Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-05T14:51:50.555Z Has data issue: false hasContentIssue false

Section Two - Biosocial Mechanisms in Mental Health and Illness

Published online by Cambridge University Press:  05 July 2015

Laurence J. Kirmayer
Affiliation:
McGill University, Montréal
Robert Lemelson
Affiliation:
University of California, Los Angeles
Constance A. Cummings
Affiliation:
Foundation for Psychocultural Research, California
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Re-Visioning Psychiatry
Cultural Phenomenology, Critical Neuroscience, and Global Mental Health
, pp. 177 - 314
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

American Psychiatric Association. (1980). Diagnostic and statistical manual of mental disorders (3rd ed.). Washington, DC: Author.Google Scholar
American Psychiatric Association. (1987). Diagnosis and statistical manual of mental disorders (3rd ed., revised). Washington, DC: Author.Google Scholar
American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC: Author.Google Scholar
American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (4th ed., text rev.). Washington, DC: Author.Google Scholar
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC: Author.Google Scholar
An, X., & Bentler, P. M. (2011). Extended mixture factor analysis model with covariates for mixed binary and continuous responses. Statistics in Medicine, 30(21), 2634–47. http://dx.doi.org/10.1002/sim.4310CrossRefGoogle ScholarPubMed
Andrews, G., Slade, T., & Peters, L. (1999). Classification in psychiatry: ICD-10 versus DSM-IV. British Journal of Psychiatry, 174, 35. http://dx.doi.org/10.1192%2Fbjp.174.1.3CrossRefGoogle ScholarPubMed
Arnone, D., Cavanagh, J., Gerber, D., Lawrie, S., Ebmeier, K., & McIntosh, A. (2009). Magnetic resonance imaging studies in bipolar disorder and schizophrenia: Meta-analysis. British Journal of Psychiatry, 195(3), 194201. http://dx.doi.org/10.1192%2Fbjp.bp.108.059717CrossRefGoogle ScholarPubMed
Beauchaine, T. P. (2003). Taxometrics and developmental psychopathology. Developmental Psychopathology, 15(3), 501–27. http://dx.doi.org/10.1017%2FS0954579403000270CrossRefGoogle ScholarPubMed
Beauchaine, T. P. (2007). A brief taxometrics primer. Journal of Clinical Child & Adolescent Psychology, 36(4), 654–76. http://dx.doi.org/10.1080/15374410701662840CrossRefGoogle ScholarPubMed
Bentler, P. M., & Bonnett, D. G. (1980). Significance tests and goodness-of-fit in the analysis of covariance structures. Psychological Bulletin, 88, 588606. http://dx.doi.org/10.1037%2F%2F0033-2909.88.3.588CrossRefGoogle Scholar
Bilder, R. M., Howe, A., Novak, N., Sabb, F. W., & Parker, D. S. (2011). The genetics of cognitive impairment in schizophrenia: A phenomic perspective. Trends in Cognitive Sciences, 15(9), 428–35. http://dx.doi.org/10.1016/j.tics.2011.07.002CrossRefGoogle ScholarPubMed
Bilder, R. M., Howe, A. S., & Sabb, F. W. (2013). Multilevel models from biology to psychology: Mission impossible? Journal of Abnormal Psychology, 122(3), 917–27. http://dx.doi.org/10.1037/a0032263Google ScholarPubMed
Bilder, R. M., Parker, D. S., & Sabb, F. W. (2010). Modeling cognitive Phenotypes from circuit to syndrome. Biological Psychiatry, 67(9), 254.Google Scholar
Bilder, R. M., Poldrack, R., Parker, D. S., Reise, S. P., Jentsch, J. D., Cannon, T., … Freimer, N. (2009). Cognitive phenomics. In Wood, S., Allen, N., & Pantelis, C. (Eds.), Handbook of neuropsychology of mental disorders (pp. 271–82). Cambridge, England: Cambridge University Press.Google Scholar
Bilder, R. M., Sabb, F. W., Cannon, T. D., London, E. D., Jentsch, J. D., Parker, D. S., … Freimer, N. B. (2009). Phenomics: The systematic study of phenotypes on a genome-wide scale. Neuroscience, 164(1), 3042. http://dx.doi.org/10.1016/j.neuroscience.2009.01.027CrossRefGoogle ScholarPubMed
Bora, E., Yücel, M., & Pantelis, C. (2010). Cognitive impairment in schizophrenia and affective psychoses: implications for DSM-V criteria and beyond. Schizophrenia Bulletin, 36(1), 3642. http://dx.doi.org/10.1093%2Fschbul%2Fsbp094CrossRefGoogle ScholarPubMed
Brown, G. W. (1996). Genetics of depression: A social science perspective. International Review of Psychiatry, 8(4), 387401. http://dx.doi.org/10.3109%2F09540269609051554CrossRefGoogle Scholar
Cloninger, C. R. (1999). A new conceptual paradigm from genetics and psychobiology for the science of mental health. Australian and New Zealand Journal of Psychiatry, 33(2), 174–86. http://dx.doi.org/10.1046%2Fj.1440-1614.1999.00533.xCrossRefGoogle ScholarPubMed
Cole, D. A. (2004). Taxometrics in psychopathology research: an introduction to some of the procedures and related methodological issues. Journal of Abnormal Psychology, 113(1), 39. http://dx.doi.org/10.1037/0021-843X.113.1.3CrossRefGoogle ScholarPubMed
Costa, P. T. Jr, & McCrae, R. R. (2008). The revised NEO Personality Inventory (NEO-PI-R). The SAGE handbook of personality theory and assessment, 2, 179–98.Google Scholar
Cross-Disorder Group of the Psychiatric Genomics Consortium. (2013). Identification of risk loci with shared effects on five major psychiatric disorders: A genome-wide analysis. Lancet, 381(9875), 1371–9. http://dx.doi.org/10.1016/S0140-6736(12)62129-1Google Scholar
Crow, T. J. (1980, January 12). Molecular pathology of schizophrenia: more than one disease process? British Medical Journal, 66–8. http://dx.doi.org/10.1136%2Fbmj.280.6207.66CrossRefGoogle Scholar
Crow, T. J. (1982). Two syndromes in schizophrenia? Trends in Neuroscience, 351–4. http://dx.doi.org/10.1016%2F0166-2236%2882%2990202-8Google Scholar
Crow, T. J. (1985). The two-syndrome concept: Origins and current status. Schizophrenia Bulletin, 11(3), 471–86. http://dx.doi.org/10.1093%2Fschbul%2F11.3.471CrossRefGoogle ScholarPubMed
Daban, C., Martinez-Aran, A., Torrent, C., Tabarés-Seisdedos, R., Balanzá-Martínez, V., Salazar-Fraile, J., … Vieta, E. (2006). Specificity of cognitive deficits in bipolar disorder versus schizophrenia. Psychotherapy and Psychosomatics, 75(2), 7284. http://dx.doi.org/10.1159/000090891CrossRefGoogle ScholarPubMed
Dickinson, D., Goldberg, T. E., Gold, J. M., Elvevag, B., & Weinberger, D. R. (2011). Cognitive factor structure and invariance in people with schizophrenia, their unaffected siblings, and controls. Schizophrenia Bulletin, 37(6), 1157–67. http://dx.doi.org/10.1093/schbul/sbq018CrossRefGoogle ScholarPubMed
Drevets, W. C., Price, J. L., & Furey, M. L. (2008). Brain structural and functional abnormalities in mood disorders: Implications for neurocircuitry models of depression. Brain Structure and Function, 213(1), 93118. http://dx.doi.org/10.1007%2Fs00429-008-0189-xCrossRefGoogle ScholarPubMed
Eaton, N. R., Krueger, R. F., South, S. C., Simms, L. J., & Clark, L. A. (2010). Contrasting prototypes and dimensions in the classification of personality pathology: Evidence that dimensions, but not prototypes, are robust. Psychological Medicine, 41(6), 1151–63. http://dx.doi.org/10.1017/S0033291710001650Google Scholar
Elia, J., Gai, X., Xie, H., Perin, J., Geiger, E., Glessner, J., & D'arcy, M. (2009). Rare structural variants found in attention-deficit hyperactivity disorder are preferentially associated with neurodevelopmental genes. Molecular Psychiatry, 15(6), 637–46. http://dx.doi.org/10.1038%2Fmp.2009.57Google ScholarPubMed
Ellison-Wright, I., & Bullmore, E. (2010). Anatomy of bipolar disorder and schizophrenia: A meta-analysis. Schizophrenia Research, 117(1), 112. http://dx.doi.org/10.1016%2Fj.schres.2009.12.022CrossRefGoogle ScholarPubMed
Fanous, A. H., Middleton, F. A., Gentile, K., Amdur, R. L., Maher, B. S., Zhao, Z., … Ferreira, S. R. (2012). Genetic overlap of schizophrenia and bipolar disorder in a high-density linkage survey in the Portuguese Island population. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. http://dx.doi.org/10.1002%2Fajmg.b.32041CrossRefGoogle Scholar
Finger, S. (2001). Origins of neuroscience: A history of explorations into brain function. New York, NY: Oxford University Press.Google Scholar
Frances, A. (2012). DSM-5 in distress [Blog post]. Retrieved from www.psychologytoday.com/blog/dsm5-in-distressGoogle Scholar
Gask, L., Klinkman, M., Fortes, S., & Dowrick, C. (2008). Capturing complexity: The case for a new classification system for mental disorders in primary care. European Psychiatry, 23(7), 469–76. http://dx.doi.org/10.1016%2Fj.eurpsy.2008.06.006CrossRefGoogle ScholarPubMed
Georgiades, S., Szatmari, P., Boyle, M., Hanna, S., Duku, E., Zwaigenbaum, L., … Thompson, A. (2012). Investigating phenotypic heterogeneity in children with autism spectrum disorder: A factor mixture modeling approach. J Child Psychol Psychiatry. http://dx.doi.org/10.1111/j.1469-7610.2012.02588.xCrossRefGoogle Scholar
Gillespie, N. A., Neale, M. C., Legrand, L. N., Iacono, W. G., & McGue, M. (2012). Are the symptoms of cannabis use disorder best accounted for by dimensional, categorical, or factor mixture models? A comparison of male and female young adults. Psychol Addict Behav, 26(1), 6877. http://dx.doi.org/10.1037/a0026230CrossRefGoogle ScholarPubMed
Gottesman, I. I., & Gould, T. D. (2003). The endophenotype concept in psychiatry: etymology and strategic intentions. American Journal of Psychiatry, 160(4), 636–45. http://dx.doi.org/10.1176%2Fappi.ajp.160.4.636CrossRefGoogle ScholarPubMed
Grove, W. M. (1991). Validity of taxometric inferences based on cluster analysis stopping rules. Thinking Clearly About Psychology, 2, 313–29.Google Scholar
Grozeva, D., Kirov, G., Ivanov, D., Jones, I. R., Jones, L., Green, E. K., … Farmer, A. E. (2010). Rare copy number variants: a point of rarity in genetic risk for bipolar disorder and schizophrenia. Archives of General Psychiatry, 67(4), 318–27. http://dx.doi.org/10.1001%2Farchgenpsychiatry.2010.25CrossRefGoogle Scholar
Hallquist, M. N., & Pilkonis, P. A. (2012). Refining the phenotype of borderline personality disorder: Diagnostic criteria and beyond. Personal Disord, 3(3), 228–46. http://dx.doi.org/10.1037/a0027953CrossRefGoogle ScholarPubMed
Harris, G. T., Rice, M. E., & Quinsey, V. L. (1994). Psychopathy as a taxon: Evidence that psychopaths are a discrete class. Journal of Consulting and Clinical Psychology, 62, 387–97. http://dx.doi.org/10.1037%2F%2F0022-006X.62.2.387CrossRefGoogle ScholarPubMed
Haslam, N. (2003). Categorical versus dimensional models of mental disorder: The taxometric evidence. Australian and New Zealand Journal of Psychiatry, 37(6), 696704. http://dx.doi.org/10.1111%2Fj.1440-1614.2003.01258.xCrossRefGoogle ScholarPubMed
Haslam, N., Holland, E., & Kuppens, P. (2012). Categories versus dimensions in personality and psychopathology: A quantitative review of taxometric research. Psychological Medicine, 42(05), 903–20. http://dx.doi.org/10.1017/S0033291711001966CrossRefGoogle ScholarPubMed
Hasler, G., & Northoff, G. (2011). Discovering imaging endophenotypes for major depression. Molecular Psychiatry, 16(6), 604–19. http://dx.doi.org/10.1038%2Fmp.2011.23CrossRefGoogle ScholarPubMed
Heaton, R. K., Baade, L. E., & Johnson, K. L. (1978). Neuropsychological test results associated with psychiatric disorders in adults. Psychological Bulletin, 85, 141–62. http://dx.doi.org/10.1037%2F%2F0033-2909.85.1.141CrossRefGoogle ScholarPubMed
Helzer, J. E., Kraemer, H. C., Krueger, R. F., Wittchen, H.-U., Sirovatka, P. J., & Regier, D. A. (Eds.). (2008). Dimensional approaches in diagnostic classification: Refining the research agenda for “DSM-V.” Arlington, VA: American Psychiatric Association.Google Scholar
Hempel, C. G. (1961). Introduction to problems of taxonomy. Field Studies in the Mental Disorders, 5, 322.Google Scholar
Hill, S. K., Reilly, J. L., Harris, M. S. H., Rosen, C., Marvin, R. W., DeLeon, O., & Sweeney, J. A. (2009). A comparison of neuropsychological dysfunction in first-episode psychosis patients with unipolar depression, bipolar disorder, and schizophrenia. Schizophrenia Research, 113(2–3), 167–75. http://dx.doi.org/10.1016%2Fj.schres.2009.04.020CrossRefGoogle Scholar
Hyman, S. E. (2010). The diagnosis of mental disorders: the problem of reification. Annu Rev Clin Psychol, 6, 155–79. http://10.1146/annurev.clinpsy.3.022806.091532CrossRefGoogle ScholarPubMed
Ingason, A., Rujescu, D., Cichon, S., Sigurdsson, E., Sigmundsson, T., Pietilainen, O. P., … St Clair, D. M. (2011). Copy number variations of chromosome 16p13.1 region associated with schizophrenia. Molecular Psychiatry, 16(1), 1725. http://dx.doi.org/10.1038/mp.2009.101CrossRefGoogle ScholarPubMed
Insel, T. R., & Cuthbert, B. N. (2009). Endophenotypes: Bridging genomic complexity and disorder heterogeneity. Biological Psychiatry, 66(11), 988–9. http://dx.doi.org/10.1016/j.biopsych.2009.10.008CrossRefGoogle ScholarPubMed
Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., … Wang, P. (2010). Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. American Journal of Psychiatry, 167(7), 748–51. http://dx.doi.org/10.1176/appi.ajp.2010.09091379CrossRefGoogle Scholar
Johnstone, E. C., Crow, T. J., Frith, C. D., Husband, J., & Kreel, L. (1976). Cerebral ventricular size and cognitive impairment in chronic schizophrenia. Lancet, 924–6. http://dx.doi.org/10.1016%2FS0140-6736%2876%2990890-4CrossRefGoogle Scholar
Johnstone, E. C., Crow, T. J., Frith, C. D., Stevens, M., Kreel, L., & Husband, J. (1978). The dementia of dementia praecox. Acta Psychiatrica Scandinavica, 57, 305–24. http://dx.doi.org/10.1111%2Fj.1600-0447.1978.tb06899.xCrossRefGoogle ScholarPubMed
Jöreskog, K. G., & Sörbom, D. (1985). LISREL VI. Analysis of linear structural relationships by maximum likelihood, instrumental variables, and least squares methods. Unpublished manuscript. University of Uppsala, Sweden.Google Scholar
Kendler, K. S. (1996). Major depression and generalised anxiety disorder: Same genes, (partly) different environments – revisited. British Journal of Psychiatry, 168(Suppl. 30), 6875.CrossRefGoogle Scholar
Kendler, K. S., Aggen, S. H., Knudsen, G. P., Røysamb, E., Neale, M. C., & Reichborn-Kjennerud, T. (2011). The structure of genetic and environmental risk factors for syndromal and subsyndromal common DSM-IV Axis I and all Axis II disorders. American Journal of Psychiatry, 168(1), 2939. http://dx.doi.org/10.1176%2Fappi.ajp.2010.10030340CrossRefGoogle ScholarPubMed
Kendler, K. S., & Gardner, C. O. Jr (1998). Boundaries of major depression: an evaluation of DSM-IV criteria. American Journal of Psychiatry, 155(2), 172–7.CrossRefGoogle ScholarPubMed
Krabbendam, L., Arts, B., van Os, J., & Aleman, A. (2005). Cognitive functioning in patients with schizophrenia and bipolar disorder: a quantitative review. Schizophrenia Research, 80(2), 137–49. http://dx.doi.org/10.1016%2Fj.schres.2005.08.004CrossRefGoogle ScholarPubMed
Kraepelin, E. (1896). Psychiatrie: Ein Lehrbuch fur Studirende und Aerzte. Funfte, vollstandig umgearbeitete Auflage. Leipzig, Germany: Barth.Google Scholar
Kraepelin, E. (1919). Dementia praecox and paraphrenia. Edinburgh, Scotland: E and S Livingstone.Google Scholar
Kupfer, D. J., First, M. B., & Regier, D. A. (2002). Introduction. In Kupfer, D. J., First, M. B., & Regier, D. A. (Eds.), A research agenda for “DSM-V.” Washington, DC: American Psychiatric Association.Google Scholar
