Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-16T21:16:52.105Z Has data issue: false hasContentIssue false

Chapter 2 - Anatomy and Physiology of Gustation

Published online by Cambridge University Press:  17 January 2018

Christopher H. Hawkes
Affiliation:
Barts and the London School of Medicine and Surgery
Richard L. Doty
Affiliation:
University of Pennsylvania
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arey, L.B., Tremaine, M.J., Monzingo, F.L.,1935. The numerical and topographical relations of taste buds to human circumvallate papillae throughout the life span. Anatomical Record 64, 925.CrossRefGoogle Scholar
Arvidson, K., 1979. Location and variation in number of taste buds in human fungiform papillae. Scandinavian Journal of Dental Research 87, 435442.Google ScholarPubMed
Baker, K.A., Didcock, E.A., Kemm, J.R., Patrick, J.M., 1983. Effect of age, sex and illness on salt taste detection thresholds. Age Ageing 12, 159165.CrossRefGoogle ScholarPubMed
Bartoshuk, L.M., Duffy, V.B., Miller, I.J., 1994. PTC/PROP tasting: anatomy, psychophysics, and sex effects. Physiology & Behavior 56, 11651171.CrossRefGoogle ScholarPubMed
Bartoshuk, L.M., Rifkin, B., Marks, L.E., Bars, P., 1986. Taste and aging. Journal of Gerontology 41, 5157.CrossRefGoogle ScholarPubMed
Basset-Seguin, N., Hauschild, A., Grob, J.J., et al. 2015. Vismodegib in patients with advanced basal cell carcinoma (STEVIE): a pre-planned interim analysis of an international, open-label trial. Lancet Oncology 16(6), 729736.CrossRefGoogle ScholarPubMed
Beauchamp, G.K., Cowart, B.J., Moran, M., 1986. Developmental changes in salt acceptability in human infants. Developmental Psychobiology 19, 1725.CrossRefGoogle ScholarPubMed
Beidler, L.M. Smallman, R.L., 1965. Renewal of cells within taste buds. The Journal of Cell Biology 27, 263272.CrossRefGoogle ScholarPubMed
Berthoud, H.R., Bereiter, D.A., Trimble, E.R., Siegel, E.G., Jeanrenaud, B., 1981. Cephalic phase, reflex insulin secretion. Neuroanatomical and physiological characterization, Diabetologia 20 Suppl, 393401.CrossRefGoogle ScholarPubMed
Bodner, L., 1991. Effect of parotid submandibular and sublingual saliva on wound healing in rats. Comparative Biochemistry and Physiology Part A: Physiology 100, 887890.CrossRefGoogle ScholarPubMed
Bradley, R.M. Beidler, L.M., 2003. Saliva: its role in taste function. In Doty, R.L. (Ed.), Handbook of Olfaction and Gustation, 2nd edition, pp. 639650. New York: Marcel Dekker.Google Scholar
Brown, J., 1974. Recognition assessed by rating and ranking. British Journal of Psychology 65, 1322.CrossRefGoogle Scholar
Bryant, B.P., Moore, P.A., 1995. Factors affecting the sensitivity of the lingual trigeminal nerve to acids. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 268, R58R65.CrossRefGoogle ScholarPubMed
Buck, L.B., Bargmann, C.I. 2013. Figure 32–13, Chapter 32. In Kandel, E.R., Schwartz, J.H., Jessell, T.M., Siegelbaum, S.A., Hudspeth, A.J. (Eds.), Principles of Neural Science. 5th edition.Google Scholar
Bufe, B., Breslin, P.A., Kuhn, C., et al. 2005. The molecular basis of individual differences in phenylthiocarbamide and propylthiouracil bitterness perception. Current Biology 15, 322327.CrossRefGoogle ScholarPubMed
Carleton, A., Accolla, R., Simon, S.A., 2010. Coding in the mammalian gustatory system. Trends in Neurosciences 33, 326334.CrossRefGoogle ScholarPubMed
