Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T02:01:23.148Z Has data issue: false hasContentIssue false

Part I - Skew Fields and Simple Rings

Published online by Cambridge University Press:  04 August 2010

Get access

Summary

The history of skew fields begins with quaternions, whose discovery W.R. Hamilton (1805–1865) regarded as the climax of his career. P. Klein [1926/27, p. 184 in vol. 1] writes in his famous treatise “Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert” (which is an outstanding account):

Von hier aus entwickelte sich nun bei Hamilton das größte Interesse an der Fragestellung, ob man die nützliche, geometrische Interpretation des Rechnens mit x + iy in der Ebene nicht irgendwie – durch Schaffung neuer komplexer Zahlen – auf den Raum, d.h. unsern gewöhnlichen R3, übertragen könne. Seine unermüdlichen Anstrengungen führen ihn endlich 1843 zur Erfindung der Quaternionen, d.h. geeigneter viergliedriger Zahlen, deren Erforschung und Verbreitung er sich fortan ausschließlich widmete. Ihre Theorie legte er dar in den beiden ausführlichen Werken:

Lectures on Quaternions, Dublin 1853

Elements on Quaternions, London 1866 (posthum).

Sehr bald wurden die Quaternionen in Dublin ein alles andere überragender Gegenstand des mathematischen Interesses, ja sogar ein offizielles Examensfach, ohne dessen Kenntnis keine Absolvierung des College mehr denkbar war. Hamilton selbst gestaltete sie für sich zu einer Art orthodoxer Lehre des mathematischen Credo, in die er alle seine geometrischen und sonstigen Interessen hineinzwang, je mehr sich gegen Ende seines Lebens sein Geist vereinseitigte und unter den Folgen des Alkohols verdüsterte.

Type
Chapter
Information
Skew Fields , pp. 1 - 2
Publisher: Cambridge University Press
Print publication year: 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×