Kupfer, D. J., Kuhl, E. A., & Wulsin, L. (2013). Psychiatry's integration with medicine: The role of DSM-5. Annual Review of Medicine, 64, 385–92. http://dx.doi.org/10.1146/annurev-med-050911-161945CrossRefGoogle ScholarPubMed
Lahey, B. B., Van Hulle, C. A., Singh, A. L., Waldman, I. D., & Rathouz, P. J. (2011). Higher-order genetic and environmental structure of prevalent forms of child and adolescent psychopathology. Archives of General Psychiatry, 68(2), 181–9. http://dx.doi.org/10.1001/archgenpsychiatry.2010.192CrossRefGoogle ScholarPubMed
Lawrie, S. M., Hall, J., McIntosh, A. M., Owens, D. G., & Johnstone, E. C. (2010). The “continuum of psychosis”: Scientifically unproven and clinically impractical. British Journal of Psychiatry, 197(6), 423–5. http://dx.doi.org/10.1192/bjp.bp.109.072827CrossRefGoogle ScholarPubMed
Lazarsfeld, P. F., & Henry, N. W. (1968). Latent structure analysis. Boston, MA: Houghton Mifflin.Google Scholar
Linscott, R. J., & van Os, J. (2010). Systematic reviews of categorical versus continuum models in psychosis: Evidence for discontinuous subpopulations underlying a psychometric continuum. Implications for DSM-V, DSM-VI, and DSM-VII. Annual Review of Clinical Psychology, 6, 391419. http://dx.doi.org/10.1146%2Fannurev.clinpsy.032408.153506CrossRefGoogle ScholarPubMed
Llopis, B. (1954). La psicosis única. Archivos de Neurobiología, 17, 134.Google Scholar
Lubke, G. H., Muthen, B., Moilanen, I. K., McGough, J. J., Loo, S. K., Swanson, J. M., … Smalley, S. L. (2007). Subtypes versus severity differences in attention-deficit/hyperactivity disorder in the Northern Finnish Birth Cohort. Journal of the American Academy of Child and Adolescent Psychiatry, 46(12), 1584–93. http://dx.doi.org/10.1097/chi.0b013e31815750ddGoogle ScholarPubMed
Manktelow, M. (2010). History of taxonomy. [Lecture.] Department of Systematic Biology, Uppsala University, Uppsala, Sweden.Google Scholar
McDonald, C., Bullmore, E., Sham, P., Chitnis, X., Suckling, J., MacCabe, J., … Murray, R. M. (2005). Regional volume deviations of brain structure in schizophrenia and psychotic bipolar disorder. British Journal of Psychiatry, 186(5), 369–77. http://dx.doi.org/10.1192%2Fbjp.186.5.369CrossRefGoogle ScholarPubMed
McGuffin, P., Rijsdijk, F., Andrew, M., Sham, P., Katz, R., & Cardno, A. (2003). The heritability of bipolar affective disorder and the genetic relationship to unipolar depression. Archives of General Psychiatry, 60(5), 497502. http://dx.doi.org/10.1001%2Farchpsyc.60.5.497CrossRefGoogle ScholarPubMed
McIntosh, A. M., Maniega, S. M., Lymer, G. K. S., McKirdy, J., Hall, J., Sussmann, J. E. D., … Lawrie, S. M. (2008). White matter tractography in bipolar disorder and schizophrenia. Biological Psychiatry, 64(12), 1088–92. http://dx.doi.org/10.1016%2Fj.biopsych.2008.07.026CrossRefGoogle Scholar
Meehl, P. E. (1995). Bootstraps taxometrics. Solving the classification problem in psychopathology. American Psychologist, 50(4), 266–75. http://dx.doi.org/10.1037%2F%2F0003-066X.50.4.266CrossRefGoogle ScholarPubMed
Meehl, P. E. (1999). Clarifications about taxometric method. Applied and Preventive Psychology, 8(3), 165–74. http://dx.doi.org/10.1016%2FS0962-1849%2805%2980075-7CrossRefGoogle Scholar
Meehl, P. E. (2004). What's in a taxon? Journal of Abnormal Psychology, 113(1), 3943. http://dx.doi.org/10.1037/0021-843X.113.1.39CrossRefGoogle Scholar
Menninger, K. (1959). Toward a unitary concept of mental illness. In Hall, B. H. (Ed.), A psychiatrist's world (pp. 516–28). New York, NY: Viking.Google Scholar
Menninger, K., Ellenberger, H., Pruyser, P., & Mayman, M. (1959). The unitary concept of mental illness. Pastoral Psychology, 10(4), 1319. http://dx.doi.org/10.1007%2FBF01741038CrossRefGoogle Scholar
Millon, T., & Simonsen, E. (2010). A précis of psychopathological history. In Millon, T., Krueger, R. F., & Simonsen, E. (Eds.), Contemporary directions in psychopathology: Scientific foundations of the “DSM-V” and “ICD-11” (pp. 352). New York, NY: Guilford Press.Google Scholar
Morris, S. E., Ramsey, J. M., & Cuthbert, B. N. (2013). Rethinking mental disorders: The role of learning and brain plasticity. Restorative Neurology and Neurosciences, 32(1), 523. http://dx.doi.org/10.3233/RNN-139015CrossRefGoogle Scholar
Murphy, E. A. (1964). One cause? Many causes? The argument from the bimodal distribution. Journal of Chronic Disease, 17, 301–24. http://dx.doi.org/10.1016%2F0021-9681%2864%2990117-1Google ScholarPubMed
Muthen, B., Asparouhov, T., & Rebollo, I. (2006). Advances in behavioral genetics modeling using Mplus: Applications of factor mixture modeling to twin data. Twin Research and Human Genetics, 9(3), 313–24. http://dx.doi.org/10.1375/183242706777591317CrossRefGoogle ScholarPubMed
Narayanaswamy, J. C., Varghese, M., Jain, S., Sivakumar, P. T., Prakash, O., Bharath, S., & Kandavel, T. (2011). Is there a familial overlap between dementia and other psychiatric disorders? International Psychogeriatrics, 23(5), 749–55. http://dx.doi.org/10.1017/S1041610210001572CrossRefGoogle Scholar
Owen, M. J. (2012). Intellectual disability and major psychiatric disorders: A continuum of neurodevelopmental causality. British Journal of Psychiatry, 200(4), 268–9. http://dx.doi.org/10.1192%2Fbjp.bp.111.105551CrossRefGoogle ScholarPubMed
Owen, M. J., Craddock, N., & Jablensky, A. (2007). The genetic deconstruction of psychosis. Schizophrenia Bulletin, 33(4), 905–11. http://dx.doi.org/10.1093%2Fschbul%2Fsbm053CrossRefGoogle ScholarPubMed
Pol, H. E. H., van Baal, G. C. M., Schnack, H. G., Brans, R. G. H., van der Schot, A. C., Brouwer, R. M., … Evans, A. C. (2012). Overlapping and segregating structural brain abnormalities in twins with schizophrenia or bipolar disorder. Archives of General Psychiatry, 69(4), 349–59. http://dx.doi.org/10.1001/archgenpsychiatry.2011.1615Google Scholar
Preacher, K. J., Rucker, D. D., MacCallum, R. C., & Nicewander, W. A. (2005). Use of the extreme groups approach: A critical reexamination and new recommendations. Psychological Methods, 10(2), 178–92. http://dx.doi.org/10.1037%2F1082-989X.10.2.178CrossRefGoogle ScholarPubMed
Purcell, S. M., Wray, N. R., Stone, J. L., Visscher, P. M., O'Donovan, M. C., Sullivan, P. F., … Morris, D. W. (2009). Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature, 460(7256), 748–52. http://dx.doi.org/10.1038%2Fnature08185Google ScholarPubMed
Rimol, L. M., Hartberg, C. B., Nesvåg, R., Fennema-Notestine, C., Hagler, D. J., Pung, C. J., … Nakstad, P. H. (2010). Cortical thickness and subcortical volumes in schizophrenia and bipolar disorder. Biological Psychiatry, 68(1), 4150. http://dx.doi.org/10.1016%2Fj.biopsych.2010.03.036CrossRefGoogle ScholarPubMed
Rounsaville, B. J., Alarcón, R. D., Andrews, G., Jackson, J. S., Kendell, R. E., & Kendler, K. (2002). Basic nomenclature issues for DSM-V. In Kupfer, D. J., First, M. B., & Regier, D. A. (Eds.), A research agenda for “DSM-V.” (pp. 129). Washington, DC: American Psychiatric Association.Google Scholar
Rzhetsky, A., Wajngurt, D., Park, N., & Zheng, T. (2007). Probing genetic overlap among complex human phenotypes. Proceedings of the National Academy of Sciences of the United States of America, 104(28), 11694–9. http://dx.doi.org/10.1073/pnas.0704820104Google ScholarPubMed
Sanislow, C. A., Pine, D. S., Quinn, K. J., Kozak, M. J., Garvey, M. A., Heinssen, R. K., … Cuthbert, B. N. (2010). Developing constructs for psychopathology research: Research domain criteria. Journal of Abnormal Psychology, 119(4), 6319. http://dx.doi.org/10.1037%2Fa0020909CrossRefGoogle ScholarPubMed
Sebat, J., Lakshmi, B., Malhotra, D., Troge, J., Lese-Martin, C., Walsh, T., … Wigler, M. (2007). Strong association of de novo copy number mutations with autism. Science, 316(5823), 445–9. http://dx.doi.org/10.1126/science.1138659CrossRefGoogle ScholarPubMed
Shorter, E., & Fink, M. (2010). Endocrine psychiatry: Solving the riddle of melancholia. New York, NY: Oxford University Press.Google Scholar
Skilling, T. A., Harris, G. T., Rice, M. T., & Quinsey, V. L. (2001). Identifying persistently antisocial offenders using the Hare Psychopathy Checklist and DSM antisocial personality disorder criteria. Psychological Assessment, 14(1), 2738. http://dx.doi.org/10.1037/1040-3590.14.1.27CrossRefGoogle Scholar
Skilling, T. A., Quinsey, V. L., & Craig, W. M. (2001). Evidence of a taxon underlying serious antisocial behavior in boys. Criminal Justice and Behavior, 28, 450–70. http://dx.doi.org/10.1177%2F009385480102800404CrossRefGoogle Scholar
Spiegel, A. (2005). The dictionary of disorder. New Yorker, 80(41), 5663.Google Scholar
Stefansson, H., Rujescu, D., Cichon, S., Pietilainen, O. P., Ingason, A., Steinberg, S., … Stefansson, K. (2008). Large recurrent microdeletions associated with schizophrenia. Nature, 455(7210), 232–6. http://dx.doi.org/10.1038/nature07229CrossRefGoogle ScholarPubMed
Subbarayappa, B. (2001). The roots of ancient medicine: An historical outline. Journal of Biosciences-Bangalore, 26(2), 135–43. http://dx.doi.org/10.1007%2FBF02703637Google ScholarPubMed
Tam, G. W., van de Lagemaat, L. N., Redon, R., Strathdee, K. E., Croning, M. D., Malloy, M. P., … Grant, S. G. (2010). Confirmed rare copy number variants implicate novel genes in schizophrenia. Biochemical Society Transactions, 38(2), 445–51. http://dx.doi.org/10.1042/BST0380445CrossRefGoogle ScholarPubMed
Waller, N. G. (2006). Carving nature at its joints: Paul Meehl's development of taxometrics. Journal of Abnormal Psychology, 115(2), 210–15. http://dx.doi.org/10.1037/0021-843X.115.2.210CrossRefGoogle ScholarPubMed
Widiger, T. A., Frances, A., Spitzer, R. L., & Williams, J. B. (1988). The DSM-III-R personality disorders: An overview. American Journal of Psychiatry, 145(7), 786–95.Google ScholarPubMed
Wellcome Trust Case Control Consortium. (2007). Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature, 447(7145), 661–78. http://dx.doi.org/10.1038/nature05911Google Scholar
Yuan, K. H., & Bentler, P. M. (2010). Finite Normal Mixture SEM Analysis by Fitting Multiple Conventional SEM Models. Sociological Methodology, 40(1), 191245. http://dx.doi.org/10.1111/j.1467-9531.2010.01224.xCrossRefGoogle ScholarPubMed

References

Abdolmaleky, H. M., Cheng, K. H., Faraone, S. V., Wilcox, M., Glatt, S. J., Gao, F., … Thiagalingam, S. (2006). Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Human Molecular Genetics, 15(21), 3132–45. http://dx.doi.org/10.1093/hmg/ddl253CrossRefGoogle Scholar
Abdolmaleky, H. M., Smith, C. L., Zhou, J. R., & Thiagalingam, S. (2008). Epigenetic alterations of the dopaminergic system in major psychiatric disorders. Methods in Molecular Biology, 448, 187212. http://dx.doi.org/10.1007/978-1-59745-205-2_9CrossRefGoogle ScholarPubMed
Abdolmaleky, H. M., Yaqubi, S., Papageorgis, P., Lambert, A. W., Ozturk, S., Sivaraman, V., & Thiagalingam, S. (2011). Epigenetic dysregulation of HTR2A in the brain of patients with schizophrenia and bipolar disorder. Schizophrenia Research, 129(2–3), 183–90. http://dx.doi.org/10.1016/j.schres.2011.04.007CrossRefGoogle ScholarPubMed
Akyuz, G., Sar, V., Kugu, N., & Dogan, O. (2005). Reported childhood trauma, attempted suicide and self-mutilative behavior among women in the general population. European Psychiatry, 20(3), 268–73. http://dx.doi.org/10.1016/j.eurpsy.2005.01.002CrossRefGoogle ScholarPubMed
Andover, M. S., Zlotnick, C., & Miller, I. W. (2007). Childhood physical and sexual abuse in depressed patients with single and multiple suicide attempts. Suicide and Life-Threatening Behavior, 37(4), 467–74. http://dx.doi.org/10.1521/suli.2007.37.4.467CrossRefGoogle ScholarPubMed
Angst, F., Stassen, H. H., Clayton, P. J., & Angst, J. (2002). Mortality of patients with mood disorders: Follow-up over 34–38 years. Journal of Affective Disorders, 68(2–3), 167–81. http://dx.doi.org/10.1016/S0165-0327(01)00377-9CrossRefGoogle ScholarPubMed
Angst, J., Angst, F., & Stassen, H. H. (1999). Suicide risk in patients with major depressive disorder. Journal of Clinical Psychiatry, 60(Suppl. 2), 5762; Consensus discussion, 113–16.Google ScholarPubMed
Angst, J., Degonda, M., & Ernst, C. (1992). The Zurich Study: XV. Suicide attempts in a cohort from age 20 to 30. European Archives of Psychiatry and Clinical Neuroscience, 242(2–3), 135–41. http://dx.doi.org/10.1007/BF02191561CrossRefGoogle Scholar
Aran, D., Toperoff, G., Rosenberg, M., & Hellman, A. (2011). Replication timing-related and gene body-specific methylation of active human genes. Human Molecular Genetics, 20(4), 670–80. http://dx.doi.org/10.1093/hmg/ddq513CrossRefGoogle ScholarPubMed
Arsenault-Lapierre, G., Kim, C., & Turecki, G. (2004). Psychiatric diagnoses in 3275 suicides: A meta-analysis. BMC Psychiatry, 4, 37. http://dx.doi.org/10.1186/1471-244X-4-37CrossRefGoogle ScholarPubMed
Aston, C., Jiang, L., & Sokolov, B. P. (2005). Transcriptional profiling reveals evidence for signaling and oligodendroglial abnormalities in the temporal cortex from patients with major depressive disorder. Molecular Psychiatry, 10(3), 309–22. http://dx.doi.org/10.1038/sj.mp.4001565CrossRefGoogle ScholarPubMed
Austin, M. C., Janosky, J. E., & Murphy, H. A. (2003). Increased corticotropin-releasing hormone immunoreactivity in monoamine-containing pontine nuclei of depressed suicide men. Molecular Psychiatry, 8(3), 324–32. http://dx.doi.org/10.1038/sj.mp.4001250CrossRefGoogle ScholarPubMed
Bensley, L. S., Van Eenwyk, J., Spieker, S. J., & Schoder, J. (1999). Self-reported abuse history and adolescent problem behaviors. I. Antisocial and suicidal behaviors. Journal of Adolesccent Health, 24(3), 163–72. http://dx.doi.org/10.1016/S1054-139X(98)00111-6Google ScholarPubMed
Blair-West, G. W., Cantor, C. H., Mellsop, G. W., & Eyeson-Annan, M. L. (1999). Lifetime suicide risk in major depression: Sex and age determinants. Journal of Affective Disorders, 55(2–3), 1718. http://dx.doi.org/10.1016/S0165-0327(99)00004-XCrossRefGoogle ScholarPubMed
Boden, J. M., Fergusson, D. M., & Horwood, L. J. (2007). Anxiety disorders and suicidal behaviors in adolescence and young adulthood: Findings from a longitudinal study. Psychological Medicine, 37(3), 431–40. http://dx.doi.org/10.1017/S0033291706009147CrossRefGoogle Scholar
Bremner, J. D., Vermetten, E., Afzal, N., & Vythilingam, M. (2004). Deficits in verbal declarative memory function in women with childhood sexual abuse-related posttraumatic stress disorder. Journal of Nervous and Mental Disease, 192(10), 643–9. http://dx.doi.org/10.1097/01.nmd.0000142027.52893.c8CrossRefGoogle ScholarPubMed
Brezo, J., Barker, E. D., Paris, J., Hebert, M., Vitaro, F., Tremblay, R. E., & Turecki, G. (2008). Childhood trajectories of anxiousness and disruptiveness as predictors of suicide attempts. Archives of Pediatrics & Adolescent Medicine, 162(11), 1015–21. http://dx.doi.org/10.1001/archpedi.162.11.1015CrossRefGoogle ScholarPubMed
Brezo, J., Klempan, T., & Turecki, G. (2008). The genetics of suicide: A critical review of molecular studies. Psychiatric Clinics of North America, 31(2), 179203. http://dx.doi.org/10.1016/j.psc.2008.01.008CrossRefGoogle ScholarPubMed
Brezo, J., Paris, J., Barker, E. D., Tremblay, R., Vitaro, F., Zoccolillo, M., … Turecki, G. (2007). Natural history of suicidal behaviors in a population-based sample of young adults. Psychological Medicine, 37(11), 1563–74. http://dx.doi.org/10.1017/S003329170700058XCrossRefGoogle Scholar
