Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-20T05:34:03.460Z Has data issue: false hasContentIssue false

10 - Alternative waste nitrogen disposal agents for urea cycle disorders

from SECTION III - UTILIZATION OF ALTERNATIVE PATHWAYS

Published online by Cambridge University Press:  17 November 2010

Jess G. Thoene
Affiliation:
University of Michigan, Ann Arbor
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Krebs, HA, Henseleit, K. Untersuchungen über die harnstoffbildung im tierkorper. Hoppe-Seyler's Z Physiol Chem. 1932;210:325–332CrossRefGoogle Scholar
Shih, VE. Hereditary urea-cycle disorders. Grisolia, S., Báguena, R., Mayor, F., eds. The Urea Cycle, John Wiley, New York, 367–414, 1976Google Scholar
Morizono, H, Caldovic, L, Shi, D, Tuchman, M. Mammalian N-acetylglutamate synthase. Mol Genet Metab. 2004;81(Suppl 1):S4–S11CrossRefGoogle ScholarPubMed
Brusilow, SW, Maestri, NE. Urea cycle disorders: Diagnosis, pathophysiology, and therapy. Adv Pediatr. 1996;43:127–170Google ScholarPubMed
Summar, ML, Dobbelaere, D, Brusilow, S, Lee, B. Diagnosis, symptoms, frequency and mortality of 260 patients with urea cycle disorders from a 21-year, multicentre study of acute hyperammonaemic episodes. Acta Paediatr. 2008;97(10):1420–1425CrossRefGoogle ScholarPubMed
Nassogne, MC, Heron, B, Touati, G, Rabier, D, Saudubray, JM. Urea cycle defects: Management and outcome. J Inherit Metab Dis. 2005;28(3):407–414CrossRefGoogle ScholarPubMed
Summar, ML, Barr, F, Dawling, S, Smith, W, Lee, B, Singh, RH, Rhead, WJ, Sniderman King, L, Christman, BW. Unmasked adult-onset urea cycle disorders in the critical care setting. Crit Care Clin. 2005;21:S1–S8CrossRefGoogle ScholarPubMed
Enns, GM, Berry, SA, Berry, GT, Rhead, WJ, Brusilow, SW, Hamosh, A. Survival after treatment with phenylacetate and benzoate for urea-cycle disorders. N Engl J Med. 2007;356(22):2282–2292CrossRefGoogle ScholarPubMed
Enns, GM. Neurologic damage and neurocognitive dysfunction in urea cycle disorders. Semin Pediatr Neurol. 2008;15(3):132–139CrossRefGoogle ScholarPubMed
Colombo, JP, Peheim, E, Kretschmer, R, Dauwalder, H, Sidiropoulos, D. Plasma ammonia concentrations in newborns and children. Clin Chim Acta. 1984;138(3):283–291CrossRefGoogle ScholarPubMed
Gropman, AL, Summar, M, Leonard, JV. Neurological implications of urea cycle disorders. J Inherit Metab Dis. 2007;30(6):865–879CrossRefGoogle ScholarPubMed
Brusilow, SW. Hyperammonemic encephalopathy. Medicine (Baltimore). 2002;81(3):240–249CrossRefGoogle ScholarPubMed
Norenberg, MD, Jayakumar, AR, Rama Rao, KV, Panickar, KS. New concepts in the mechanism of ammonia-induced astrocyte swelling. Metab Brain Dis. 2007;22(3–4):219–234CrossRefGoogle ScholarPubMed
Albrecht, J, Norenberg, MD. Glutamine: A Trojan horse in ammonia neurotoxicity. Hepatology. 2006;44(4):788–794CrossRefGoogle ScholarPubMed
Ratnakumari, L, Qureshi, IA, Butterworth, RF. Regional amino acid neurotransmitter changes in brains of spf/Y mice with congenital ornithine transcarbamylase deficiency. Metab Brain Dis. 1994;9(1):43–51CrossRefGoogle ScholarPubMed
