F, Berube, B, De Lamirande, E, Gagnon, C, Sullivan, R. Human sperm–zona pellucida interaction is inhibited by an antiserum against a hamster sperm protein. Biol Reprod 1994; 51: 577–87.CrossRefGoogle ScholarPubMed
Sullivan, R. Male fertility markers, myth or reality. Anim Reprod Sci 2004; 82–3: 341–7.Google Scholar
Sullivan, R. Interaction between sperm and epididymal secretory proteins. In: Gagnon, C (Ed.), The Male Gamete: From Basic to Clinical Applications. Cache River Press, 1999: 130–6.Google Scholar
Ebert, B, Kisiela, M, Maser, E. Human DCXR – Another ‘moonlighting protein’ involved in sugar metabolism, carbonyl detoxification, cell adhesion and male fertility? Biol Rev Cambridge Philos Soc 2015; 90: 254–78.CrossRefGoogle ScholarPubMed
Legare, C, Gaudreault, C, St-Jacques, S, Sullivan, R. P34H sperm protein is preferentially expressed by the human corpus epididymidis. Endocrinology 1999; 140: 3,318–27.CrossRefGoogle ScholarPubMed
St-Cyr, A, Legare, C, Frenette, G, Gaudreault, C, Sullivan, R. P26h and dicarbonyl/L-xylulose reductase are two distinct proteins present in the hamster epididymis. Mol Reprod Dev 2004; 69: 137–45.CrossRefGoogle ScholarPubMed
Begin, S, Berube, B, Boue, F, Sullivan, R. Comparative immunoreactivity of mouse and hamster sperm proteins recognized by an anti-P26h hamster sperm protein. Mol Reprod Dev 1995; 41: 249–56.CrossRefGoogle ScholarPubMed
Lamontagne, N, Legare, C, Gaudreault, C, Sullivan, R. Identification and characterization of P31m, a novel sperm protein in Cynomolgus monkey (Macaca fascicularis). Mol Reprod Dev 2001; 59: 431–41.CrossRefGoogle ScholarPubMed
Akintayo, A, Legare, C, Sullivan, R. Dicarbonyl L-xylulose reductase (DCXR), a “moonlighting protein” in the bovine epididymis. PloS one 2015; 10: e0120869.CrossRefGoogle ScholarPubMed
WHO. WHO laboratory manual for the examination and processing of human semen (fifth ed.). Cambridge: Cambridge University Press, 2010.Google Scholar
Boue, F, Sullivan, R. Cases of human infertility are associated with the absence of P34H an epididymal sperm antigen. Biol Reprod 1996; 54: 1,018–24.CrossRefGoogle ScholarPubMed
Sullivan, R, Legare, C, Villeneuve, M, Foliguet, B, Bissonnette, F. Levels of P34H, a sperm protein of epididymal origin, as a predictor of conventional in vitro fertilization outcome. Fertil Steril 2006; 85: 1,557–9.CrossRefGoogle ScholarPubMed
Moskovtsev, SI, Jarvi, K, Legare, C, Sullivan, R, Mullen, JB. Epididymal P34H protein deficiency in men evaluated for infertility. Fertil Steril 2007; 88: 1,455–7.CrossRefGoogle ScholarPubMed
Batruch, I, Smith, CR, Mullen, BJ, Grober, E, Lo, KC, Diamandis, EP et al. Analysis of seminal plasma from patients with non-obstructive azoospermia and identification of candidate biomarkers of male infertility. J Proteome Res 2012; 11: 1,503–11.CrossRefGoogle ScholarPubMed
Batruch, I, Lecker, I, Kagedan, D, Smith, CR, Mullen, BJ, Grober, E et al. Proteomic analysis of seminal plasma from normal volunteers and post-vasectomy patients identifies over 2000 proteins and candidate biomarkers of the urogenital system. J Proteome Res 2011; 10: 941–53.CrossRefGoogle ScholarPubMed