Brezo, J., Paris, J., Hebert, M., Vitaro, F., Tremblay, R., & Turecki, G. (2008). Broad and narrow personality traits as markers of one-time and repeated suicide attempts: A population-based study. BMC Psychiatry, 8, 15.CrossRefGoogle ScholarPubMed
Brezo, J., Paris, J., Tremblay, R., Vitaro, F., Hebert, M., & Turecki, G. (2007). Identifying correlates of suicide attempts in suicidal ideators: A population-based study. Psychological Medicine, 37(11), 1551–62. http://dx.doi.org/10.1017/S0033291707000803CrossRefGoogle ScholarPubMed
Brezo, J., Paris, J., & Turecki, G. (2006). Personality traits as correlates of suicidal ideation, suicide attempts, and suicide completions: A systematic review. Acta Psychiatrica Scandinavica, 113(3), 180206. http://dx.doi.org/10.1111/j.1600-0447.2005.00702.xCrossRefGoogle ScholarPubMed
Brezo, J., Paris, J., Vitaro, F., Hebert, M., Tremblay, R. E., & Turecki, G. (2008). Predicting suicide attempts in young adults with histories of childhood abuse. British Journal of Psychiatry, 193(2), 134–9. http://dx.doi.org/10.1192/bjp.bp.107.037994CrossRefGoogle ScholarPubMed
Brunoni, A. R., Lopes, M., & Fregni, F. (2008). A systematic review and meta-analysis of clinical studies on major depression and BDNF levels: Implications for the role of neuroplasticity in depression. International Journal of Neuropsychopharmacology, 11(8), 1169–80. http://dx.doi.org/10.1017/S1461145708009309CrossRefGoogle ScholarPubMed
Caldji, C., Tannenbaum, B., Sharma, S., Francis, D., Plotsky, P. M., & Meaney, M. J. (1998). Maternal care during infancy regulates the development of neural systems mediating the expression of fearfulness in the rat. Proceedings of the National Academy of Sciences of the United States of America, 95(9), 5335–40. http://dx.doi.org/10.1073/pnas.95.9.5335Google ScholarPubMed
Cavanagh, J. T., Carson, A. J., Sharpe, M., & Lawrie, S. M. (2003). Psychological autopsy studies of suicide: A systematic review. Psychological Medicine, 33(3), 395405. http://dx.doi.org/10.1017/S0033291702006943CrossRefGoogle ScholarPubMed
Cha, C. B., Najmi, S., Park, J. M., Finn, C. T., & Nock, M. K. (2010). Attentional bias toward suicide-related stimuli predicts suicidal behavior. Journal of Abnormal Psychology, 119(3), 616–22. http://dx.doi.org/10.1037/a0019710Google ScholarPubMed
Champagne, D. L., Bagot, R. C., van Hasselt, F., Ramakers, G., Meaney, M. J., de Kloet, E. R., Krugers, H. (2008). Maternal care and hippocampal plasticity: Evidence for experience-dependent structural plasticity, altered synaptic functioning, and differential responsiveness to glucocorticoids and stress. Journal of Neuroscience, 28(23), 6037–45. http://dx.doi.org/10.1523/JNEUROSCI.0526-08.2008CrossRefGoogle ScholarPubMed
Chan, J. P., Unger, T. J., Byrnes, J., & Rios, M. (2006). Examination of behavioral deficits triggered by targeting Bdnf in fetal or postnatal brains of mice. Neuroscience, 142(1), 4958. http://dx.doi.org/10.1016/j.neuroscience.2006.06.002CrossRefGoogle ScholarPubMed
Chen, B., Dowlatshahi, D., MacQueen, G. M., Wang, J. F., & Young, L. T. (2001). Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biological Psychiatry, 50(4), 260–5. http://dx.doi.org/10.1016/S0006-3223(01)01083-6CrossRefGoogle ScholarPubMed
Chen, E. S., Ernst, C., & Turecki, G. (2011). The epigenetic effects of antidepressant treatment on human prefrontal cortex BDNF expression. International Journal of Neuropsychopharmacology, 14(3), 427–9. http://dx.doi.org/10.1017/S1461145710001422CrossRefGoogle ScholarPubMed
Chen, J., Evans, A. N., Liu, Y., Honda, M., Saavedra, J. M., & Aguilera, G. (2012). Maternal deprivation in rats is associated with corticotrophin-releasing hormone (CRH) promoter hypomethylation and enhances CRH transcriptional responses to stress in adulthood. Journal of Neuroendocrinology, 24(7), 1055–64. http://dx.doi.org/10.1111/j.1365-2826.2012.02306.xCrossRefGoogle ScholarPubMed
Cole, P. M., Michel, M. K., & Teti, L. O. (1994). The development of emotion regulation and dysregulation: A clinical perspective. Monographs of the Society for Research in Child Development, 59(2–3), 73100. http://dx.doi.org/10.2307/1166139CrossRefGoogle ScholarPubMed
Dammann, G., Teschler, S., Haag, T., Altmuller, F., Tuczek, F., & Dammann, R. H. (2011). Increased DNA methylation of neuropsychiatric genes occurs in borderline personality disorder. Epigenetics, 6(12), 1454–62. http://dx.doi.org/10.4161/epi.6.12.18363CrossRefGoogle ScholarPubMed
Day, J. J., & Sweatt, J. D. (2010). DNA methylation and memory formation. Nature Neuroscience, 13(11), 1319–23. http://dx.doi.org/10.1038/nn.2666CrossRefGoogle ScholarPubMed
Day, J. J., & Sweatt, J. D. (2011). Epigenetic mechanisms in cognition. Neuron, 70(5), 813–29. http://dx.doi.org/10.1016/j.neuron.2011.05.019CrossRefGoogle ScholarPubMed
De Luca, V., Likhodi, O., Kennedy, J. L., & Wong, A. H. (2007). Differential expression and parent-of-origin effect of the 5-HT2A receptor gene C102T polymorphism: Analysis of suicidality in schizophrenia and bipolar disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 144B(3), 370–4. http://dx.doi.org/10.1016/j.jpsychires.2008.07.007CrossRefGoogle ScholarPubMed
De Luca, V., Viggiano, E., Dhoot, R., Kennedy, J. L., & Wong, A. H. (2009). Methylation and QTDT analysis of the 5-HT2A receptor 102C allele: Analysis of suicidality in major psychosis. Journal of Psychiatric Research, 43(5), 532–7. http://dx.doi.org/10.1016/j.jpsychires.2008.07.007Google ScholarPubMed
Deaton, A. M., Webb, S., Kerr, A. R., Illingworth, R. S., Guy, J., Andrews, R., & Bird, A. (2011). Cell type-specific DNA methylation at intragenic CpG islands in the immune system. Genome Research, 21(7), 1074–86. http://dx.doi.org/10.1101/gr.118703.110CrossRefGoogle ScholarPubMed
Deplus, R., Brenner, C., Burgers, W. A., Putmans, P., Kouzarides, T., de Launoit, Y., & Fuks, F. (2002). Dnmt3L is a transcriptional repressor that recruits histone deacetylase. Nucleic Acids Research, 30(17), 3831–8. http://dx.doi.org/10.1093/nar/gkf509CrossRefGoogle ScholarPubMed
Dinwiddie, S., Heath, A. C., Dunne, M. P., Bucholz, K. K., Madden, P. A., Slutske, W. S., … Martin, N. G. (2000). Early sexual abuse and lifetime psychopathology: A co-twin-control study. Psychological Medicine, 30(1), 4152. http://dx.doi.org/10.1017/S0033291799001373CrossRefGoogle ScholarPubMed
Dumser, T., Barocka, A., & Schubert, E. (1998). Weight of adrenal glands may be increased in persons who commit suicide. American Journal of Forensic Medicine and Patholology, 19(1), 72–6. http://dx.doi.org/10.1097/00000433-199803000-00014Google ScholarPubMed
Duric, V., & McCarson, K. E. (2005). Hippocampal neurokinin-1 receptor and brain-derived neurotrophic factor gene expression is decreased in rat models of pain and stress. Neuroscience, 133(4), 9991006. http://dx.doi.org/10.1016/j.neuroscience.2005.04.002CrossRefGoogle ScholarPubMed
Duric, V., & McCarson, K. E. (2006). Effects of analgesic or antidepressant drugs on pain- or stress-evoked hippocampal and spinal neurokinin-1 receptor and brain-derived neurotrophic factor gene expression in the rat. Journal of Pharmacology and Experimental Therapeutics, 319(3), 1235–43. http://dx.doi.org/10.1124/jpet.106.109470CrossRefGoogle ScholarPubMed
Dwivedi, Y., Rizavi, H. S., Conley, R. R., Roberts, R. C., Tamminga, C. A., & Pandey, G. N. (2003). Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Archives of General Psychiatry, 60(8), 804–15. http://dx.doi.org/10.1001/archpsyc.60.8.804CrossRefGoogle ScholarPubMed
Elliott, E., Ezra-Nevo, G., Regev, L., Neufeld-Cohen, A., & Chen, A. (2010). Resilience to social stress coincides with functional DNA methylation of the Crf gene in adult mice. Nature Neuroscience, 13(11), 1351–3. http://dx.doi.org/10.1038/nn.2642CrossRefGoogle ScholarPubMed
Ernst, C., Chen, E. S., & Turecki, G. (2009). Histone methylation and decreased expression of TrkB.T1 in orbital frontal cortex of suicide completers. Molecular Psychiatry, 14(9), 830–2. http://dx.doi.org/10.1038/mp.2009.35CrossRefGoogle ScholarPubMed
Ernst, C., Deleva, V., Deng, X., Sequeira, A., Pomarenski, A., Klempan, T., … Turecki, G. (2009). Alternative splicing, methylation state, and expression profile of tropomyosin-related kinase B in the frontal cortex of suicide completers. Archives of General Psychiatry, 66(1), 2232. http://dx.doi.org/10.1001/archpsyc.66.1.22CrossRefGoogle ScholarPubMed
Ernst, C., Mechawar, N., & Turecki, G. (2009). Suicide neurobiology. Progress in Neurobiology, 89(4), 315–33. http://dx.doi.org/10.1016/j.pneurobio.2009.09.001CrossRefGoogle ScholarPubMed
Ernst, C., Wanner, B., Brezo, J., Vitaro, F., Tremblay, R., & Turecki, G. (2011). A deletion in tropomyosin-related kinase B and the development of human anxiety. Biological Psychiatry, 69(6), 604–7. http://dx.doi.org/10.1016/j.biopsych.2010.10.008CrossRefGoogle ScholarPubMed
Ernst, J., Kheradpour, P., Mikkelsen, T. S., Shoresh, N., Ward, L. D., Epstein, C. B., … Bernstein, B. E. (2011). Mapping and analysis of chromatin state dynamics in nine human cell types. Nature, 473(7345), 43–9. http://dx.doi.org/10.1038/nature09906CrossRefGoogle ScholarPubMed
Evans, E., Hawton, K., & Rodham, K. (2005). Suicidal phenomena and abuse in adolescents: a review of epidemiological studies. Child Abuse & Neglect, 29(1), 4558. http://dx.doi.org/10.1016/j.chiabu.2004.06.014CrossRefGoogle ScholarPubMed
Fergusson, D. M., Boden, J. M., & Horwood, L. J. (2008). Exposure to childhood sexual and physical abuse and adjustment in early adulthood. Child Abuse & Neglect, 32(6), 607–19. http://dx.doi.org/10.1016/j.chiabu.2006.12.018CrossRefGoogle ScholarPubMed
Fergusson, D. M., Horwood, L. J., & Lynskey, M. T. (1996). Childhood sexual abuse and psychiatric disorder in young adulthood: II. Psychiatric outcomes of childhood sexual abuse. Journal of the American Academy of Child and Adolescent Psychiatry, 35(10), 1365–74. http://dx.doi.org/10.1097/00004583-199610000-00024Google ScholarPubMed
Fiori, L. M., Gross, J. A., & Turecki, G. (2012). Effects of histone modifications on increased expression of polyamine biosynthetic genes in suicide. International Journal of Neuropsychopharmacology, 15(8), 1161–6. http://dx.doi.org/10.1017/S1461145711001520CrossRefGoogle ScholarPubMed
Fiori, L. M., & Turecki, G. (2010). Genetic and epigenetic influences on expression of spermine synthase and spermine oxidase in suicide completers. International Journal of Neuropsychopharmacology, 13, 725–36. http://dx.doi.org/10.1017/S1461145709991167CrossRefGoogle ScholarPubMed
Fliege, H., Lee, J. R., Grimm, A., & Klapp, B. F. (2009). Risk factors and correlates of deliberate self-harm behavior: A systematic review. Journal of Psychosomatic Research, 66(6), 477–93. http://dx.doi.org/10.1016/j.jpsychores.2008.10.013CrossRefGoogle ScholarPubMed
Francis, D., Diorio, J., Liu, D., & Meaney, M. J. (1999). Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science, 286(5442), 1155–8. http://dx.doi.org/10.1126/science.286.5442.1155CrossRefGoogle ScholarPubMed
Fuks, F., Burgers, W. A., Brehm, A., Hughes-Davies, L., & Kouzarides, T. (2000). DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nature Genetics, 24(1), 8891. http://dx.doi.org/10.1038/71750CrossRefGoogle ScholarPubMed
Fuks, F., Burgers, W. A., Godin, N., Kasai, M., & Kouzarides, T. (2001). Dnmt3a binds deacetylases and is recruited by a sequence-specific repressor to silence transcription. EMBO Journal, 20(10), 2536–44. http://dx.doi.org/10.1093/emboj/20.10.2536CrossRefGoogle ScholarPubMed
Geiman, T. M., Sankpal, U. T., Robertson, A. K., Zhao, Y., & Robertson, K. D. (2004). DNMT3B interacts with hSNF2H chromatin remodeling enzyme, HDACs 1 and 2, and components of the histone methylation system. Biochemical and Biophysical Research Communications, 318(2), 544–55. http://dx.doi.org/10.1016/j.bbrc.2004.04.058CrossRefGoogle ScholarPubMed
Gladstone, G. L., Parker, G. B., Mitchell, P. B., Malhi, G. S., Wilhelm, K., & Austin, M. P. (2004). Implications of childhood trauma for depressed women: An analysis of pathways from childhood sexual abuse to deliberate self-harm and revictimization. American Journal of Psychiatry, 161(8), 1417–25. http://dx.doi.org/10.1176/appi.ajp.161.8.1417CrossRefGoogle ScholarPubMed
Gronli, J., Bramham, C., Murison, R., Kanhema, T., Fiske, E., Bjorvatn, B., … Portas, C. M. (2006). Chronic mild stress inhibits BDNF protein expression and CREB activation in the dentate gyrus but not in the hippocampus proper. Pharmacology Biochemistry and Behavior, 85(4), 842–9. http://dx.doi.org/10.1016/j.pbb.2006.11.021CrossRefGoogle Scholar
Grover, K. E., Green, K. L., Pettit, J. W., Monteith, L. L., Garza, M. J., & Venta, A. (2009). Problem solving moderates the effects of life event stress and chronic stress on suicidal behaviors in adolescence. Journal of Clinical Psychology, 65(12), 1281–90. http://dx.doi.org/10.1002/jclp.20632CrossRefGoogle ScholarPubMed
Hashimoto, K. (2010). Brain-derived neurotrophic factor as a biomarker for mood disorders: An historical overview and future directions. Psychiatry and Clinical Neurosciences, 64(4), 341–57. http://dx.doi.org/10.1111/j.1440-1819.2010.02113.xCrossRefGoogle ScholarPubMed
Hawton, K., Rodham, K., Evans, E., & Weatherall, R. (2002). Deliberate self harm in adolescents: Self report survey in schools in England. BMJ, 325(7374), 1207–11. http://dx.doi.org/10.1136/bmj.325.7374.1207CrossRefGoogle ScholarPubMed
Hawton, K., & van Heeringen, K. (2009). Suicide. Lancet, 373(9672), 1372–81. http://dx.doi.org/10.1016/S0140-6736(09)60372-XCrossRefGoogle ScholarPubMed
Heim, C., Newport, D. J., Heit, S., Graham, Y. P., Wilcox, M., Bonsall, R., … Nemeroff, C. B. (2000). Pituitary-adrenal and autonomic responses to stress in women after sexual and physical abuse in childhood. JAMA, 284(5), 592–7. http://dx.doi.org/10.1001/jama.284.5.592CrossRefGoogle ScholarPubMed
Heim, C., Newport, D. J., Mletzko, T., Miller, A. H., & Nemeroff, C. B. (2008). The link between childhood trauma and depression: Insights from HPA axis studies in humans. Psychoneuroendocrinology, 33(6), 693710. http://dx.doi.org/10.1016/j.psyneuen.2008.03.008CrossRefGoogle ScholarPubMed
Heim, C., Shugart, M., Craighead, W. E., & Nemeroff, C. B. (2010). Neurobiological and psychiatric consequences of child abuse and neglect. Developmental Psychobiology, 52(7), 671–90. http://dx.doi.org/10.1002/dev.20494CrossRefGoogle ScholarPubMed
Heim, C., Young, L. J., Newport, D. J., Mletzko, T., Miller, A. H., & Nemeroff, C. B. (2009). Lower CSF oxytocin concentrations in women with a history of childhood abuse. Molecular Psychiatry, 14(10), 954–8. http://dx.doi.org/10.1038/mp.2008.112CrossRefGoogle ScholarPubMed
Hellman, A., & Chess, A. (2007). Gene body-specific methylation on the active X chromosome. Science, 315(5815), 1141–3. http://dx.doi.org/10.1126/science.1136352CrossRefGoogle ScholarPubMed
Hiroi, N., Wong, M. L., Licinio, J., Park, C., Young, M., Gold, P. W., … Bornstein, S. R. (2001). Expression of corticotropin releasing hormone receptors type I and type II mRNA in suicide victims and controls. Molecular Psychiatry, 6(5), 540–6. http://dx.doi.org/10.1038/sj.mp.4000908CrossRefGoogle ScholarPubMed