Chandrashekar, J., Hoon, M.A., Ryba, N.J., Zuker, C.S., 2006. The receptors and cells for mammalian taste. Nature 444, 288294.CrossRefGoogle ScholarPubMed
Chandrashekar, J., Yarmolinsky, D., von, B.L., et al. 2009. The taste of carbonation, Science 443445.CrossRefGoogle Scholar
Chang, R.B., Waters, H., iman, E.R., 2010. A proton current drives action potentials in genetically identified sour taste cells. Proceedings of the National Academy of Sciences 107, 2232022325.CrossRefGoogle ScholarPubMed
Chaudhari, N., Roper, S.D., 2010. The cell biology of taste. Journal of Cell Biology 190, 285296.CrossRefGoogle ScholarPubMed
Chen, X., Gabitto, M., Peng, Y., Ryba, N.J., Zuker, C.S., 2011. A gustotopic map of taste qualities in the mammalian brain. Science 333, 12621266.CrossRefGoogle ScholarPubMed
Coates, A.C., 1974. Effects of age, sex, and smoking on electrical taste threshold. Annals of Otology, Rhinology & Laryngology 83, 365369.CrossRefGoogle Scholar
Crystal, S.R., Bernstein, I.L., 1995. Morning sickness: Impact on offspring salt preference. Appetite 25, 231240.CrossRefGoogle ScholarPubMed
Deems, D.A., Doty, R.L., Settle, R.G., et al. 1991. Smell and taste disorders, a study of 750 patients from the University of Pennsylvania Smell and Taste Center. Archives of Otolaryngology – Head and Neck Surgery 117, 519528.CrossRefGoogle ScholarPubMed
Doty, R.L., 1978. Gender and reproductive state correlates of taste perception in humans. In McGill, T.E., Dewsbury, D.A., Sachs, B.D. (Eds.), Sex and Behavior: Status and Prospectus. New York: Plenum Press, New York, pp. 337362.CrossRefGoogle Scholar
Doty, R.L., 2001. Olfaction and gustation in normal aging and Alzheimer’s disease. In Hof, P.R., & Mobbs, C.V. (Eds.), Functional Neurobiology of Aging. San Diego: Academic Press, pp. 647658.CrossRefGoogle Scholar
Doty, R.L., Bagla, R., Morgenson, M., Mirza, N., 2001. NaCl thresholds: relationship to anterior tongue locus, area of stimulation, and number of fungiform papillae. Physiology & Behavior 72, 373378.CrossRefGoogle ScholarPubMed
Doty, R.L., Cummins, D.M., Shibanova, A., Sanders, I., Mu, L., 2009. Lingual distribution of the human glossopharyngeal nerve. Acta Otolaryngologica 129, 5256.CrossRefGoogle ScholarPubMed
Doty, R.L., Heidt, J.M., MacGillivray, M.R., et al. 2016. Influences of age, tongue region, and chorda tympani nerve sectioning on signal detection measures of lingual taste sensitivity. Physiology & Behavior 155, 202207.CrossRefGoogle ScholarPubMed
Eckstein, A., 1927. Zur Physiologie der Geschmacksempfindung und des Saugreflexes bei Sauglingen. Z. Kinderheilk, 45, 118.CrossRefGoogle Scholar
Eyman, R.K., Kim, P.J., Call, T. 1975. Judgment error in category vs magnitude scales. Perceptual and Motor Skills 40, 415423.CrossRefGoogle ScholarPubMed
Fischer, R., Griffin, F., England, S., Garn, S.M., 1961. Taste thresholds and food dislikes. Nature 191, 1328.CrossRefGoogle ScholarPubMed
Fox, A.L., 1931. Six in ten “tasteblind” to bitter chemical. The Science News-Letter 9, 249.Google Scholar
Frank, M.E., Bieber, S.L., Smith, D.V. 1988. The organization of taste sensibilities in hamster chorda tympani nerve fibers. Journal of General Physiology 91, 861896.CrossRefGoogle ScholarPubMed
Geraedts, M.C., Munger, S.D., 2013. Gustatory stimuli representing different perceptual qualities elicit distinct patterns of neuropeptide secretion from taste buds. Journal of Neuroscience 33, 75597564.CrossRefGoogle ScholarPubMed