Butterworth, RF. Glutamate transporter and receptor function in disorders of ammonia metabolism. Ment Retard Dev Disabil Res Rev. 2001;7(4):276–279CrossRefGoogle ScholarPubMed
Robinson, MB, Hopkins, K, Batshaw, ML, McLaughlin, BA, Heyes, MP, Oster-Granite, ML. Evidence of excitotoxicity in the brain of the ornithine carbamoyltransferase deficient sparse fur mouse. Brain Res Dev Brain Res. 1995;90(1–2):35–44CrossRefGoogle ScholarPubMed
Monfort, P, Munoz, MD, Felipo, V. Molecular mechanisms of the alterations in NMDA receptor-dependent long-term potentiation in hyperammonemia. Metab Brain Dis. 2005;20(4):265–274CrossRefGoogle ScholarPubMed
Bachmann, C, Braissant, O, Villard, AM, Boulat, O, Henry, H. Ammonia toxicity to the brain and creatine. Mol Genet Metab. 2004;81(Suppl 1):S52–S57CrossRefGoogle ScholarPubMed
Niemi, AK, Enns, GM. Sodium phenylacetate and sodium benzoate in the treatment of neonatal hyperammonemia. NeoReviews. 2006;7(9):e486–e495CrossRefGoogle Scholar
Lewis, HB. Studies in the synthesis of hippuric acid in the animal organism. J Biol Chem. 1914;18:225Google Scholar
Shiple, GJ, Sherwin, CP. Synthesis of amino acids in animal organisms I. Synthesis of glycocoll and glutamine in the human organism. J Am Chem Soc. 1922;44(3):618–624CrossRefGoogle Scholar
Batshaw, ML, MacArthur, RB, Tuchman, M. Alternative pathway therapy for urea cycle disorders: Twenty years later. J Pediatr. 2001;138(1 Suppl):S46–S54; discussion S54–S55CrossRefGoogle ScholarPubMed
Brusilow, SW, Valle, DL, Batshaw, M. New pathways of nitrogen excretion in inborn errors of urea synthesis. Lancet. 1979;2(8140):452–454CrossRefGoogle ScholarPubMed
Brusilow, SW, Danney, M, Waber, LJ, Batshaw, M, Burton, B, Levitsky, L, Roth, K, McKeethren, C, Ward, J. Treatment of episodic hyperammonemia in children with inborn errors of urea synthesis. N Engl J Med. 1984;310(25):1630–1634CrossRefGoogle ScholarPubMed
Green, TP, Marchessault, RP, Freese, DK. Disposition of sodium benzoate in newborn infants with hyperammonemia. J Pediatr. 1983;102(5):785–790CrossRefGoogle ScholarPubMed
Simell, O, Sipila, I, Rajantie, J, Valle, DL, Brusilow, SW. Waste nitrogen excretion via amino acid acylation: Benzoate and phenylacetate in lysinuric protein intolerance. Pediatr Res. 1986;20(11):1117–1121CrossRefGoogle ScholarPubMed
Bunchman, TE, Barletta, GM, Winters, JW, Gardner, JJ, Crumb, TL, McBryde, KD. Phenylacetate and benzoate clearance in a hyperammonemic infant on sequential hemodialysis and hemofiltration. Pediatr Nephrol. 2007;22(7):1062–1065CrossRefGoogle Scholar
Singh, RH, Rhead, WJ, Smith, W, Lee, B, King, LS, Summar, M. Nutritional management of urea cycle disorders. Crit Care Clin. 2005;21(4 Suppl):S27–S35CrossRefGoogle ScholarPubMed
Batshaw, ML, Brusilow, SW. Evidence of lack of toxicity of sodium phenylacetate and sodium benzoate in treating urea cycle enzymopathies. J Inherit Metab Dis. 1981;4(4):231CrossRefGoogle ScholarPubMed