Hyman, S. E. (2009). How adversity gets under the skin. Nature Neuroscience, 12(3), 241–3.CrossRefGoogle ScholarPubMed
Iwamoto, K., Bundo, M., Ueda, J., Oldham, M. C., Ukai, W., Hashimoto, E., … Kato, T. (2011). Neurons show distinctive DNA methylation profile and higher interindividual variations compared with non-neurons. Genome Research, 21(5), 688–96. http://dx.doi.org/10.1101/gr.112755.110CrossRefGoogle ScholarPubMed
Jaffee, S. R., Moffitt, T. E., Caspi, A., Fombonne, E., Poulton, R., & Martin, J. (2002). Differences in early childhood risk factors for juvenile-onset and adult-onset depression. Archives of General Psychiatry, 59(3), 215–22. http://dx.doi.org/10.1001/archpsyc.59.3.215CrossRefGoogle ScholarPubMed
Joiner, T. E. Jr, Sachs-Ericsson, N. J., Wingate, L. R., Brown, J. S., Anestis, M. D., & Selby, E. A. (2007). Childhood physical and sexual abuse and lifetime number of suicide attempts: A persistent and theoretically important relationship. Behaviour Research and Therapy, 45(3), 539–47. http://dx.doi.org/10.1016/j.brat.2006.04.007CrossRefGoogle ScholarPubMed
Jollant, F., Bellivier, F., Leboyer, M., Astruc, B., Torres, S., Verdier, R., … Courtet, P. (2005). Impaired decision making in suicide attempters. American Journal of Psychiatry, 162(2), 304–10. http://dx.doi.org/10.1176/appi.ajp.162.2.304CrossRefGoogle ScholarPubMed
Jollant, F., Lawrence, N. L., Olie, E., Guillaume, S., & Courtet, P. (2011). The suicidal mind and brain: A review of neuropsychological and neuroimaging studies. World Journal of Biological Psychiatry, 12(5), 319–39. http://dx.doi.org/10.3109/15622975.2011.556200CrossRefGoogle ScholarPubMed
Jollant, F., Lawrence, N. S., Giampietro, V., Brammer, M. J., Fullana, M. A., Drapier, D., … Phillips, M. L. (2008). Orbitofrontal cortex response to angry faces in men with histories of suicide attempts. American Journal of Psychiatry, 165(6), 7408. http://dx.doi.org/10.1176/appi.ajp.2008.07081239CrossRefGoogle ScholarPubMed
Keilp, J. G., Sackeim, H. A., Brodsky, B. S., Oquendo, M. A., Malone, K. M., & Mann, J. J. (2001). Neuropsychological dysfunction in depressed suicide attempters. American Journal of Psychiatry, 158(5), 735–41. http://dx.doi.org/10.1176/appi.ajp.158.5.735CrossRefGoogle ScholarPubMed
Keller, S., Sarchiapone, M., Zarrilli, F., Videtic, A., Ferraro, A., Carli, V., … Chiariotti, L. (2010). Increased BDNF promoter methylation in the Wernicke area of suicide subjects. Archives of General Psychiatry, 67(3), 258–67. http://dx.doi.org/10.1001/archgenpsychiatry.2010.9CrossRefGoogle ScholarPubMed
Kitayama, N., Quinn, S., & Bremner, J. D. (2006). Smaller volume of anterior cingulate cortex in abuse-related posttraumatic stress disorder. Journal of Affective Disorders, 90(2–3), 171–4. http://dx.doi.org/10.1016/j.jad.2005.11.006CrossRefGoogle ScholarPubMed
Klose, R. J., & Bird, A. P. (2006). Genomic DNA methylation: The mark and its mediators. Trends in Biochemical Sciences, 31(2), 8997. http://dx.doi.org/10.1016/j.tibs.2005.12.008CrossRefGoogle ScholarPubMed
Kouzarides, T. (2007). Chromatin modifications and their function. Cell, 128(4), 693705. http://dx.doi.org/10.1016/j.cell.2007.02.005CrossRefGoogle ScholarPubMed
Kriaucionis, S., & Heintz, N. (2009). The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science, 324(5929), 929–30. http://dx.doi.org/10.1126/science.1169786CrossRefGoogle ScholarPubMed
Labonté, B., Suderman, M., Maussion, G., Lopez, J. P., Navarro-Sánchez, L., Yerko, V., … Turecki, G. (2013). Genome-wide methylation changes in the suicide brain. American Journal of Psychiatry, 170(5), 511–20. http://dx.doi.org/10.1176/appi.ajp.2012.12050627CrossRefGoogle Scholar
Labonté, B., Suderman, M., Maussion, G., Navaro, L., Yerko, V., Mahar, I., … Turecki, G. (2012). Genome-wide epigenetic regulation by early-life trauma. Archives of General Psychiatry, 69(7), 722–31. http://dx.doi.org/10.1001/archgenpsychiatry.2011.2287CrossRefGoogle ScholarPubMed
Labonté, B., Yerko, V., Gross, J., Mechawar, N., Meaney, M. J., Szyf, M., & Turecki, G. (2012). Differential glucocorticoid receptor exon 1(B), 1(C), and 1(H) expression and methylation in suicide completers with a history of childhood abuse. Biological Psychiatry, 72(1), 41–8. http://dx.doi.org/10.1016/j.biopsych.2012.01.034CrossRefGoogle Scholar
Ladd-Acosta, C., Pevsner, J., Sabunciyan, S., Yolken, R. H., Webster, M. J., Dinkins, T., … Feinberg, A. P. (2007). DNA methylation signatures within the human brain. American Journal of Human Genetics, 81(6), 1304–15. http://dx.doi.org/10.1086/524110CrossRefGoogle ScholarPubMed
Lister, R., Pelizzola, M., Dowen, R. H., Hawkins, R. D., Hon, G., Tonti-Filippini, J., … Ecker, J. R. (2009). Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 462(7271), 315–22. http://dx.doi.org/10.1038/nature08514CrossRefGoogle ScholarPubMed
Liu, D., Diorio, J., Tannenbaum, B., Caldji, C., Francis, D., Freedman, A., … Meaney, M. J. (1997). Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science, 277(5332), 1659–62. http://dx.doi.org/10.1126/science.277.5332.1659CrossRefGoogle ScholarPubMed
Lopez, J. F., Palkovits, M., Arato, M., Mansour, A., Akil, H., & Watson, S. J. (1992). Localization and quantification of pro-opiomelanocortin mRNA and glucocorticoid receptor mRNA in pituitaries of suicide victims. Neuroendocrinology, 56(4), 491501. http://dx.doi.org/10.1159/000126266CrossRefGoogle ScholarPubMed
Lopez, J. P., Mamdani, F., Labonte, B., Beaulieu, M. M., Yang, J. P., Berlim, M. T., … Turecki, G. (2013). Epigenetic regulation of BDNF expression according to antidepressant response. Molecular Psychiatry, 18, 398–9. http://dx.doi.org/10.1038/mp.2012.38CrossRefGoogle ScholarPubMed
Matrisciano, F., Bonaccorso, S., Ricciardi, A., Scaccianoce, S., Panaccione, I., Wang, L., … Shelton, R. C. (2009). Changes in BDNF serum levels in patients with major depression disorder (MDD) after 6 months treatment with sertraline, escitalopram, or venlafaxine. Journal of Psychiatric Research, 43(3), 247–54. http://dx.doi.org/10.1016/j.jpsychires.2008.03.014CrossRefGoogle ScholarPubMed
Maunakea, A. K., Nagarajan, R. P., Bilenky, M., Ballinger, T. J., D'Souza, C., Fouse, S. D., … Costello, J. F. (2010). Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature, 466(7303), 253–7. http://dx.doi.org/10.1038/nature09165.CrossRefGoogle ScholarPubMed
McGirr, A., Alda, M., Seguin, M., Cabot, S., Lesage, A., & Turecki, G. (2009). Familial aggregation of suicide explained by cluster B traits: A three-group family study of suicide controlling for major depressive disorder. American Journal of Psychiatry, 166(10), 1124–34. http://dx.doi.org/10.1176/appi.ajp.2009.08111744CrossRefGoogle ScholarPubMed
McGowan, P. O., Sasaki, A., D'Alessio, A. C., Dymov, S., Labonte, B., Szyf, M., … Meaney, M. J. (2009). Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature Neuroscience, 12(3), 342–8. http://dx.doi.org/10.1038/nn.2270CrossRefGoogle ScholarPubMed
McGowan, P. O., Sasaki, A., Huang, T. C., Unterberger, A., Suderman, M., Ernst, C., … Szyf, M. (2008). Promoter-wide hypermethylation of the ribosomal RNA gene promoter in the suicide brain. PLOS One, 3(5), e2085. http://dx.doi.org/10.1371/journal.pone.0002085CrossRefGoogle ScholarPubMed
McGowan, P. O., Suderman, M., Sasaki, A., Huang, T. C., Hallett, M., Meaney, M. J., & Szyf, M. (2011). Broad epigenetic signature of maternal care in the brain of adult rats. PLOS One, 6(2), e14739. http://dx.doi.org/10.1371/journal.pone.0014739CrossRefGoogle ScholarPubMed
McHolm, A. E., MacMillan, H. L., & Jamieson, E. (2003). The relationship between childhood physical abuse and suicidality among depressed women: results from a community sample. American Journal of Psychiatry, 160(5), 933–8. http://dx.doi.org/10.1176/appi.ajp.160.5.933CrossRefGoogle ScholarPubMed
Meaney, M. J., & Ferguson-Smith, A. C. (2010). Epigenetic regulation of the neural transcriptome: The meaning of the marks. Nature Neuroscience, 13(11), 1313–18. http://dx.doi.org/10.1038/nn1110-1313CrossRefGoogle ScholarPubMed
Meissner, A., Mikkelsen, T. S., Gu, H., Wernig, M., Hanna, J., Sivachenko, A., … Lander, E. S. (2008). Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature, 454(7205), 766–70.CrossRefGoogle ScholarPubMed
Merali, Z., Kent, P., Du, L., Hrdina, P., Palkovits, M., Faludi, G., … Anisman, H. (2006). Corticotropin-releasing hormone, arginine vasopressin, gastrin-releasing peptide, and neuromedin B alterations in stress-relevant brain regions of suicides and control subjects. Biological Psychiatry, 59(7), 594602. http://dx.doi.org/10.1016/j.biopsych.2005.08.008CrossRefGoogle ScholarPubMed
Mercier, G., Lennon, A. M., Renouf, B., Dessouroux, A., Ramauge, M., Courtin, F., & Pierre, M. (2004). MAP kinase activation by fluoxetine and its relation to gene expression in cultured rat astrocytes. Journal of Molecular Neuroscience, 24(2), 207–16. http://dx.doi.org/10.1385/JMN:24:2:207CrossRefGoogle ScholarPubMed
Mill, J., Tang, T., Kaminsky, Z., Khare, T., Yazdanpanah, S., Bouchard, L., … Petronis, A. (2008). Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. American Journal of Human Genetics, 82(3), 696711. http://dx.doi.org/10.1016/j.ajhg.2008.01.008CrossRefGoogle ScholarPubMed
Molnar, B. E., Berkman, L. F., & Buka, S. L. (2001). Psychopathology, childhood sexual abuse and other childhood adversities: relative links to subsequent suicidal behavior in the US. Psychological Medicine, 31(6), 965–77. http://dx.doi.org/10.1017/S0033291701004329CrossRefGoogle ScholarPubMed
Murgatroyd, C., Patchev, A. V., Wu, Y., Micale, V., Bockmuhl, Y., Fischer, D., … Spengler, D. (2009). Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nature Neuroscience, 12, 1559–66. http://dx.doi.org/10.1038/nn.2436CrossRefGoogle ScholarPubMed
Nakatani, N., Hattori, E., Ohnishi, T., Dean, B., Iwayama, Y., Matsumoto, I., … Yoshikawa, T. (2006). Genome-wide expression analysis detects eight genes with robust alterations specific to bipolar I disorder: Relevance to neuronal network perturbation. Human Molecular Genetics, 15(12), 1949–62. http://dx.doi.org/10.1093/hmg/ddl118CrossRefGoogle ScholarPubMed
Navalta, C. P., Polcari, A., Webster, D. M., Boghossian, A., & Teicher, M. H. (2006). Effects of childhood sexual abuse on neuropsychological and cognitive function in college women. Journal of Neuropsychiatry & Clinical Neurosciences, 18(1), 4553. http://dx.doi.org/10.1176/appi.neuropsych.18.1.45CrossRefGoogle ScholarPubMed
Nemeroff, C. B., Owens, M. J., Bissette, G., Andorn, A. C., & Stanley, M. (1988). Reduced corticotropin releasing factor binding sites in the frontal cortex of suicide victims. Archives of General Psychiatry, 45(6), 577–9. http://dx.doi.org/10.1001/archpsyc.1988.01800300075009CrossRefGoogle ScholarPubMed
Nemeroff, C. B., & Vale, W. W. (2005). The neurobiology of depression: Inroads to treatment and new drug discovery. Journal of Clinical Psychiatry, 66(Suppl. 7), 513.Google ScholarPubMed
Nemeroff, C. B., Widerlov, E., Bissette, G., Walleus, H., Karlsson, I., Eklund, K., … Vale, W. (1984). Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. Science, 226(4680), 1342–4. http://dx.doi.org/10.1126/science.6334362CrossRefGoogle ScholarPubMed
Pandey, G. N., Ren, X., Rizavi, H. S., Conley, R. R., Roberts, R. C., & Dwivedi, Y. (2008). Brain-derived neurotrophic factor and tyrosine kinase B receptor signalling in post-mortem brain of teenage suicide victims. International Journal of Neuropsychopharmacology, 11(8), 1047–61. http://dx.doi.org/10.1017/S1461145708009000CrossRefGoogle ScholarPubMed
Perez, C. M., & Widom, C. S. (1994). Childhood victimization and long-term intellectual and academic outcomes. Child Abuse & Neglect, 18(8), 617–33. http://dx.doi.org/10.1016/0145-2134(94)90012-4CrossRefGoogle ScholarPubMed
Perroud, N., Paoloni-Giacobino, A., Prada, P., Olié, E., Salzmann, A., Nicastro, R., … Malafosse, A. (2011). Increased methylation of glucocorticoid receptor gen (NR3C1) in adults with a history of childhood maltreatment: A link with the severity and type of trauma. Translational Psychiatry, 1(e59). http://dx.doi.org/10.1038/tp.2011.60CrossRefGoogle Scholar
Pfennig, A., Kunzel, H. E., Kern, N., Ising, M., Majer, M., Fuchs, B., … Binder, E. B. (2005). Hypothalamus-pituitary-adrenal system regulation and suicidal behavior in depression. Biological Psychiatry, 57(4), 336–42. http://dx.doi.org/10.1016/j.biopsych.2004.11.017CrossRefGoogle ScholarPubMed
Poulter, M. O., Du, L., Weaver, I. C., Palkovits, M., Faludi, G., Merali, Z., … Anisman, H. (2008). GABAA receptor promoter hypermethylation in suicide brain: Implications for the involvement of epigenetic processes. Biological Psychiatry, 64(8), 645–52. http://dx.doi.org/10.1016/j.biopsych.2008.05.028CrossRefGoogle ScholarPubMed
Raadsheer, F. C., Hoogendijk, W. J., Stam, F. C., Tilders, F. J., & Swaab, D. F. (1994). Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients. Neuroendocrinology, 60(4), 436–44. http://dx.doi.org/10.1159/000126778CrossRefGoogle ScholarPubMed
Raadsheer, F. C., van Heerikhuize, J. J., Lucassen, P. J., Hoogendijk, W. J., Tilders, F. J., & Swaab, D. F. (1995). Corticotropin-releasing hormone mRNA levels in the paraventricular nucleus of patients with Alzheimer's disease and depression. American Journal of Psychiatry, 152(9), 1372–6.Google Scholar
Radtke, K. M., Ruf, M., Gunter, H. M., Dohrmann, K., Schauer, M., Meyer, A., & Elbert, T. (2011). Transgenerational impact of intimate partner violence on methylation in the promoter of the glucocorticoid receptor. Translational Psychiatry, 1(e21), 16.CrossRefGoogle ScholarPubMed
Rauch, T. A., Wu, X., Zhong, X., Riggs, A. D., & Pfeifer, G. P. (2009). A human B cell methylome at 100-base pair resolution. Proceedings of the National Academy of Sciences of the United States of America, 106(3), 671–8. http://dx.doi.org/10.1073/pnas.0812399106Google Scholar
Razzoli, M., Domenici, E., Carboni, L., Rantamaki, T., Lindholm, J., Castren, E., & Arban, R. (2011). A role for BDNF/TrkB signaling in behavioral and physiological consequences of social defeat stress. Genes, Brain and Behavior, 10(4), 424–33. http://dx.doi.org/10.1111/j.1601-183X.2011.00681.xCrossRefGoogle Scholar
Richardson, H. N., Lee, S. Y., O'Dell, L. E., Koob, G. F., & Rivier, C. L. (2008). Alcohol self-administration acutely stimulates the hypothalamic-pituitary-adrenal axis, but alcohol dependence leads to a dampened neuroendocrine state. European Journal of Neuroscience, 28(8), 1641–53. http://dx.doi.org/10.1111/j.1460-9568.2008.06455.xCrossRefGoogle ScholarPubMed
Rogoz, Z., Skuza, G., & Legutko, B. (2005). Repeated treatment with mirtazepine induces brain-derived neurotrophic factor gene expression in rats. Journal of Physiology and Pharmacology, 56(4), 661–71.Google ScholarPubMed
Roth, T. L., Lubin, F. D., Funk, A. J., & Sweatt, J. D. (2009). Lasting epigenetic influence of early-life adversity on the BDNF gene. Biological Psychiatry, 65(9), 760–9. http://dx.doi.org/10.1016/j.biopsych.2008.11.028CrossRefGoogle ScholarPubMed
Roth, T. L., Zoladz, P. R., Sweatt, J. D., & Diamond, D. M. (2011). Epigenetic modification of hippocampal Bdnf DNA in adult rats in an animal model of post-traumatic stress disorder. Journal of Psychiatric Research, 45(7), 919–26. http://dx.doi.org/10.1016/j.jpsychires.2011.01.013Google Scholar