Gerhold, K.A., Bautista, D.M., 2009. Molecular and cellular mechanisms of trigeminal chemosensation Annals of the New York Academy of Sciences 1170, 184189.CrossRefGoogle ScholarPubMed
Grant, R., Ferguson, M.M., Strang, R., Turner, J.W., Bone, I., 1987. Evoked taste thresholds in a normal population and the application of electrogustometry to trigeminal nerve disease. Journal of Neurology, Neurosurgery, & Psychiatry 50, 1221.CrossRefGoogle Scholar
Green, B.G. George, P., 2004. “Thermal taste” predicts higher responsiveness to chemical taste and flavor. Chemical Senses 29, 617628.CrossRefGoogle ScholarPubMed
Greene, L.S. 1974. Physical growth and development, neurological maturation, and behavioral functioning in two Ecuadorian Andean communities in which goiter is endemic. II. PTC taste sensitivity and neurological maturation. American Journal of Physical Anthropology 41, 139151.CrossRefGoogle ScholarPubMed
Grigoleit, J.S., Kullmann, J.S., Winkelhaus, A., et al. 2012. Single-trial conditioning in a human taste-endotoxin paradigm induces conditioned odor aversion but not cytokine responses. Brain, Behavior, and Immunity 26, 234238.CrossRefGoogle Scholar
Guyton, A.C., Hall, J.E. 1996. Textbook of Medical Physiology, 9th edition, Chapter 53. WB Saunders Company.Google Scholar
Hamamichi, R., Asano-Miyoshi, M., Emori, Y., 2006. Taste bud contains both short-lived and long-lived cell populations. Neuroscience 141, 21292138.CrossRefGoogle ScholarPubMed
Harris, H., Kalmus, H., 1949. The measurement of taste sensitivity to phenylthiourea (PTC). Annals of Eugenics 15, 2431.CrossRefGoogle Scholar
Hayes, J.E., Bartoshuk, L.M., Kidd, J.R., Duffy, V.B., 2008. Supertasting and PROP bitterness depends on more than the TAS2R38 gene. Chemical Senses, 33, 255265.CrossRefGoogle Scholar
Hevezi, P., Moyer, B.D., Lu, M., et al. 2009. Genome-wide analysis of gene expression in primate taste buds reveals links to diverse processes. PLoS One 4, e6395.CrossRefGoogle ScholarPubMed
Hinds, J.W., Hinds, P.L., McNelly, N.A., 1984. An autoradiographic study of the mouse olfactory epithelium: Evidence for long-lived receptors. Anatomical Record 210, 375383.CrossRefGoogle ScholarPubMed
Hrboticky, N., Krondl, M., 1984. Acculturation to Canadian Foods by Chinese immigrant boys: Changes in the perceived flavor, health value and prestige of foods. Appetite 5, 117126.CrossRefGoogle ScholarPubMed
Humphreys-Beher, M.G., Macauley, S.P., Chegini, N., et al. 1994. Characterization of the synthesis and secretion of transforming growth factor-alpha from salivary glands and saliva. Endocrinology 134, 963970.CrossRefGoogle ScholarPubMed
James, C.E., Laing, D.G., Oram, N., 1997. A comparison of the ability of 8–9-year-old children and adults to detect taste stimuli. Physiology & Behavior 62, 193197.CrossRefGoogle ScholarPubMed
Jiang, P., Josue, J., Li, X., et al. 2012. Major taste loss in carnivorous mammals. Proceedings of the National Academy of Sciences of the United States of America 109, 49564961.CrossRefGoogle ScholarPubMed
Kano, M., Shimizu, Y., Okayama, K., Kikuchi, M., 2007. Quantitative study of ageing epiglottal taste buds in humans. Gerodontology 24, 169172.CrossRefGoogle ScholarPubMed
Khan, N.A., Besnard, P., 2009. Oro-sensory perception of dietary lipids: New insights into the fat taste transduction. Biochimica et Biophysica Acta 1791, 149155.CrossRefGoogle ScholarPubMed
Kim, U.K., Drayna, D., 2005. Genetics of individual differences in bitter taste perception: Lessons from the PTC gene. Clinical Genetics 67, 275280.CrossRefGoogle ScholarPubMed