Drabovich, AP, Saraon, P, Jarvi, K, Diamandis, EP. Seminal plasma as a diagnostic fluid for male reproductive system disorders. Nat Rev Urol 2014; 11: 278–88.CrossRefGoogle ScholarPubMed
Drabovich, AP, Dimitromanolakis, A, Saraon, P, Soosaipillai, A, Batruch, I, Mullen, B et al. Differential diagnosis of azoospermia with proteomic biomarkers ECM1 and TEX101 quantified in seminal plasma. Sci Transl Med 2013; 5: 212ra160.CrossRefGoogle ScholarPubMed
Legare, C, Boudreau, L, Thimon, V, Thabet, M, Sullivan, R. Vasectomy affects cysteine-rich secretory protein expression along the human epididymis and its association with ejaculated spermatozoa following vasectomy surgical reversal. J Androl 2010; 31: 573–83.CrossRefGoogle ScholarPubMed
Legare, C, Cloutier, F, Makosso-Kallyth, S, Laflamme, N, Jarvi, K, Tremblay, RR et al. Cysteine-rich secretory protein 1 in seminal plasma: Potential biomarker for the distinction between obstructive and nonobstructive azoospermia. Fertil Steril 2013; 100: 1,253–60.CrossRefGoogle ScholarPubMed
Art, K, Nangia, AK. Techniques of vasectomy. Urol Clin N Am 2009; 36: 307–16.CrossRefGoogle ScholarPubMed
Pile, J, Barone, MA. Demographics of vasectomy-USA and international. Urol Clin N Am 2009; 36: 295306.CrossRefGoogle ScholarPubMed
McDonald, SW. Vasectomy review: Sequelae in the human epididymis and ductus deferens. Clin Anat 1996; 9: 337–42.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
McDonald, SW. Cellular responses to vasectomy. Int Rev Cytol 2000; 199: 295339.CrossRefGoogle ScholarPubMed
Alexander, NJ. Possible mechanisms of vasectomy-exacerbated atherosclerosis. Aust J Biol Sci 1982; 35: 469–79.CrossRefGoogle ScholarPubMed
Khan, MA, Partin, AW. Vasectomy and prostate cancer. Rev Urol 2004; 6: 46–7.Google ScholarPubMed
Goldacre, MJ, Wotton, CJ, Seagroatt, V, Yeates, D. Cancer and cardiovascular disease after vasectomy: An epidemiological database study. Fertil Steril 2005; 84: 1,438–43.CrossRefGoogle ScholarPubMed
Liu, LH, Kang, R, He, J, Zhao, SK, Li, FT, Wan, SP et al. Vasectomy and risk of prostate cancer: A systematic review and meta-analysis of cohort studies. Andrology 2015; 3: 643–9.CrossRefGoogle ScholarPubMed
Legare, C, Verville, N, Sullivan, R. Vasectomy influences expression of HE1 but not HE2 and HE5 genes in human epididymis. J Androl 2004; 25: 3043.CrossRefGoogle Scholar
Thimon, V, Calvo, E, Koukoui, O, Legare, C, Sullivan, R. Effects of vasectomy on gene expression profiling along the human epididymis. Biol Reprod 2008; 79: 262–73.CrossRefGoogle ScholarPubMed
Legare, C, Thabet, M, Gatti, JL, Sullivan, R. HE1/NPC2 status in human reproductive tract and ejaculated spermatozoa: consequence of vasectomy. Mol Hum Reprod 2006; 12: 461–8.CrossRefGoogle ScholarPubMed
Guillemette, C, Thabet, M, Dompierre, L, Sullivan, R. Some vasovasostomized men are characterized by low levels of P34H, an epididymal sperm protein. J Androl 1999; 20: 214–9.CrossRefGoogle ScholarPubMed
Sullivan, R, Legare, C, Thabet, M, Thimon, V. Gene expression in the epididymis of normal and vasectomized men: What can we learn about human sperm maturation? J Androl 2011; 32: 686–97.CrossRefGoogle ScholarPubMed
Bedford, JM. Human spermatozoa and temperature: The elephant in the room. Biol Reprod 2015; 93: 97.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×