Schratt, G. (2009). Fine-tuning neural gene expression with microRNAs. Current Opinion in Neurobiology, 19(2), 213–19. http://dx.doi.org/10.1016/j.conb.2009.05.015CrossRefGoogle ScholarPubMed
Sen, S., Duman, R., & Sanacora, G. (2008). Serum brain-derived neurotrophic factor, depression, and antidepressant medications: Meta-analyses and implications. Biological Psychiatry, 64(6), 527–32. http://dx.doi.org/10.1016/j.biopsych.2008.05.005CrossRefGoogle ScholarPubMed
Sinclair, J. M., Crane, C., Hawton, K., & Williams, J. M. (2007). The role of autobiographical memory specificity in deliberate self-harm: Correlates and consequences. Journal of Affective Disorders, 102(1–3), 1118. http://dx.doi.org/10.1016/j.jad.2006.12.006CrossRefGoogle ScholarPubMed
Speckens, A. E., & Hawton, K. (2005). Social problem solving in adolescents with suicidal behavior: A systematic review. Suicide and Life-Threatening Behavior, 35(4), 365–87. http://dx.doi.org/10.1521/suli.2005.35.4.365CrossRefGoogle ScholarPubMed
Spinhoven, P., Slee, N., Garnefski, N., & Arensman, E. (2009). Childhood sexual abuse differentially predicts outcome of cognitive-behavioral therapy for deliberate self-harm. Journal of Nervous and Mental Disease, 197(6), 455–7. http://dx.doi.org/10.1097/NMD.0b013e3181a620c8CrossRefGoogle ScholarPubMed
Suominen, K., Isometsa, E., Suokas, J., Haukka, J., Achte, K., & Lonnqvist, J. (2004). Completed suicide after a suicide attempt: A 37-year follow-up study. American Journal of Psychiatry, 161(3), 562–3. http://dx.doi.org/10.1176/appi.ajp.161.3.562CrossRefGoogle ScholarPubMed
Szigethy, E., Conwell, Y., Forbes, N. T., Cox, C., & Caine, E. D. (1994). Adrenal weight and morphology in victims of completed suicide. Biological Psychiatry, 36(6), 374–80. http://dx.doi.org/10.1016/0006-3223(94)91212-2CrossRefGoogle ScholarPubMed
Szyf, M., McGowan, P. O., Turecki, G., & Meaney, M. J. (2010). The social environment and the epigenome. In Worthman, C. M., Plotsky, P. M., Schechter, D. S., & Cummings, C. A. (Eds.), Formative experiences: The interaction of caregiving, culture, and developmental psychobiology (pp. 5381). New York, NY: Cambridge University Press.CrossRefGoogle Scholar
Tomoda, A., Sheu, Y. S., Rabi, K., Suzuki, H., Navalta, C. P., Polcari, A., & Teicher, M. H. (2011). Exposure to parental verbal abuse is associated with increased gray matter volume in superior temporal gyrus. Neuroimage, 54(Suppl. 1), S280–6. http://dx.doi.org/10.1016/j.neuroimage.2010.05.027CrossRefGoogle ScholarPubMed
Tomoda, A., Suzuki, H., Rabi, K., Sheu, Y. S., Polcari, A., & Teicher, M. H. (2009). Reduced prefrontal cortical gray matter volume in young adults exposed to harsh corporal punishment. Neuroimage, 47(Suppl. 2), T66–71. http://dx.doi.org/10.1016/j.neuroimage.2009.03.005CrossRefGoogle ScholarPubMed
Tsankova, N. M., Berton, O., Renthal, W., Kumar, A., Neve, R. L., & Nestler, E. J. (2006). Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nature Neuroscience, 9(4), 519–25. http://dx.doi.org/10.1038/nn1659CrossRefGoogle Scholar
Tucker, K. L. (2001). Methylated cytosine and the brain: A new base for neuroscience. Neuron, 30(3), 649–52. http://dx.doi.org/10.1016/S0896-6273(01)00325-7CrossRefGoogle Scholar
Tyrka, A. R., Price, L. H., Marsit, C., Walters, O. C., & Carpenter, L. L. (2012). Childhood adversity and epigenetic modulation of the leukocyte glucocorticoid receptor: Preliminary findings in healthy adults. PLOS One, 7(1), e30148. http://dx.doi.org/10.1371/journal.pone.0030148CrossRefGoogle ScholarPubMed
Uchida, S., Hara, K., Kobayashi, A., Otsuki, K., Yamagata, H., Hobara, T., … Watanabe, Y. (2011). Epigenetic status of Gdnf in the ventral striatum determines susceptibility and adaptation to daily stressful events. Neuron, 69(2), 359–72. http://dx.doi.org/10.1016/j.neuron.2010.12.023CrossRefGoogle ScholarPubMed
Uddin, M., Aiello, A. E., Wildman, D. E., Koenen, K. C., Pawelec, G., de Los Santos, R., … Galea, S. (2010). Epigenetic and immune function profiles associated with posttraumatic stress disorder. Proceedings of the National Academy of Sciences of the United States of America, 107(20), 9470–5. http://dx.doi.org/10.1073/pnas.0910794107Google ScholarPubMed
van den Bos, R., Harteveld, M., & Stoop, H. (2009). Stress and decision-making in humans: Performance is related to cortisol reactivity, albeit differently in men and women. Psychoneuroendocrinology, 34(10), 1449–58. http://dx.doi.org/10.1016/j.psyneuen.2009.04.016CrossRefGoogle ScholarPubMed
van Heeringen, C. (Ed.). (2001). Understanding suicidal behavior: The suicidal process approach to research, treatment and prevention. Chichester, England: Wiley.Google Scholar
Vythilingam, M., Heim, C., Newport, J., Miller, A. H., Anderson, E., Bronen, R., … Bremner, J. D. (2002). Childhood trauma associated with smaller hippocampal volume in women with major depression. American Journal of Psychiatry, 159(12), 2072–80. http://dx.doi.org/10.1176/appi.ajp.159.12.2072CrossRefGoogle ScholarPubMed
Wang, S. S., Kamphuis, W., Huitinga, I., Zhou, J. N., & Swaab, D. F. (2008). Gene expression analysis in the human hypothalamus in depression by laser microdissection and real-time PCR: The presence of multiple receptor imbalances. Molecular Psychiatry, 13(8), 786–99, 741. http://dx.doi.org/10.1038/mp.2008.38CrossRefGoogle ScholarPubMed
Weaver, I. C., Cervoni, N., Champagne, F. A., D'Alessio, A. C., Sharma, S., Seckl, J. R., … Meaney, M. J. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7(8), 847–54. http://dx.doi.org/10.1038/nn1276CrossRefGoogle ScholarPubMed
Weniger, G., Lange, C., Sachsse, U., & Irle, E. (2008). Amygdala and hippocampal volumes and cognition in adult survivors of childhood abuse with dissociative disorders. Acta Psychiatrica Scandinavica, 118(4), 281–90. http://dx.doi.org/10.1111/j.1600-0447.2008.01246.xCrossRefGoogle ScholarPubMed
Widom, C. S., DuMont, K., & Czaja, S. J. (2007). A prospective investigation of major depressive disorder and comorbidity in abused and neglected children grown up. Archives of General Psychiatry, 64(1), 4956. http://dx.doi.org/10.1001/archpsyc.64.1.49CrossRefGoogle ScholarPubMed
Williams, J. M., Barnhofer, T., Crane, C., & Beck, A. T. (2005). Problem solving deteriorates following mood challenge in formerly depressed patients with a history of suicidal ideation. Journal of Abnormal Psychology, 114(3), 421–31. http://dx.doi.org/10.1037/0021-843X.114.3.421CrossRefGoogle ScholarPubMed
World Health Organization. (2006). Suicide prevention. Retrieved from www.who.int/mental_health/prevention/suicide/suicideprevent/en/Google Scholar
World Health Organization. (2014). Preventing suicide: A global imperative. Retrieved from www.who.int/mental_health/suicide-prevention/world_report_2014/en/Google Scholar
Xie, W., Barr, C. L., Kim, A., Yue, F., Lee, A. Y., Eubanks, J., … Ren, B. (2012). Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome. Cell, 148(4), 816–31. http://dx.doi.org/10.1016/j.cell.2011.12.035CrossRefGoogle ScholarPubMed
Xu, H., Chen, Z., He, J., Haimanot, S., Li, X., Dyck, L., & Li, X. M. (2006). Synergetic effects of quetiapine and venlafaxine in preventing the chronic restraint stress-induced decrease in cell proliferation and BDNF expression in rat hippocampus. Hippocampus, 16(6), 551–9. http://dx.doi.org/10.1002/hipo.20184CrossRefGoogle ScholarPubMed
Yang, B., & Clum, G. A. (2000). Childhood stress leads to later suicidality via its effect on cognitive functioning. Suicide and Life-Threatening Behavior, 30(3), 183–98.CrossRefGoogle ScholarPubMed
Yen, S., Shea, M. T., Sanislow, C. A., Skodol, A. E., Grilo, C. M., Edelen, M. O., … Gunderson, J. G. (2009). Personality traits as prospective predictors of suicide attempts. Acta Psychiatrica Scandinavica, 120(3), 222–9. http://dx.doi.org/10.1111/j.1600-0447.2009.01366.xCrossRefGoogle ScholarPubMed
Ystgaard, M., Hestetun, I., Loeb, M., & Mehlum, L. (2004). Is there a specific relationship between childhood sexual and physical abuse and repeated suicidal behavior? Child Abuse & Neglect, 28(8), 863–75. http://dx.doi.org/10.1016/j.chiabu.2004.01.009CrossRefGoogle Scholar
Ziller, M. J., Muller, F., Liao, J., Zhang, Y., Gu, H., Bock, C., … Meissner, A. (2011). Genomic distribution and inter-sample variation of non-CpG methylation across human cell types. PLOS Genetics, 7(12), e1002389. http://dx.doi.org/10.1371/journal.pgen.1002389CrossRefGoogle ScholarPubMed

References

Adler, C. M., Adams, J., DelBello, M. P., Holland, S. K., Schmithorst, V., Levine, A., … Strakowski, S. M. (2006). Evidence of white matter pathology in bipolar disorder adolescents experiencing their first episode of mania: A diffusion tensor imaging study. American Journal of Psychiatry, 163(2), 322–4. http://dx.doi.org/10.1176/appi.ajp.163.2.322CrossRefGoogle Scholar
Aggen, S. H., Neale, M. C., & Kendler, K. S. (2005). DSM criteria for major depression: Evaluating symptom patterns using latent-trait item response models. Psychological Medicine, 35(4), 475–87. http://dx.doi.org/10.1017/S0033291704003563CrossRefGoogle ScholarPubMed
Alexander, A. L., Lee, J. E., Lazar, M., & Field, A. S. (2007). Diffusion tensor imaging of the brain. Neurotherapeutics, 4(3), 316–29. http://dx.doi.org/10.1016/j.nurt.2007.05.011CrossRefGoogle ScholarPubMed
Almeida, J. R., & Phillips, M. L. (2012). Distinguishing between unipolar depression and bipolar depression: Current and future clinical and neuroimaging perspectives. Biological Psychiatry, 73, 111–18. http://dx.doi.org/10.1016/j.biopsych.2012.06.010Google Scholar
American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC: Author.Google Scholar
American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (4th ed., text rev.). Washington, DC: Author.Google Scholar
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC: Author.Google Scholar
Andersen, S. L., & Teicher, M. H. (2008). Stress, sensitive periods and maturational events in adolescent depression. Trends in Neurosciences, 31, 183–91. http://dx.doi.org/10.1016/j.tins.2008.01.004CrossRefGoogle ScholarPubMed
Angold, A., Costello, E. J., Erkanli, A., & Worthman, C. M. (1995). Pubertal changes in hormone levels and depression in girls. Psychological Medicine, 29, 1043–53. http://dx.doi.org/10.1017/S0033291799008946Google Scholar
Angold, A., Costello, E. J., & Worthman, C. M. (1998). Puberty and depression: The roles of age, pubertal status and pubertal timing. Psychological Medicine, 28, 5161. http://dx.doi.org/10.1017/S003329179700593XCrossRefGoogle ScholarPubMed
Angold, A., & Worthman, C. M. (1993). Puberty onset of gender differences in rates of depression: A developmental, epidemiologic and neuroendocrine perspective. Journal of Affective Disorders, 29, 145–58. http://dx.doi.org/10.1016/0165-0327(93)90029-JCrossRefGoogle ScholarPubMed
Barnea-Goraly, N., Chang, K. D., Karchemskiy, A., Howe, M. E., & Reiss, A. L. (2009). Limbic and corpus callosum aberrations in adolescents with bipolar disorder: A tract-based spatial statistics analysis. Biological Psychiatry, 66(3), 238–44. http://dx.doi.org/10.1016/j.biopsych.2009.02.025CrossRefGoogle ScholarPubMed
Barnea-Goraly, N., Menon, V., Eckert, M., Tamm, L., Bammer, R., Karchemskiy, A., … Reiss, A. L. (2005). White matter development during childhood and adolescence: A cross-sectional diffusion tensor imaging study. Cerebral Cortex, 15, 1848–54. http://dx.doi.org/10.1093/cercor/bhi062CrossRefGoogle ScholarPubMed
Basser, P. J., & Jones, D. K. (2002). Diffusion-tensor MRI: Theory, experimental design and data analysis: A technical review. NMR in Biomedicine, 15, 456–67. http://dx.doi.org/10.1002/nbm.783CrossRefGoogle ScholarPubMed
Beyer, J. L., Taylor, W. D., MacFall, J. R., Kuchibhatla, M., Payne, M. E., Provenzale, J. M., … Krishnan, K. R. R. (2005). Cortical white matter microstructural abnormalities in bipolar disorder. Neuropsychopharmacology, 30(12), 2225–9. http://dx.doi.org/10.1038/sj.npp.1300802CrossRefGoogle ScholarPubMed
Biederman, J., Mick, E., Faraone, S. V., Spencer, T., Wilens, T. E., & Wozniak, J. (2003). Current concepts in the validity, diagnosis and treatment of paediatric bipolar disorder. The International Journal of Neuropsychopharmacology, 6(3), 293300. http://dx.doi.org/10.1017/S1461145703003547CrossRefGoogle ScholarPubMed
Birmaher, B., Axelson, D., Monk, K., Kalas, C., Goldstein, B., Hickey, M. B., … Brent, D. (2009). Lifetime psychiatric disorders in school-aged offspring of parents with bipolar disorder: The Pittsburgh Bipolar Offspring study. Archives of General Psychiatry, 66(3), 287–96. http://dx.doi.org/10.1001/archgenpsychiatry.2008.546CrossRefGoogle ScholarPubMed
Birmaher, B., Axelson, D. A., Strober, M., Gill, M. K., Valeri, S., Chiapetta, L., … Keller, M.(2006). Clinical course of children and adolescents with bipolar spectrum disorders. Archives of General Psychiatry, 63, 175–83. http://dx.doi.org/10.1001/archpsyc.63.2.175CrossRefGoogle ScholarPubMed
Blackhart, G. C., Minnix, J. A., & Kline, J. P. (2006). Can EEG asymmetry patterns predict future development of anxiety and depression? A preliminary study. Biological Psychology, 72(1), 4650. http://dx.doi.org/10.1016/j.biopsycho.2005.06.010CrossRefGoogle ScholarPubMed
Breiter, H. C., Etcoff, N. L., Whalen, P. J., Kennedy, W. A., Rauch, S. L., Buckner, R. L., … Rosen, B. R. (1996). Response and habituation of the human amygdala during visual processing of facial expression. Neuron, 17, 875–87. http://dx.doi.org/10.1016/S0896-6273(00)80219-6CrossRefGoogle ScholarPubMed
Bruno, S., Cercignani, M., & Ron, M. A. (2008). White matter abnormalities in bipolar disorder: A voxel-based diffusion tensor imaging study. Bipolar Disorders, 10(4), 460–8. http://dx.doi.org/10.1111/j.1399-5618.2007.00552.xCrossRefGoogle ScholarPubMed
Bunge, S. A., Dudukovic, N. M., Thomason, M. E., Vaidya, C. J., & Gabrieli, J. D. E. (2002). Immature frontal lobe contributions to cognitive control in children: Evidence from fMRI. Neuron, 33, 301–11. http://dx.doi.org/10.1016/S0896-6273(01)00583-9CrossRefGoogle ScholarPubMed
Casey, B. J., Duhoux, S., & Cohen, M. M. (2010). Adolescence: What do transmission, transition, and translation have to do with it? Neuron, 67, 749–60. http://dx.doi.org/10.1016/j.neuron.2010.08.033CrossRefGoogle Scholar
Casey, B. J., Jones, R. M., & Somerville, L. H. (2011). Braking and accelerating of the adolescent brain. Journal of Research on Adolescence, 21, 2133. http://dx.doi.org/10.1111/j.1532-7795.2010.00712.xCrossRefGoogle ScholarPubMed
Catani, M., Jones, D. K., Donato, R., & Ffytche, D. H. (2003). Occipito-temporal connections in the human brain. Brain, 126(Pt. 9), 20932107. http://dx.doi.org/10.1093/brain/awg203CrossRefGoogle ScholarPubMed
Chaddock, C. A., Barker, G. J., Marshall, N., Schulze, K., Hall, M. H., Fern, A., … McDonald, C. (2009). White matter microstructural impairments and genetic liability to familial bipolar I disorder. British Journal of Psychiatry, 194, 527–34. http://dx.doi.org/10.1192/bjp.bp.107.047498CrossRefGoogle ScholarPubMed
Cole, P. M., Michel, M. K., & O'Donnell Teti, L. (1994). The development of emotion regulation and dysregulation: A clinical perspective. In Monographs of the Society for Research in Child Development 59 (pp. 73102). http://dx.doi.org/10.2307/1166139CrossRefGoogle Scholar