Kim, U.K., Jorgenson, E., Coon, H., Leppert, M., Risch, N., Drayna, D., 2003. Positional cloning of the human quantitative trait locus underlying taste sensitivity to phenylthiocarbamide, Science 21 Feb 2003: Vol. 299, Issue 5610, pp. 12211225.CrossRefGoogle Scholar
Komai, M., Bryant, B.P., 1993. Acetazolamide specifically inhibits lingual trigeminal nerve responses to carbon dioxide. Brain Research 612, 122129.CrossRefGoogle ScholarPubMed
Lenz, F.A., Gracely, R.H., Zirh, T.A., et al. 1997. Human thalamic nucleus mediating taste and multiple other sensations related to ingestive behavior. Journal of Neurophysiology 77, 34063409.CrossRefGoogle ScholarPubMed
Leshem, M., 1998. Salt preference in adolescence is predicted by common prenatal and infantile mineralofluid loss. Physiology & Behavior 63, 699704.CrossRefGoogle ScholarPubMed
Li, X., Li, W., Wang, H., et al. 2005. Pseudogenization of a sweet-receptor gene accounts for cats’ indifference toward sugar. PLoS Genetics 1, 2735.CrossRefGoogle ScholarPubMed
Liu, G., Zong, G., Doty, R.L., Sun, Q., 2016. Prevalence and risk factors of taste and smell impairment in a nationwide representative sample of the US population: a cross-sectional study. BMJ Open, 6, e013246.CrossRefGoogle Scholar
Liu, P., Shah, B.P., Croasdell, S., Gilbertson, T.A., 2011. Transient receptor potential channel type M5 is essential for fat taste. Journal of Neuroscience 31, 86348642.CrossRefGoogle ScholarPubMed
Martin due Pan, R., 1955. Le role du gout et de l’odorat dans l’alimentation due nourrisson. Pediatrie 10, 169176.Google Scholar
Matsuda, T. Doty, R.L. 1995. Regional taste sensitivity to NaCl: Relationship to subject age, tongue locus and area of stimulation. Chemical Senses 20, 283290.CrossRefGoogle ScholarPubMed
Mattes, R.D., 2011. Accumulating evidence supports a taste component for free fatty acids in humans. Physiology & Behavior 104, 624631.CrossRefGoogle ScholarPubMed
McBride, M.R., Mistretta, C.M., 1986. Taste responses from the chorda tympani nerve in young and old Fischer rats. Journal of Gerontology 41, 306314.CrossRefGoogle Scholar
Mennella, J.A., 2009. Flavour programming during breast-feeding. Advances in Experimental Medicine and Biology 639, 113120.CrossRefGoogle ScholarPubMed
Mennella, J.A., Beauchamp, G.K., 1993. The effects of repeated exposure to garlic-flavored milk on the nursling’s behavior. Pediatric Research 34, 805808.CrossRefGoogle Scholar
Mennella, J.A., Johnson, A., Beauchamp, G.K., 1995. Garlic ingestion by pregnant women alters the odor of amniotic fluid. Chemical Senses 20, 207209.CrossRefGoogle ScholarPubMed
Mennella, J.A., Pepino, M.Y., Duke, F.F., Reed, D.R., 2010. Age modifies the genotype-phenotype relationship for the bitter receptor TAS2R38. BMC Genetics 11, 60.CrossRefGoogle ScholarPubMed
Miller, I.J., 1988. Human taste bud density across adult age groups. Journals of Gerontology 43, 826830.Google ScholarPubMed
Miller, I.J., Reedy, F.E. Jr, 1990. Variations in human taste bud density and taste intensity perception. Physiology & Behavior 47, 12131219.CrossRefGoogle ScholarPubMed
Miller, S.L., Mirza, N., Doty, R.L., 2002. Electrogustometric thresholds: Relationship to anterior tongue locus, area of stimulation, and number of fungiform papillae. Physiology & Behavior 75, 753757.CrossRefGoogle ScholarPubMed