Gershanik, J, Boecler, B, Ensley, H, McCloskey, S, George, W. The gasping syndrome and benzyl alcohol poisoning. N Engl J Med. 1982;307(22):1384–1388CrossRefGoogle ScholarPubMed
Thibault, A, Samid, D, Cooper, MR, Figg, WD, Tompkins, AC, Patronas, N, Headlee, DJ, Kohler, DR, Venzon, DJ, Myers, CE. Phase I study of phenylacetate administered twice daily to patients with cancer. Cancer. 1995;75(12):2932–29383.0.CO;2-P>CrossRefGoogle ScholarPubMed
Batshaw, ML, Brusilow, S, Waber, L, Blom, W, Brubakk, AM, Burton, BK, Cann, HM, Kerr, D, Mamunes, P, Matalon, R, Myerberg, D, Schafer, IA. Treatment of inborn errors of urea synthesis: Activation of alternative pathways of waste nitrogen synthesis and excretion. N Engl J Med. 1982;306(23):1387–1392CrossRefGoogle ScholarPubMed
MacArthur, RB, Altincatal, A, Tuchman, M. Pharmacokinetics of sodium phenylacetate and sodium benzoate following intravenous administration as both a bolus and continuous infusion to healthy adult volunteers. Mol Genet Metab. 2004;81(Suppl 1):S67–S73CrossRefGoogle ScholarPubMed
Praphanphoj, V, Boyadjiev, SA, Waber, LJ, Brusilow, SW, Geraghty, MT. Three cases of intravenous sodium benzoate and sodium phenylacetate toxicity occurring in the treatment of acute hyperammonaemia. J Inherit Metab Dis. 2000;23(2):129–136CrossRefGoogle ScholarPubMed
Maestri, NE, Hauser, ER, Bartholomew, D, Brusilow, SW. Prospective treatment of urea cycle disorders. J Pediatr. 1991;119(6):923–928CrossRefGoogle ScholarPubMed
Uchino, T, Endo, F, Matsuda, I. Neurodevelopmental outcome of long-term therapy of urea cycle disorders in Japan. J Inherit Metab Dis. 1998;21(Suppl 1):151–159CrossRefGoogle ScholarPubMed
Bachmann, C. Outcome and survival of 88 patients with urea cycle disorders: A retrospective evaluation. Eur J Pediatr. 2003;162(6):410–416CrossRefGoogle ScholarPubMed
Tuchman, M, Lee, B, Lichter-Konecki, U, Summar, ML, Yudkoff, M, Cederbaum, SD, Derr, DS, Dias, GA, Seashore, MR, Lee, H-S, McCarter, RJ, Jeffrey, P, Krischer, JP, Batshaw, ML. Cross-sectional multicenter study of patients with urea cycle disorders in the United States. Mol Genet Metab. 2008;94:397–402CrossRefGoogle ScholarPubMed
Enns, GM, Millan, MT. Cell-based therapies for metabolic liver disease. Mol Genet Metab. 2008;95(1–2):3–10CrossRefGoogle ScholarPubMed
Raper, SE, Chirmule, N, Lee, FS, Wivel, NA, Bagg, A, Gao, GP, Wilson, JM, Batshaw, ML. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab. 2003;80(1–2):148–158CrossRefGoogle Scholar
John, BA, Taylor, LM, Johnson, S, Lees, MJ, Johns, P, Gargosky, S, Dickinson, K. The disposition of HPN-100, a novel pharmaceutical under development for potential treatment of hyperammonemia, in Cynomolgus monkeys. Presented at American College of Medical Genetics Annual Meeting 2009; Abstract 66.
Lee, B, Mian, A, Shchelochkov, O, Martinez, T, Mokhtarani, M, Scharschmidt, B, et al. Phase 2 study of a novel ammonia scavenging agent in adults with urea cycle disorders. Presented at American College of Medical Genetics Annual Meeting 2009; Abstract 17.

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×