Conturo, T. E., Lori, N. F., Cull, T. S., Akbudak, E., Snyder, A. Z., Shimony, J. S., … Raichle, M. E. (1999). Tracking neuronal fiber pathways in the living human brain. Proceedings of the National Academy of Sciences of the United States of America, 96(18), 10422–7. http://dx.doi.org/10.1073/pnas.96.18.10422Google ScholarPubMed
Costello, E., Angold, A., Burns, B., Erkanli, A., Stangl, D., & Tweed, D. (1996). The Great Smoky Mountains Study of Youth: Functional impairment and serious emotional disturbance. Archives of General Psychiatry, 53, 1137–43. http://dx.doi.org/10.1001/archpsyc.1996.01830120077013CrossRefGoogle ScholarPubMed
Dahl, R. E. (2001). Affect regulation, brain development, and behavioral/emotional health in adolescence. CNS Spectrums, 6(1), 6072.CrossRefGoogle ScholarPubMed
Dahl, R. E., & Spear, L. (2004). Adolescent brain development: A period of vulnerabilities and opportunities. Annals of the New York Academy of Sciences, 1021, 122. http://dx.doi.org/10.1196/annals.1308.001CrossRefGoogle ScholarPubMed
DelBello, M. P., & Geller, B. (2001). Review of studies of child and adolescent offspring of bipolar parents. Bipolar Disorders, 3(6), 325–34. http://dx.doi.org/10.1034/j.1399-5618.2001.30607.xCrossRefGoogle ScholarPubMed
Dickstein, D. P., & Leibenluft, E. (2012). Beyond dogma: From diagnostic controversies to data about pediatric bipolar disorder and children with chronic irritability and mood dysregulation. Israel Journal of Psychiatry and Related Sciences, 49, 5261.Google ScholarPubMed
Dorn, L. D., Dahl, R. E., Woodward, H. R., & Biro, F. (2006). Defining boundaries of early adolescence: A user's guide to assessing pubertal status and pubertal timing in research with adolescents. Applied Developmental Science, 10, 3056. http://dx.doi.org/10.1207/s1532480xads1001_3CrossRefGoogle Scholar
Ernst, M., Pine, D. S., & Hardin, M. (2006). Triadic model of the neurobiology of motivated behavior in adolescence. Psychological Medicine, 36, 299312. http://dx.doi.org/10.1017/S0033291705005891CrossRefGoogle ScholarPubMed
Fillard, P., Descoteaux, M., Goh, A., Gouttard, S., Jeurissen, B., Malcolm, J., … Poupon, C. (2011). Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom. Neuroimage, 56(1), 220–34. http://dx.doi.org/10.1016/j.neuroimage.2011.01.032CrossRefGoogle ScholarPubMed
Force, U. (1996). Guide to clinical preventive services (2nd ed.). Alexandria, VA: International Medical Publishing.Google Scholar
Frank, E., Nimgoankar, V.L., Phillips, M.L., & Kupfer, D.J. (2015). All the world's a (clinical) stage: Rethinking bipolar disorder from a longitudinal perspective. Molecular Psychiatry, 20, 2331. http://dx.doi.org/10.1038/mp.2014.71CrossRefGoogle ScholarPubMed
Frazier, J. A., Breeze, J. L., Papadimitriou, G., Kennedy, D. N., Hodge, S. M., Moore, C. M., … Makris, N. (2007). White matter abnormalities in children with and at risk for bipolar disorder. Bipolar Disorders, 9(8), 799809. http://dx.doi.org/10.1111/j.1399-5618.2007.00482.xCrossRefGoogle ScholarPubMed
Friston, K. (2002). Beyond phrenology: What can neuroimaging tell us about distributed circuitry? Annual Review of Neuroscience, 25, 221–50. http://dx.doi.org/10.1111/j.1399-5618.2007.00482.xCrossRefGoogle ScholarPubMed
Gazzaniga, M. S. (2000). Cerebral specialization and interhemispheric communication: Does the corpus callosum enable the human condition. Brain, 123, 12931326. http://dx.doi.org/10.1093/brain/123.7.1293CrossRefGoogle ScholarPubMed
Geller, B., Craney, J., Bolhofner, K., Nickelsburg, M., Williams, M., & Zimerman, B. (2002). Two-year prospective follow-up of children with a prepubertal and early adolescent bipolar disorder phenotype. American Journal of Psychiatry, 159(6), 927–33. http://dx.doi.org/10.1176/appi.ajp.159.6.927CrossRefGoogle ScholarPubMed
Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., … Rapoport, J. L. (1999). Brain development during childhood and adolescence: A longitudinal MRI study. Nature Neuroscience, 2(10), 861–3. http://dx.doi.org/10.1038/13158CrossRefGoogle ScholarPubMed
Giorgio, A., Watkins, K. E., Douaud, G., Behrens, T. E., Matthews, P. M., James, A. C., … Johansen-Berg, H. (2007). Developmental changes in white matter microstructure in adolescence. Journal of Neurology, Neurosurgery and Psychiatry, 78, 1019–20.Google Scholar
Goodwin, F. K., & Jamison, K. R. (2007). Manic-depressive illness: Bipolar disorders and recurrent depression (2nd ed.). New York, NY: Oxford University Press.Google Scholar
Gross, J. J., & Thompson, R. A. (2007). Emotion regulation: Conceptual foundations. In Gross, J. J. (Ed.), Handbook of emotion regulation (pp. 324). New York: Guilford Press.Google Scholar
Guyer, A. E., Monk, C. S., McClure, E. B., Nelson, E. E., Roberson-Nay, R., Adler, A. D., … Ernst, M. (2008). A developmental examination of amygdala response to facial expressions. Journal of Cognitive Neuroscience, 20, 1565–82. http://dx.doi.org/10.1162/jocn.2008.20114CrossRefGoogle ScholarPubMed
Hagmann, P. (2005). From diffusion MRI to brain connectomics. Doctoral dissertation, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland.Google Scholar
Hajek, T., Carrey, N., & Alda, M. (2005). Neuroanatomical abnormalities as risk factors for bipolar disorder. Bipolar Disorders, 7(5), 393403. http://dx.doi.org/10.1111/j.1399-5618.2005.00238.xCrossRefGoogle ScholarPubMed
Hare, T. A., Tottenham, N., Galvan, A., Voss, H. U., Glover, G. H., & Casey, B. J. (2008). Biological substrates of emotional reactivity and regulation in adolescence during an emotional Go-Nogo task. Biological Psychiatry, 63, 927–34. http://dx.doi.org/10.1016/j.biopsych.2008.03.015CrossRefGoogle ScholarPubMed
Hariri, A. R., Mattay, V. S., Tessitore, A., Fera, F., & Weinberger, D. R. (2003). Neocortical modulation of the amygdala response to fearful stimuli. Biological Psychiatry, 53, 494501. http://dx.doi.org/10.1016/S0006-3223(02)01786-9CrossRefGoogle ScholarPubMed
Hariri, A. R., Tessitore, A., Mattay, V. S., Fera, F., & Weinberger, D. R. (2002). The amygdala response to emotional stimuli: A comparison of faces and scenes. Neuroimage, 17, 317–23. http://dx.doi.org/10.1006/nimg.2002.1179CrossRefGoogle ScholarPubMed
Harrison, P. J. (2002). The neuropathology of primary mood disorder. Brain, 125, 1428–49. http://dx.doi.org/10.1093/brain/awf149CrossRefGoogle ScholarPubMed
Hasan, K. M. (2006). Diffusion tensor eigenvalues or both mean diffusivity and fractional anisotropy are required in quantitative clinical diffusion tensor MR reports: Fractional anisotropy alone is not sufficient. Radiology, 239, 611–12. http://dx.doi.org/10.1148/radiol.2392051172CrossRefGoogle Scholar
Hasan, K. M., & Narayana, P. A. (2006). Retrospective measurement of the diffusion tensor eigenvalues from diffusion anisotropy and mean diffusivity in DTI. Magnetic Resonance Medicine, 56(1), 130–7. http://dx.doi.org/10.1002/mrm.20935CrossRefGoogle ScholarPubMed
Haznedar, M. M., Roversi, F., Pallanti, S., Baldini-Rossi, N., Schnur, D. B., LiCalzi, E. M., … Buchsbaum, M. S. (2005). Fronto-thalamo-striatal gray and white matter volumes and anisotropy of their connections in bipolar spectrum illnesses. Biological Psychiatry, 57(7), 733–42. http://dx.doi.org/10.1016/j.biopsych.2005.01.002CrossRefGoogle ScholarPubMed
Heng, S., Song, A. W., & Sim, K. (2010). White matter abnormalities in bipolar disorder: Insights from diffusion tensor imaging studies. Journal of Neural Transmission, 117(5), 639–54. http://dx.doi.org/10.1007/s00702-010-0368-9CrossRefGoogle ScholarPubMed
Henriques, J. B., & Davidson, R. J. (1990). Regional brain electrical asymmetries discriminate between previously depressed and healthy control subjects. Journal of Abnormal Psychology, 99(1), 2231. http://dx.doi.org/10.1037/0021-843X.99.1.22CrossRefGoogle ScholarPubMed
Houenou, J., Wessa, M., Douaud, G., Leboyer, M., Chanraud, S., Perrin, M., … Paillere-Martinot, M. L. (2007). Increased white matter connectivity in euthymic bipolar patients: Diffusion tensor tractography between the subgenual cingulate and the amygdalo-hippocampal complex. Molecular Psychiatry, 12(11), 1001–10. http://dx.doi.org/10.1038/sj.mp.4002010CrossRefGoogle ScholarPubMed
Immordino-Yang, M. H., & Singh, V. (2013). Hippocampal contributions to the processing of social emotions. Human Brain Mapping, 34(4), 945–55. http://dx.doi.org/10.1002/hbm.21485CrossRefGoogle Scholar
Jones, D. K., & Cercignani, M. (2010). Twenty-five pitfalls in the analysis of diffusion MRI data. NMR in Biomedicine, 23, 803–20. http://dx.doi.org/10.1002/nbm.1543CrossRefGoogle ScholarPubMed
Kafantaris, V., Kingsley, P., Ardekant, B., Saito, E., Lencz, T., Lim, K., & Szeszko, P. (2009). Lower orbital frontal white matter integrity in adolescents with bipolar I disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 48(1), 7986. http://dx.doi.org/10.1097/CHI.0b013e3181900421CrossRefGoogle ScholarPubMed
Karpati, A. (2002). Stature and pubertal stage assessment in American boys: The 1988–1994 third national health and nutrition examination survey. Journal of Adolescent Health, 30, 205–12. http://dx.doi.org/10.1016/S1054-139X(01)00320-2CrossRefGoogle ScholarPubMed
Kaufman, J., Birmaher, B., Brent, D., Rao, U., Flynn, C., Moreci, P., … Ryan, N. D. (1997). Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime Version (K-SADS-PL): Initial reliability and validity data. Journal of the American Academy of Child & Adolescent Psychiatry, 36, 980–8. http://dx.doi.org/10.1097/00004583-199707000-00021Google ScholarPubMed
Kessler, R. C. (2011). National Comorbidity Survey: Adolescent Supplement (NCS-A), 2001–2004. ICPSR28581-v4. Ann Arbor, MI: Inter-university Consortium for Political and Social Research [distributor].Google Scholar
Killgore, W. D. S., Oki, M., & Yurgelun-Todd, D. A. (2001). Sex-specific developmental changes in amygdala responses to affective faces. Neuroreport, 12(2), 427–33. http://dx.doi.org/10.1097/00001756-200102120-00047CrossRefGoogle ScholarPubMed
Kupfer, D. J., & Regier, D. A. (2011). Neuroscience, clinical evidence, and the future of psychiatric classification in DSM-5. American Journal of Psychiatry, 168, 172–4. http://dx.doi.org/10.1176/appi.ajp.2011.11020219CrossRefGoogle ScholarPubMed
Ladouceur, C. D. (2012). Neural systems supporting cognitive affective interactions in adolescence: The role of puberty and implications for affective disorders. Frontiers in Integrative Neuroscience, 6, 65. http://dx.doi.org/10.3389/fnint.2012.00065Google Scholar
Ladouceur, C. D., Diwadkar, V. A., White, R., Bass, J., Birmaher, B., Axelson, D. A., & Phillips, M. L. (2013). Fronto-limbic function in unaffected offspring at familial risk for bipolar disorder during an emotional working memory paradigm. Developmental Cognitive Neuroscience, 5, 185–96. http://dx.doi.org/ 10.1016/j.dcn.2013.03.004CrossRefGoogle ScholarPubMed
Ladouceur, C. D., Farchione, T., Diwadkar, V., Pruitt, P., Radwan, J., Axelson, D. A., … Phillips, M. L. (2011). Differential patterns of abnormal activity and functional connectivity in amygdala-prefrontal circuitry in bipolar and bipolar-NOS youth. Journal of the American Academy of Child and Adolescent Psychiatry, 50(12), 1275–89. http://dx.doi.org/10.1016/j.jaac.2011.09.023Google ScholarPubMed
Ladouceur, C. D., Peper, J. S., & Dahl, R. E. (2012). White matter development in adolescence: The influence of puberty and implications for affective disorders. Developmental Cognitive Neuroscience, 2(1), 3456. http://dx.doi.org/10.1016/j.dcn.2011.06.002CrossRefGoogle ScholarPubMed
Lebel, C., Walker, L., Leemans, A., Phillips, L., & Beaulieu, C. (2008). Microstructural maturation of the human brain from childhood to adulthood. Neuroimage, 40(3), 1044–55. http://dx.doi.org/10.1016/j.neuroimage.2007.12.053CrossRefGoogle ScholarPubMed
Leibenluft, E., Charney, D., & Pine, D. S. (2003). Researching the pathophysiology of pediatric bipolar disorder. Biological Psychiatry, 53, 1009–20. http://dx.doi.org/10.1016/S0006-3223(03)00069-6CrossRefGoogle ScholarPubMed
Luna, B., Garver, K., Urban, T., Lazar, N., & Sweeney, J. (2004). Maturation of cognitive processes from late childhood to adulthood. Child Development, 75, 1357–72. http://dx.doi.org/10.1111/j.1467-8624.2004.00745.xCrossRefGoogle ScholarPubMed
Luna, B., Padmanabhan, A., & O'Hearn, K. M. (2011). What has fMRI told us about the development of cognitive control through adolescence? Brain and Cognition, 72, 101–13. http://dx.doi.org/10.1016/j.bandc.2009.08.005Google Scholar
Macritchie, K. A. N., Lloyd, A. J., Bastin, M. E., Vasudev, K., Gallagher, P., Eyre, R., … Young, A. H. (2010). White matter microstructural abnormalities in euthymic bipolar disorder. British Journal of Psychiatry, 196(1), 52–8. http://dx.doi.org/10.1192/bjp.bp.108.058586CrossRefGoogle ScholarPubMed
Mahon, K., Burdick, K. E., & Szeszko, P. R. (2010). A role for white matter abnormalities in the pathophysiology of bipolar disorder. Neuroscience and Biobehavioral Reviews, 34(4), 533–54. http://dx.doi.org/10.1016/j.neubiorev.2009.10.012CrossRefGoogle ScholarPubMed
Mahon, K., Wu, J., Malhotra, A. K., Burdick, K. E., Derosse, P., Ardekani, B. A., & Szeszko, P. R. (2009). A voxel-based diffusion tensor imaging study of white matter in bipolar disorder. Neuropsychopharmacology, 34, 1590–1600. http://dx.doi.org/10.1038/npp.2008.216CrossRefGoogle Scholar
Makris, N., Kennedy, D. N., McInerney, S., Sorensen, A. G., Wang, R., Caviness, J., V. S., & Pandya, D. N. (2005). Segmentation of subcomponents within the superior longitudinal fascicle in humans: A quantitative, in vivo, DT-MRI study. Cerebral Cortex, 15, 854–69. http://dx.doi.org/10.1093/cercor/bhh186CrossRefGoogle ScholarPubMed
Matthews, A., & MacLeod, C. (2002). Induced processing biases have causal effects on anxiety. Cognition and Emotion, 16(3), 331–54. http://dx.doi.org/10.1080/02699930143000518CrossRefGoogle Scholar
McIntosh, A. M., Maniega, S. M., Lymer, G. K. S., McKirdy, J., Hall, J., Sussmann, J. E. D., … Lawrie, S. M. (2008). White matter tractography in bipolar disorder and schizophrenia. Biological Psychiatry, 64(12), 1088–92. http://dx.doi.org/10.1016/j.biopsych.2008.07.026Google Scholar
Merikangas, K. R., Akiskal, H., Angst, J., Greenberg, P. E., Hirschfeld, R. M., Petukhova, M., & Kessler, R. C. (2007). Lifetime and 12-month prevalence of bipolar spectrum disorder in the National Comorbidity Survey replication. Archives of General Psychiatry, 64, 543–52. http://dx.doi.org/10.1001/archpsyc.64.5.543CrossRefGoogle ScholarPubMed
Merikangas, K. R., Jin, R., He, J. P., Kessler, R. C., Lee, S., Sampson, N. A., … Zarkov, Z. (2011). Prevalence and correlates of bipolar spectrum disorder in the world mental health survey initiative. Archives of General Psychiatry, 68(3), 241–51. http://dx.doi.org/10.1001/archgenpsychiatry.2011.12CrossRefGoogle ScholarPubMed
Monk, C. S., McClure, E. B., Nelson, E. E., Zarahn, E., Bilder, R. M., Leibenluft, E., … Pine, D. S. (2003). Adolescent immaturity in attention-related brain engagement to emotional facial expressions. Neuroimage, 20, 420–8. http://dx.doi.org/10.1016/S1053-8119(03)00355-0CrossRefGoogle ScholarPubMed
Mori, S., & Barker, P. B. (1999). Diffusion magnetic resonance imaging: Its principle and applications. The Anatomical Record, 15, 102–9.Google Scholar