Mistretta, C.M., Oakley, I.A., 1986. Quantitative anatomical study of taste buds in fungiform papillae of young and old Fischer rats. Journal of Gerontology 41, 315318.CrossRefGoogle Scholar
Mochizuki, Y., 1939. Studies on the papilla foliate of Japanese. 2. The number of taste buds. Okajimas Folia Anatomica Japonica 18, 369.Google Scholar
Mojet, J., Christ-Hazelhof, E., Heidema, J. 2001. Taste perception with age: generic or specific losses in threshold sensitivity to the five basic tastes? Chemical Senses 26, 845860.CrossRefGoogle ScholarPubMed
Morris-Witman, J., Sego, R., Brinkley, L., Dolce, C., 2000. The effects of sialoadenectomy and exogenous EGF on taste bud morphology and maintenance. Chemical Senses 25, 919.CrossRefGoogle Scholar
Murray, R.G., 1973 The ultrastructure of taste buds. In: Friedmann, I. (ed.) The Ultrastructure of Sensory Organs. North Holland, Amsterdam, pp. 181.Google Scholar
Murray, R.G., Murray, A., 1967. Fine structure of taste buds of rabbit foliate papillae. Journal of Ultrastructure Research 19, 327353.CrossRefGoogle ScholarPubMed
Noguchi, S., Ohba, Y., Oka, T., 1991. Effect of salivary epidermal growth factor on wound healing of tongue in mice. The American Journal of Physiology 260 E620E625.Google ScholarPubMed
Norgren, R., 1981. The central organization of the gustatory and fisceral afferent systems in the nucleus of the solitary tract. In Katsuki, Y. Norgren, R., & Sato, M. (Eds.), Brain Mechanisms in Sensation. New York: John Wiley and Sons, pp. 173186.Google Scholar
Olson, J.M., Boehnke, M., Neiswanger, K., Roche, A.F., Siervogel, R.M., 1989. Alternative genetic models for the inheritance of the phenylthiocarbamide taste deficiency. Genetic Epidemiology (Suppl), 6, 423434.CrossRefGoogle ScholarPubMed
Onoda, K., Ikeda, M., Sekine, H., Ogawa, H., 2012. Clinical study of central taste disorders and discussion of the central gustatory pathway. Journal of Neurology 259, 261266.CrossRefGoogle ScholarPubMed
Paxinos, G., Mai, J.K., 2004. The Human Nervous System. Amsterdam: Elsevier Academic Press.Google Scholar
Pepino, M.Y., Mennella, J.A., 2007. Effects of cigarette smoking and family history of alcoholism on sweet taste perception and food cravings in women. Alcoholism: Clinical & Experimental Research 31, 18911899.CrossRefGoogle ScholarPubMed
Perrin, M., Krut, L.H., Bronte-Stewart, B. 1961. Smoking and food preferences. British Medical. Journal., 1, 387388.CrossRefGoogle ScholarPubMed
Pritchard, J.A., 1965. Deglutition by normal and anencephalic fetuses. Obstetrics and Gynecology 25, 289297.Google ScholarPubMed
Pritchard, T.C., 2012. Gustatory system. In Mai, J.K., & Paxinos, G. (Eds.), The Human Nervous System, 3rd edition. Elsevier, New York, pp. 11871218.CrossRefGoogle Scholar
Pritchard, T.C., Macaluso, D.A., Eslinger, P.J., 1999. Taste perception in patients with insular cortex lesions. Behavioral Neuroscience 113, 663671.CrossRefGoogle ScholarPubMed
Pritchard, T.C., Scott, T.R., 2015. Functional organization of the gustatory system in macaques. In Doty, R.L. (Ed.), Handbook of Olfaction and Gustation. John Wiley & Sons, Hoboken, pp. 9831003.CrossRefGoogle Scholar
Reddy, B.M., Rao, D.C., 1989. Phenylthiocarbamide taste sensitivity revisited: Complete sorting test supports residual family resemblance. Genetic Epidemiology (Suppl), 6, 413421.CrossRefGoogle ScholarPubMed
Reed, D.R., Nanthakumar, E., North, M., et al. 1999. Localization of a gene for bitter-taste perception to human chromosome 5p15 [letter]. The American Journal of Human Genetics 64, 14781480.CrossRefGoogle ScholarPubMed
