Published online by Cambridge University Press: 05 November 2011
Singular perturbations of Schrödinger type operators are of interest in mathematics, e.g. to study spectral phenomena, and in applications of mathematics in various sciences, e.g. in physics, chemistry, biology, and in technology. They also often lead to models in quantum theory which are solvable in the sense that the spectral characteristics (eigenvalues, eigenfunctions, and scattering matrix) can be computed. Such models then allow us to grasp the essential features of interesting and complicated phenomena and serve as an orientation in handling more realistic situations.
In the last ten years two books have appeared on solvable models in quantum theory built using special singular perturbations of Schrödinger operators. The book by S. Albeverio, F. Gesztesy, R. Høegh-Krohn and H. Holden [39] describes the models in rigorous mathematical terms. It gives a detailed analysis of perturbations of the Laplacian in Rd, d = 1,2,3, by potentials with support on a discrete finite or infinite set of point sources (chosen in a deterministic, respectively, stochastic manner). Physically these operators describe the motion of a quantum mechanical particle moving under the action of a potential supported, e.g., by the points of a crystal lattice or a random solid. Such systems and models are also described in physical terms in the book by Yu.N.Demkov and V.N.Ostrovsky [255], which also contains a description of applications in other areas such as in optics and electromagnetism.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.