Mori, S., Crain, B. J., Chacko, V. P., & van Zijl, P. C. (1999). Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Annals of Neurology, 45, 265–9.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Morris, J. S., Friston, K. J., Buchel, C., Frith, C. D., Young, A. W., Calder, A. J., & Dolan, R. J. (1998). A neuromodulatory role for the human amygdala in processing emotional facial expressions. Brain, 121(Pt. 1), 4757. http://dx.doi.org/10.1093/brain/121.1.47CrossRefGoogle ScholarPubMed
Ozer, E. M., Macdonald, T., & Irwin, C. E. Jr (2002). Adolescent health care in the United States: Implications and projections for the new millennium. In Mortimer, J. T. & Larson, R. W. (Eds.), The changing adolescent experience: Societal trends and the transition to adulthood (pp. 129–74). New York, NY: Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511613913.006Google Scholar
Paus, T. (2005). Mapping brain maturation and cognitive development during adolescence. Trends in Cognitive Sciences, 9(2), 60–8. http://dx.doi.org/10.1016/j.tics.2004.12.008CrossRefGoogle ScholarPubMed
Paus, T. (2010). Growth of white matter in the adolescent brain: Myelin or axon? Brain and Cognition, 72, 2635. http://dx.doi.org/10.1016/j.bandc.2009.06.002CrossRefGoogle ScholarPubMed
Peake, S. J., Dishion, T. J., Stormshak, E. A., Moore, W. E., & Pfeifer, J. H. (2013). Risk-taking and social exclusion in adolescence: Neural mechanisms underlying peer influences on decision-making. Neuroimage, 15, 2334. http://dx.doi.org/10.1016/j.neuroimage.2013.05.061CrossRefGoogle Scholar
Peper, J. S., Pol, H. E. H., Crone, E. A., & Van Honk, J. (2011). Sex steroids and brain structure in pubertal boys and girls: A mini-review of neuroimaging studies. Neuroscience, 191, 28–37. http://dx.doi.org/10.1016/j.neuroscience.2011.02.014CrossRefGoogle Scholar
Perlis, R., Miyahara, S., Marangell, L. B., Wisniewski, S. R., Ostacher, M., Bowden, C. L., … Nierenberg, A. A. (2004). Long-term implications of early onset in bipolar disorder: Data from the first 1000 participants in the systematic treatment enhancement program for bipolar disorder (STEP-BD). Biological Psychiatry, 55, 875–81. http://dx.doi.org/10.1016/j.biopsych.2004.01.022CrossRefGoogle ScholarPubMed
Perrin, J. S., Herve, P. Y., Leonard, G., Perron, M., Pike, G. B., Pitiot, A., … Paus, T. (2008). Growth of white matter in the adolescent brain: Role of testosterone and androgen receptor. Journal of Neuroscience, 28(38), 9519–24. http://dx.doi.org/10.1523/JNEUROSCI.1212-08.2008CrossRefGoogle ScholarPubMed
Perrin, J. S., Leonard, G., Perron, M., Pike, G. B., Pitiot, A., Richer, L., … Paus, T. (2009). Sex differences in the growth of white matter during adolescence. Neuroimage, 45, 1055–66. http://dx.doi.org/10.1016/j.neuroimage.2009.01.023CrossRefGoogle ScholarPubMed
Pfefferbaum, A., Mathalon, D. H., Sullivan, E. V., Rawles, J. M., Zipursky, R. B., & Lim, K. O. (1994). A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Archives of Neurology, 51, 874–87. http://dx.doi.org/10.1001/archneur.1994.00540210046012CrossRefGoogle ScholarPubMed
Phillips, M. L. (2003). Understanding the neurobiology of emotion perception: Implications for psychiatry. British Journal of Psychiatry, 182, 190–2. http://dx.doi.org/10.1192/bjp.182.3.190CrossRefGoogle ScholarPubMed
Phillips, M. L., Ladouceur, C. D., & Drevets, W. C. (2008). A neural model of voluntary and automatic emotion regulation: Implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Molecular Psychiatry, 13(9), 833–57. http://dx.doi.org/10.1038/mp.2008.65Google ScholarPubMed
Phillips, M. L., & Vieta, E. (2007). Identifying functional neuroimaging biomarkers of bipolar disorder: Toward DSM-V. Schizophrenia Bulletin, 33, 893904. http://dx.doi.org/10.1093/schbul/sbm060CrossRefGoogle ScholarPubMed
Phillips, M. L., Young, A. W., Senior, C., Brammer, M., Andrew, C., Calder, A. J., … David, A. S. (1997). A specific neural substrate for perceiving facial expressions of disgust. Nature, 389(6650), 495–8. http://dx.doi.org/10.1038/39051CrossRefGoogle ScholarPubMed
Pine, D. S., Cohen, P., Gurley, D., Brook, J., & Ma, Y. (1998). The risk for early-adulthood anxiety and depressive disorders in adolescents with anxiety and depressive disorders. Archives of General Psychiatry, 55, 5664. http://dx.doi.org/10.1001/archpsyc.55.1.56CrossRefGoogle ScholarPubMed
Post, R. M., Luckenbaugh, D. A., Leverich, G. S., Altshuler, L. L., Frye, M. A., Suppes, T., … Walden, J. (2008). Incidence of childhood-onset bipolar illness in the USA and Europe. British Journal of Psychiatry, 192, 150–1. http://dx.doi.org/10.1192/bjp.bp.107.037820CrossRefGoogle ScholarPubMed
Price, J., Carmichael, S., & Drevets, W. (1996). Networks related to the orbital and medial prefrontal cortex: A substrate for emotional behavior? In G. Holstege, R. Bandler, & C. B. Saper (Eds.), Progress in Brain Research (Vol. 107; pp. 523–36). Amsterdam: Elsevier Science B.V.Google Scholar
Rajkowska, G. (2002). Cell pathology in bipolar disorder. Bipolar Disorders, 4(2), 105–16. http://dx.doi.org/10.1034/j.1399-5618.2002.01149.xCrossRefGoogle ScholarPubMed
Regier, D. A., Narrow, W. E., Kuhl, E. A., & Kupfer, D. J. (2009). Conceptual development of DSM-V. American Journal of Psychiatry, 166, 645–50. http://dx.doi.org/10.1176/appi.ajp.2009.09020279CrossRefGoogle ScholarPubMed
Saxbe, D. E., Yang, X. F., Borofsky, L. A., & Immordino-Yang, M. H. (2012). The embodiment of emotion: Language use during the feeling of social emotions predicts cortical somatosensory activity. Social Cognitive and Affective Neuroscience, 8(7), 806–12. http://dx.doi.org/10.1093/scan/nss075CrossRefGoogle Scholar
Schmithorst, V. J., & Yuan, W. (2010). White matter development during adolescence as shown by diffusion MRI. Brain and Cognition, 72, 1625. http://dx.doi.org/10.1016/j.bandc.2009.06.005CrossRefGoogle ScholarPubMed
Seemuller, F., Riedel, M., Dargel, S., Djaja, N., Schennach-Wolff, R., Dittmann, S., … Severus, E. (2010). [Bipolar depression. Spectrum of clinical pictures and differentiation from unipolar depression]. Nervenarzt, 81(5), 531–8. http://dx.doi.org/10.1007/s00115-009-2850-xGoogle ScholarPubMed
Silk, J. S., Stroud, L. R., Siegle, G. J., Dahl, R. E., Lee, K. H., & Nelson, E. E. (2012). Peer acceptance and rejection through the eyes of youth: Pupillary, eyetracking and ecological data from the Chatroom Interact Task. Social Cognitive and Affective Neuroscience, 7(1), 93105. http://dx.doi.org/10.1093/scan/nsr044CrossRefGoogle ScholarPubMed
Song, S. K., Sun, S. W., Ramsbottom, M. J., Chang, C., Russell, J., & Cross, A. H. (2002). Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage, 17(3), 1429–36. http://dx.doi.org/10.1006/nimg.2002.1267CrossRefGoogle ScholarPubMed
Sowell, E. R., Petersen, B. S., Thompson, P. M., Welcome, S. E., Henkenius, A. L., & Toga, A. W. (2003). Mapping cortical change across the human life span. Nature Neuroscience, 6, 309–15. http://dx.doi.org/10.1038/nn1008CrossRefGoogle ScholarPubMed
Spear, L. P. (2011). Rewards, aversions and affect in adolescence: Emerging convergences across laboratory animal and human data. Developmental Cognitive Neuroscience, 1, 390403. http://dx.doi.org/10.1016/j.dcn.2011.08.001CrossRefGoogle ScholarPubMed
Sporns, O., Tononi, G., & Kötter, R. (2005). The human connectome: A structural description of the human brain. PLoS Computational Biology, 1, 245–51. http://dx.doi.org/10.1371/journal.pcbi.0010042CrossRefGoogle ScholarPubMed
Steinberg, L. (2005). Cognitive and affective development in adolescence. Trends in Cognitive Sciences, 9(2), 6974. http://dx.doi.org/10.1016/j.tics.2004.12.005CrossRefGoogle ScholarPubMed
Steinberg, L. (2007). Risk-taking in adolescence: New perspectives from brain and behavioral science. Current Directions in Psychological Science, 16, 55–9. http://dx.doi.org/10.1111/j.1467-8721.2007.00475.xCrossRefGoogle Scholar
Surguladze, S. A., Brammer, M. J., Young, A. W., Andrew, C., Travis, M. J., Williams, S. C. R., & Phillips, M. L. (2003). A preferential increase in the extrastriate response to signals of danger. Neuroimage, 19(4), 1317–28. http://dx.doi.org/10.1016/S1053-8119(03)00085-5CrossRefGoogle ScholarPubMed
Sussmann, J. E., Lymer, G. K. S., McKirdy, J., Moorhead, T. W. J., Maniega, S. M., Job, D., … McIntosh, A. M. (2009). White matter abnormalities in bipolar disorder and schizophrenia detected using diffusion tensor magnetic resonance imaging. Bipolar Disorders, 11(1), 1118. http://dx.doi.org/10.1111/j.1399-5618.2008.00646.xCrossRefGoogle ScholarPubMed
Thapar, A., Collishaw, S., Pine, D. S., & Thapar, A. K. (2012). Depression in adolescence. Lancet, 379(9820), 1056–67. http://dx.doi.org/10.1016/S0140-6736(11)60871-4CrossRefGoogle ScholarPubMed
Thompson, R. A. (1994). Emotion regulation: A theme in search of definition. In N. A. Fox (Ed.), The development of emotion regulation: Biological and behavioral considerations (Vol. 59; Nos. 2–3). Monographs of the Society for Research in Child Development (pp. 25–52).Google Scholar
Tost, H., & Meyer-Lindenberg, A. (2010). I fear for you: A role for serotonin in moral behavior. Proceedings of the National Academy of Sciences of the United States of America, 107(40), 17071–2. http://dx.doi.org/10.1073/pnas.1012545107Google Scholar
Tsai, S., Lee, J., & CC, C. (1999). Genetics of bipolar disorder. Journal of Affective Disorders, 52, 145–52. http://dx.doi.org/10.1016/S0165-0327(98)00066-4Google Scholar
Tsuang, M., & Faraone, S. (1990). The genetics of mood disorders. Baltimore, MD: John Hopkins University Press.Google Scholar
Van der Gucht, E., Morriss, R., Lancaster, G., Kinderman, P., & Bentall, R. P. (2009). Psychological processes in bipolar affective disorder: Negative cognitive style and reward processing. British Journal of Psychiatry, 194, 146–51. http://dx.doi.org/10.1192/bjp.bp.107.047894CrossRefGoogle ScholarPubMed
Vederine, F.-E., Wessa, M., Leboyer, M., & Houenou, J. (2011). A meta-analysis of whole-brain diffusion tensor imaging studies in bipolar disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 35(8), 1820–6. http://dx.doi.org/10.1016/j.pnpbp.2011.05.009CrossRefGoogle ScholarPubMed
Versace, A., Acuff, H., Bertocci, M. A., Bebko, G., Almeida, J. R. C., Perlman, S. B., … Phillips, M.L. (2015). White matter structure in youth with behavioral and emotional dysregulation disorders: A probabilistic tractographic study. JAMA Psychiatry, 72(4), 367–76. http://dx.doi.org/10.1001/jamapsychiatry.2014.2170CrossRefGoogle ScholarPubMed
Versace, A., Almeida, J. R., Hassel, S., Walsh, N. D., Novelli, M., Klein, C. R., … Phillips, M. L. (2008). Elevated left and reduced right orbitomedial prefrontal fractional anisotropy in adults with bipolar disorder revealed by tract-based spatial statistics. Archives of General Psychiatry, 65(9), 1041–52. http://dx.doi.org/10.1001/archpsyc.65.9.1041CrossRefGoogle ScholarPubMed
Versace, A., Almeida, J. R., Quevedo, K., Thompson, W. K., Terwilliger, R. A., Hassel, S., … Phillips, M. L. (2010). Right orbitofrontal corticolimbic and left corticocortical white matter connectivity differentiate bipolar and unipolar depression. Biological Psychiatry, 68(6), 560–7. http://dx.doi.org/10.1016/j.biopsych.2010.04.036CrossRefGoogle ScholarPubMed
Versace, A., Ladouceur, C. D., Romero, S., Birmaher, B., Axelson, D. A., Kupfer, D. J., & Phillips, M. L. (2010). Altered development of white matter in youth at high familial risk for bipolar disorder: A diffusion tensor imaging study. Journal of the American Academy of Child and Adolescent Psychiatry, 49, 1249–59.Google ScholarPubMed
Versace, A., Thompson, W. K., Zhou, D., Almeida, J. R. C., Hassel, S., Klein, C. R., … Phillips, M.L. (2010). Abnormal left and right amygdala-orbitofrontal cortical functional connectivity to emotional faces: State versus trait vulnerability markers of depression in bipolar disorder. Biological Psychiatry, 67(5), 422–31. http://dx.doi.org/10.1016/j.biopsych.2009.11.025CrossRefGoogle ScholarPubMed
Wahlstrom, D., White, T., & Luciana, M. (2010). Neurobehavioral evidence for changes in dopamine system activity during adolescence. Neuroscience and Biobehavioral Reviews, 34, 631–48. http://dx.doi.org/10.1016/j.neubiorev.2009.12.007CrossRefGoogle ScholarPubMed
Wakana, S., Caprihan, A., Panzenboeck, M. M., Fallon, J. H., Perry, M., Gollub, R., … Mori, S. (2007). Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage, 36(3), 630–44. http://dx.doi.org/10.1016/j.neuroimage.2007.02.049CrossRefGoogle ScholarPubMed
Wang, F., Kalmar, J. H., He, Y., Jackowski, M., Chepenik, L. G., Edmiston, E. E., … Blumberg, H. P. (2009). Functional and structural connectivity between the perigenual anterior cingulate and amygdala in bipolar disorder. Biological Psychiatry, 66(5), 516–21. http://dx.doi.org/10.1016/j.biopsych.2009.03.023CrossRefGoogle ScholarPubMed
Wessa, M., Houenou, J., Leboyer, M., Chanraud, S., Poupon, C., Martinot, J. L., & Paillere-Martinot, M. L. (2009). Microstructural white matter changes in euthymic bipolar patients: A whole-brain diffusion tensor imaging study. Bipolar Disorders, 11(5), 504–14. http://dx.doi.org/10.1111/j.1399-5618.2009.00718.xCrossRefGoogle ScholarPubMed
Whittle, S., Yap, M. B. H., Sheeber, L., Dudgeon, P., Yücel, M., Pantelis, C., … Allen, N. B. (2011). Hippocampal volume and sensitivity to maternal aggressive behavior: A prospective study of adolescent depressive symptoms. Development and Psychopathology, 23, 115–29. http://dx.doi.org/10.1017/S0954579410000684CrossRefGoogle ScholarPubMed
World Health Organization. (2001). World health report 2001 – Mental health: New understanding, new hope. Retrieved from www.who.int/whr/2001/en/Google Scholar
Wu, T., Mendola, P., & Buck, G. (2002). Ethnic differences in the presence of secondary sex characteristics and menarche among US girls: The third national health and nutrition examination survey, 1988–1994. Pediatrics, 110, 752–7. http://dx.doi.org/10.1542/peds.110.4.752CrossRefGoogle ScholarPubMed
Yurgelun-Todd, D. A., Silveri, M. M., Gruber, S. A., Rohan, M. L., & Pimentel, P. J. (2007). White matter abnormalities observed in bipolar disorder: A diffusion tensor imaging study. Bipolar Disorders, 9(5), 504–12. http://dx.doi.org/10.1111/j.1399-5618.2007.00395.xCrossRefGoogle ScholarPubMed
Zanetti, M. V., Jackowski, M. P., Versace, A., Almeida, J. R., Hassel, S., Duran, F. L., … Phillips, M. L. (2009). State-dependent microstructural white matter changes in bipolar I depression. European Archives of Psychiatry and Clinical Neuroscience, 259(6), 316–28. http://dx.doi.org/10.1007/s00406-009-0002–8CrossRefGoogle ScholarPubMed

References

Albin, R. L., & Mink, J. W. (2006). Recent advances in Tourette syndrome research. Trends in Neurosciences, 29(3), 175–82. http://dx.doi.org/10.1016/j.tins.2006.01.001CrossRefGoogle ScholarPubMed
Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9(1), 357–81. http://dx.doi.org/10.1146/annurev.ne.09.030186.002041CrossRefGoogle ScholarPubMed
Armstrong, K. M., Chang, M. H., & Moore, T. (2009). Selection and maintenance of spatial information by frontal eye field neurons. Journal of Neuroscience, 29(50), 15621–9. http://dx.doi.org/10.1523/JNEUROSCI.4465-09.2009CrossRefGoogle ScholarPubMed
Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28(1), 403–50. http://dx.doi.org/10.1523/JNEUROSCI.4465-09.2009CrossRefGoogle ScholarPubMed