Rolls, E.T., 2011. Chemosensory learning in the cortex. Amsterdam: North Holland Publishers, Rolls et al Journal is: Frontiers in Systems Neuroscience, Sept. 16; 5:78 CrossRefGoogle Scholar
Rolls, E.T., 2015. Neural integration of taste, smell, oral texture, and visual modalities. In: Doty, R.L. (Ed.), Handbook of Olfaction and Gustation. Hoboken, New Jersey: John Wiley & Sons.Google Scholar
Rolls, E.T., Grabenhorst, F., 2008. The orbitofrontal cortex and beyond: from affect to decision-making. Progress in Neurobiology 86, 216244.CrossRefGoogle ScholarPubMed
Ross, M.G., Nijland, M.J., 1997. Fetal swallowing: Relation to amniotic fluid regulation. Clinical Obstetrics and Gynecology 40, 352365.CrossRefGoogle ScholarPubMed
Roudnitzky, N., Bufe, B., Thalmann, S., et al. 2011. Genomic, genetic and functional dissection of bitter taste responses to artificial sweeteners. Human Molecular Genetics Volume 20, Issue 17, 1 September 2011, Pages 34373449.Google Scholar
Yekta, S.S., Luckhoff, A., Ristic, D., Lampert, F., Ellrich, J., 2010. Impaired somatosensation in tongue mucosa of smokers. Clinical Oral Investigations 16(1), 3944.CrossRefGoogle ScholarPubMed
Sato, K., Endo, S., Tomita, H., 2002. Sensitivity of three loci on the tongue and soft palate to four basic tastes in smokers and non-smokers. Acta Oto-Laryngologica 122, 7482.CrossRefGoogle Scholar
Sato, T., Okada, Y., Miyamoto, T., Fujiyama, R., 1997. Distribution of non-tasters for phenylthiocarbamide and high sensitivity to quinine hydrochloride of the non-tasters in Japanese. Chemical Senses 22, 547551.CrossRefGoogle ScholarPubMed
Schier, L.A., Hashimoto, K., Bales, M.B., Blonde, G.D., Spector, A.C., 2014. High-resolution lesion-mapping strategy links a hot spot in rat insular cortex with impaired expression of taste aversion learning. Proceedings of the National Academy of Sciences 111, 11621167.CrossRefGoogle Scholar
Schiffman, S.S., Hornack, K., Reilly, D., 1979. Increased taste thresholds of amino acids with age. American Journal of Clinical Nutrition 32, 16221627.CrossRefGoogle ScholarPubMed
Schultz, G., Rotatori, D.S., Clark, W., 1991. EGF and TGF-alpha in wound healing and repair. Journal of Cellular Biochemistry 45, 346352.CrossRefGoogle ScholarPubMed
Scott, T.R., Mark, G.P., 1987. The taste system encodes stimulus toxicity. Brain Research 414, 197203.CrossRefGoogle ScholarPubMed
Segovia, C., Hutchinson, I., Laing, D.G., Jinks, A.L., 2002. A quantitative study of fungiform papillae and taste pore density in adults and children. Developmental Brain Research 138, 135146.CrossRefGoogle ScholarPubMed
Sewards, T.V., 2004. Dual separate pathways for sensory and hedonic aspects of taste. Brain Research Bulletin 62, 271283.CrossRefGoogle ScholarPubMed
Shankar, M.U., Levitan, C.A., Spence, C., 2010. Grape expectations: The role of cognitive influences in color-flavor interactions. Consciousness and Cognition 19, 380390.CrossRefGoogle ScholarPubMed
Small, D.M., Prescott, J., 2005. Odor/taste integration and the perception of flavor. Experimental Brain Research 166, 345357.CrossRefGoogle ScholarPubMed
Smith, D.V., 1971. Taste intensity as a function of area and concentration: Differentiation between compounds. Journal of Experimental Psychology 87, 163171.CrossRefGoogle ScholarPubMed
Snyder, L.H., 1931. Inherited taste deficiency. Science 74, 151152.CrossRefGoogle ScholarPubMed
Stein, L.J., Cowart, B.J., Beauchamp, G.K., 2012. The development of salty taste acceptance is related to dietary experience in human infants: A prospective study. American Journal of Clinical Nutrition 95, 123129.CrossRefGoogle ScholarPubMed
Stein, L.J., Cowart, B.J., Epstein, A.N., et al. 1996. Increased liking for salty foods in adolescents exposed during infancy to a chloride-deficient feeding formula. Appetite 27, 6577.CrossRefGoogle ScholarPubMed
Steiner, J.E., 1974. Discussion paper: Innate, discriminative human facial expressions to taste and smell stimulation. Annals of the New York Academy of Sciences September 27; 237, 229233.CrossRefGoogle ScholarPubMed
Steiner, J.E., 1979. Human facial expressions in response to taste and smell stimulation. Advances in Child Development & Behavior 13 257295.CrossRefGoogle ScholarPubMed
Steinert, R.E., Beglinger, C., 2011. Nutrient sensing in the gut: Interactions between chemosensory cells, visceral afferents and the secretion of satiation peptides. Physiology & Behavior 105, 6270.CrossRefGoogle ScholarPubMed
Stephani, C., Fernandez-Baca, V.G., Maciunas, R., Koubeissi, M., Luders, H.O., 2011. Functional neuroanatomy of the insular lobe. Brain Structure and Function 216, 137149.CrossRefGoogle ScholarPubMed
Stevens, J.C., Cruz, L.A., Hoffman, J.M., Patterson, M.Q., 1995. Taste sensitivity and aging: high incidence of decline revealed by repeated threshold measures. Chemical Senses 20, 451459.CrossRefGoogle ScholarPubMed
Suliburska, J., Duda, G., & Pupek-Musialik, D. 2004. [Effect of tobacco smoking on taste sensitivity in adults]. Przeglaa¸d Lekarski 61, 11741176.Google ScholarPubMed
Sullivan, S.A., Birch, L.L. 1990. Pass the sugar, pass the salt: Experience dictates preference. Developmental Psychology 26, 546551.CrossRefGoogle Scholar
Temple, E.C., Hutchinson, I., Laing, D.G., Jinks, A.L., 2002. Taste development: Differential growth rates of tongue regions in humans. Developmental Brain Research 135, 6570.CrossRefGoogle ScholarPubMed
Visser, J., Kroeze, J.H., Kamps, W.A., Bijleveld, C.M., 2000. Testing taste sensitivity and a version in very young children: Development of a procedure. Appetite 34, 169176.CrossRefGoogle Scholar
Weiffenbach, J.M., Baum, B.J., Burghauser, R., 1982. Taste thresholds: Quality specific variation with human aging. Journal of Gerontology 37, 372377.CrossRefGoogle ScholarPubMed
Weiffenbach, J.M., Cowart, B.J., Baum, B.J. 1986. Taste intensity perception in aging. Journal of Gerontology 41, 460468.CrossRefGoogle ScholarPubMed
Witt, M., Reutter, K., 1997. Scanning electron microscopical studies of developing gustatory papillae in humans. Chemical Senses 22, 601612.CrossRefGoogle ScholarPubMed
Witt, M., Reutter, K., Miller, I.J. Jr, Doty, R.L., 2003. Morphology of the peripheral taste system. In Doty, R.L. (Ed.), Handbook of Olfaction and Gustation. Marcel Dekker, New York, 651677.Google Scholar
Wooding, S. 2006. Phenylthiocarbamide: A 75-year adventure in genetics and natural selection. Genetics 172, 20152023.CrossRefGoogle ScholarPubMed
Zhao, H., Zhou, Y., Pinto, C.M., et al. 2010. Evolution of the sweet taste receptor gene Tas1r2 in bats. Molecular Biology and Evolution 27, 26422650.CrossRefGoogle ScholarPubMed
Zuniga, J.R., Davis, S.H., Englehardt, R.A., et al. 1993. Taste performance on the anterior human tongue varies with fungiform taste bud density. Chemical Senses, 18, 449460.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×