Beane, M., & Marrocco, R. T. (2004). Cholinergic and noradrenergic inputs to the posterior parietal cortex modulate the components of exogenous attention. In Posner, M. (Ed.), Cognitive neuroscience of attention (pp. 313–25). New York, NY: Guilford.Google Scholar
Beer, M. D. (1996). The dichotomies: Psychosis/neurosis and functional/organic – A historical perspective. History of Psychiatry, 7(26), 231–55. http://dx.doi.org/10.1177/0957154X9600702603CrossRefGoogle ScholarPubMed
Berger, A., Tzur, G., & Posner, M. (2006). Infant brains detect arithmetic errors. Proceedings of the National Academy of Sciences of the United States of America, 103(33), 12649–53. http://dx.doi.org/10.1073/pnas.0605350103Google ScholarPubMed
Bilder, R. M. (2011). Neuropsychology 3.0: Evidence-based science and practice. Journal of the International Neuropsychological Society, 17(1), 713. http://dx.doi.org/10.1017/S1355617710001396CrossRefGoogle ScholarPubMed
Blasi, G., Mattay, V. S., Bertolino, A., Elvevåg, B., Callicott, J. H., Das, S., … Weinberger, D. R. (2005). Effect of catechol-O-methyltransferase val158met genotype on attentional control. Journal of Neuroscience, 25(20), 5038–45. http://dx.doi.org/10.1523/JNEUROSCI.0476-05.2005CrossRefGoogle ScholarPubMed
Bloch, M. H., Leckman, J. F., Zhu, H., & Peterson, B. S. (2005). Caudate volumes in childhood predict symptom severity in adults with Tourette syndrome. Neurology, 65(8), 1253–8. http://dx.doi.org/10.1212/01.wnl.0000180957.98702.69CrossRefGoogle ScholarPubMed
Blumberg, H. P., Kaufman, J., Martin, A., Whiteman, R., Zhang, J. H., Gore, J. C., … Peterson, B. S. (2003). Amygdala and hippocampal volumes in adolescents and adults with bipolar disorder. Archives of General Psychiatry, 60(12), 1201–8. http://dx.doi.org/10.1001/archpsyc.60.12.1201CrossRefGoogle ScholarPubMed
Boduroglu, A., Shah, P., & Nisbett, R. E. (2009). Cultural differences in allocation of attention in visual information processing. Journal of Cross-Cultural Psychology, 40(3), 349–60. http://dx.doi.org/10.1177/0022022108331005CrossRefGoogle ScholarPubMed
Bush, G. (2008). Neuroimaging of attention deficit hyperactivity disorder: Can new imaging findings be integrated in clinical practice? Child and Adolescent Psychiatric Clinics of North America, 17(2), 385404. http://dx.doi.org/10.1016/j.chc.2007.11.002CrossRefGoogle ScholarPubMed
Bush, G., Whalen, P. J., Rosen, B. R., Jenike, M. A., McInerney, S. C., & Rauch, S. L. (1998). The counting Stroop: An interference task specialized for functional neuroimaging: Validation study with functional MRI. Human Brain Mapping, 6(4), 270–82.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Casey, B., Castellanos, F. X., Giedd, J. N., Marsh, W. L., Hamburger, S. D., Schubert, A. B., … Sarfatti, S. E. (1997). Implication of right frontostriatal circuitry in response inhibition and attention-deficit/hyperactivity disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 36(3), 374–83. http://dx.doi.org/10.1097/00004583-199703000-00016Google ScholarPubMed
Cohen, J. D., Aston-Jones, G., & Gilzenrat, M. S. (2004). A systems-level perspective on attention and cognitive control: Guided activation, adaptive gating, conflict monitoring, and exploitation versus exploration. In Posner, M. (Ed.), Cognitive neuroscience of attention (pp. 7190). New York, NY: Guilford.Google Scholar
Conelea, C. A., & Woods, D. W. (2008). Examining the impact of distraction on tic suppression in children and adolescents with Tourette syndrome. Behaviour Research and Therapy, 46(11), 11931200. http://dx.doi.org/10.1016/j.brat.2008.07.005CrossRefGoogle ScholarPubMed
Conelea, C. A., Woods, D. W., & Brandt, B. C. (2011). The impact of a stress induction task on tic frequencies in youth with Tourette syndrome. Behaviour Research and Therapy, 49(8), 492–7. http://dx.doi.org/10.1016/j.brat.2011.05.006CrossRefGoogle ScholarPubMed
Corbetta, M. (1998). Frontoparietal cortical networks for directing attention and the eye to visual locations: Identical, independent, or overlapping neural systems? Proceedings of the National Academy of Sciences of the United States of America, 95(3), 831–8. http://dx.doi.org/10.1073/pnas.95.3.831Google ScholarPubMed
Corbetta, M., Kincade, J. M., Ollinger, J. M., McAvoy, M. P., & Shulman, G. L. (2000). Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nature Neuroscience, 3(3), 292–7. http://dx.doi.org/10.1038/73009Google ScholarPubMed
Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201–15. http://dx.doi.org/10.1038/nrn755CrossRefGoogle ScholarPubMed
Coull, J., Nobre, A., & Frith, C. (2001). The noradrenergic α2 agonist clonidine modulates behavioural and neuroanatomical correlates of human attentional orienting and alerting. Cerebral Cortex, 11(1), 7384. http://dx.doi.org/10.1093/cercor/11.1.73CrossRefGoogle ScholarPubMed
Davidson, M. C., & Marrocco, R. T. (2000). Local infusion of scopolamine into intraparietal cortex slows covert orienting in rhesus monkeys. Journal of Neurophysiology, 83(3), 1536–49.CrossRefGoogle ScholarPubMed
Eddy, C. M., Rickards, H. E., & Cavanna, A. E. (2012). Executive functions in uncomplicated Tourette syndrome. Psychiatry Research, 200(1), 46–8. http://dx.doi.org/10.1016/j.psychres.2012.05.023CrossRefGoogle ScholarPubMed
Egan, M. F., Kojima, M., Callicott, J. H., Goldberg, T. E., Kolachana, B. S., Bertolino, A., … Dean, M. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 112(2), 257–69. http://dx.doi.org/10.1016/S0092-8674(03)00035-7CrossRefGoogle ScholarPubMed
Fair, D. A., Cohen, A. L., Power, J. D., Dosenbach, N. U., Church, J. A., Miezin, F. M., … Petersen, S. E. (2009). Functional brain networks develop from a “local to distributed” organization. PLOS Computational Biology, 5(5), e1000381. http://dx.doi.org/10.1371/journal.pcbi.1000381CrossRefGoogle Scholar
Fair, D. A., Dosenbach, N. U., Petersen, S. E., & Schlaggar, B. L. (2012). Resting state studies on the development of control systems. In Posner, M. (Ed.), Cognitive neuroscience of attention (Vol. 2, pp. 291311). New York, NY: Guilford.Google Scholar
Fan, J., Fossella, J., Sommer, T., Wu, Y., & Posner, M. (2003). Mapping the genetic variation of executive attention onto brain activity. Proceedings of the National Academy of Sciences of the United States of America, 100(12), 7406–11. http://dx.doi.org/10.1073/pnas.0732088100Google ScholarPubMed
Fan, J., McCandliss, B. D., Fossella, J., Flombaum, J. I., & Posner, M. (2005). The activation of attentional networks. Neuroimage, 26(2), 471–9. http://dx.doi.org/10.1016/j.neuroimage.2005.02.004CrossRefGoogle ScholarPubMed
Feldman, M. A., Storch, E. A., & Murphy, T. K. (2011). Application of habit reversal training for the treatment of tics in early childhood. Clinical Case Studies, 10(2), 173–83. http://dx.doi.org/10.1177/1534650111400728CrossRefGoogle Scholar
Felling, R. J., & Singer, H. S. (2011). Neurobiology of Tourette syndrome: current status and need for further investigation. Journal of Neuroscience, 31(35), 12387–95. http://dx.doi.org/10.1523/JNEUROSCI.0150-11.2011CrossRefGoogle ScholarPubMed
Fossella, J., Sommer, T., Fan, J., Wu, Y., Swanson, J. M., Pfaff, D. W., & Posner, M. I. (2002). Assessing the molecular genetics of attention networks. BMC Neuroscience, 3(1), 14. http://dx.doi.org/10.1186/1471-2202-3-14CrossRefGoogle ScholarPubMed
Fransson, P., Skiöld, B., Horsch, S., Nordell, A., Blennow, M., Lagercrantz, H., & Åden, U. (2007). Resting-state networks in the infant brain. Proceedings of the National Academy of Sciences of the United States of America, 104(39), 15531–6. http://dx.doi.org/10.1073/pnas.0704380104Google ScholarPubMed
Freeman, R. D. (2007). Tic disorders and ADHD: Answers from a world-wide clinical dataset on Tourette syndrome. European Child & Adolescent Psychiatry, 16(9), 1523. http://dx.doi.org/10.1007/s00787-007-1003-7CrossRefGoogle ScholarPubMed
Freeman, R. D., Fast, D. K., Burd, L., Kerbeshian, J., Robertson, M. M., & Sandor, P. (2000). An international perspective on Tourette syndrome: Selected findings from 3500 individuals in 22 countries. Developmental Medicine & Child Neurology, 42(7), 436–47. http://dx.doi.org/10.1017/S0012162200000839CrossRefGoogle Scholar
Gao, W., Zhu, H., Giovanello, K. S., Smith, J. K., Shen, D., Gilmore, J. H., & Lin, W. (2009). Evidence on the emergence of the brain's default network from 2-week-old to 2-year-old healthy pediatric subjects. Proceedings of the National Academy of Sciences of the United States of America, 106(16), 6790–5. http://dx.doi.org/10.1073/pnas.0811221106Google ScholarPubMed
Goldberg, T. E., & Weinberger, D. R. (2004). Genes and the parsing of cognitive processes. Trends in Cognitive Sciences, 8(7), 325–35. http://dx.doi.org/10.1016/j.tics.2004.05.011CrossRefGoogle ScholarPubMed
Gorassini, D. R., Spanos, N. P., Kirsch, I., Capafons, A., Carde-a-Buelna, E., & Amigó, S. (1999). The Carleton skill training program for modifying hypnotic suggestibility: Original version and variations. In Kirsch, I., Capafons, A., Carde-a-Buelna, E., & Amigó, S. (Eds.), Clinical hypnosis and self-regulation (pp. 141–77). Washington, DC: American Psychological Association.Google Scholar
Graybiel, A. M., & Canales, J. J. (2000). The neurobiology of repetitive behaviors: Clues to the neurobiology of Tourette syndrome. Advances in Neurology, 85, 123–31.Google Scholar
Harrison, B. J., Soriano-Mas, C., Pujol, J., Ortiz, H., López-Solà, M., Hernández-Ribas, R., … Pantelis, C. (2009). Altered corticostriatal functional connectivity in obsessive-compulsive disorder. Archives of General Psychiatry, 66(11), 11891200. http://dx.doi.org/10.1001/archgenpsychiatry.2009.152CrossRefGoogle ScholarPubMed
Hewlett, B. S., Fouts, H. N., Boyette, A. H., & Hewlett, B. L. (2011). Social learning among Congo Basin hunter-gatherers. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1567), 1168–78. http://dx.doi.org/10.1098/rstb.2010.0373CrossRefGoogle ScholarPubMed
Holroyd, J. (1996). Hypnosis treatment of clinical pain: Understanding why hypnosis is useful. International Journal of Clinical and Experimental Hypnosis, 44(1), 3351. http://dx.doi.org/10.1080/00207149608416066CrossRefGoogle ScholarPubMed
Insel, T. (2013). Transforming diagnosis [Blog post]. Retrieved from www.nimh.nih.gov/about/director/2013/transforming-diagnosis.shtmlGoogle Scholar
James, W. (1890). The principles of psychology (Vol. 1). New York, NY: Henry Holt. http://dx.doi.org/10.1037/10538-000Google Scholar
Karnath, H. O., & Rorden, C. (2012). The anatomy of spatial neglect. Neuropsychologia, 50(6), 1010–17. http://dx.doi.org/10.1016/j.neuropsychologia.2011.06.027CrossRefGoogle ScholarPubMed
Ketay, S., Aron, A., & Hedden, T. (2009). Culture and attention: Evidence from brain and behavior. Progress in Brain Research, 178, 7992. http://dx.doi.org/10.1016/S0079-6123(09)17806-8CrossRefGoogle ScholarPubMed
Kiecolt-Glaser, J. K., Marucha, P. T., Atkinson, C., & Glaser, R. (2001). Hypnosis as a modulator of cellular immune dysregulation during acute stress. Journal of Consulting and Clinical Psychology, 69(4), 674–82. http://dx.doi.org/10.1037/0022-006X.69.4.674CrossRefGoogle ScholarPubMed
Kirmayer, L. J., & Crafa, D. (2014). What kind of science for psychiatry? Frontiers in Human Neuroscience, 8, 435. http://dx.doi.org/10.3389/fnhum.2014.00435CrossRefGoogle ScholarPubMed
Kirsch, I., Montgomery, G., & Sapirstein, G. (1995). Hypnosis as an adjunct to cognitive-behavioral psychotherapy: A meta-analysis. Journal of Consulting and Clinical Psychology, 63(2), 214–20. http://dx.doi.org/10.1037/0022-006X.63.2.214CrossRefGoogle ScholarPubMed
Kohen, D. P., & Olness, K. (2011). Hypnosis and hypnotherapy with children. New York, NY: RoutledgeGoogle Scholar
Kushner, H. I. (1999). A cursing brain? The histories of Tourette syndrome. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
LaHoste, G., Swanson, J., Wigal, S., Glabe, C., Wigal, T., King, N., & Kennedy, J. (1996). Dopamine D4 receptor gene polymorphism is associated with attention deficit hyperactivity disorder. Molecular Psychiatry, 1(2), 121–4.Google ScholarPubMed
Leckman, J. F., Bloch, M. H., Smith, M. E., Larabi, D., & Hampson, M. (2010). Neurobiological substrates of Tourette's disorder. Journal of Child and Adolescent Psychopharmacology, 20(4), 237–47. http://dx.doi.org/10.1089/cap.2009.0118CrossRefGoogle ScholarPubMed
Leckman, J. F., Zhang, H., Vitale, A., Lahnin, F., Lynch, K., Bondi, C., … Peterson, B. S. (1998). Course of tic severity in Tourette syndrome: The first two decades. Pediatrics, 102(1), 1419. http://dx.doi.org/10.1542/peds.102.1.14CrossRefGoogle ScholarPubMed
Lifshitz, M., Aubert Bonn, N., Fischer, A., Kashem, I. F., & Raz, A. (2013). Using suggestion to modulate automatic processes: From Stroop to McGurk and beyond. Cortex, 49(2), 463–73. http://dx.doi.org 10.1016/j.cortex.2012.08.007CrossRefGoogle ScholarPubMed
Losier, B. J., & Klein, R. M. (2001). A review of the evidence for a disengage deficit following parietal lobe damage. Neuroscience & Biobehavioral Reviews, 25(1), 113. http://dx.doi.org/10.1016/S0149-7634(00)00046-4CrossRefGoogle ScholarPubMed
Macaluso, E., Frith, C. D., & Driver, J. (2000). Modulation of human visual cortex by crossmodal spatial attention. Science, 289(5482), 1206–8. http://dx.doi.org/10.1126/science.289.5482.1206CrossRefGoogle ScholarPubMed
MacDonald, A. W., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288(5472), 1835–8. http://dx.doi.org/10.1126/science.288.5472.1835CrossRefGoogle ScholarPubMed
Macdonald, E., & Raz, A. (2014). The marginalization of phenomenological consciousness [Book review]. Frontiers in Human Neuroscience, 8, 306. http://dx.doi.org/10.3389/fnhum.2014.00306CrossRefGoogle Scholar
Marrocco, R. T., & Davidson, M. C. (1998). Neurochemistry of attention. In Parasuraman, R. (Ed.), The attentive brain (pp. 3550). Cambridge, MA: MIT Press.Google Scholar
Mesulam, M. (1981). A cortical network for directed attention and unilateral neglect. Annals of Neurology, 10(4), 309–25. http://dx.doi.org/10.1002/ana.410100402CrossRefGoogle Scholar
Miresco, M., & Kirmayer, L. (2006). The persistence of mind-brain dualism in psychiatric reasoning about clinical scenarios. American Journal of Psychiatry, 163(5), 913–18. http://dx.doi.org/10.1176/appi.ajp.163.5.913CrossRefGoogle ScholarPubMed
Montgomery, G. H., DuHamel, K. N., & Redd, W. H. (2000). A meta-analysis of hypnotically induced analgesia: How effective is hypnosis? International Journal of Clinical and Experimental Hypnosis, 48(2), 138–53. http://dx.doi.org/10.1080/00207140008410045CrossRefGoogle ScholarPubMed
Müller-Vahl, K. R., Kaufmann, J., Grosskreutz, J., Dengler, R., Emrich, H. M., & Peschel, T. (2009). Prefrontal and anterior cingulate cortex abnormalities in Tourette Syndrome: Evidence from voxel-based morphometry and magnetization transfer imaging. BMC Neuroscience, 10(1), 47. http://dx.doi.org/10.1186/1471-2202-10-47CrossRefGoogle ScholarPubMed
Nash, M. R., & Barnier, A. J. (Eds.). (2012). The Oxford handbook of hypnosis: Theory, research, and practice. New York, NY: Oxford University Press.Google Scholar
Parasuraman, R., Greenwood, P. M., Haxby, J. V., & Grady, C. L. (1992). Visuospatial attention in dementia of the Alzheimer type. Brain, 115(3), 711–33. http://dx.doi.org/10.1093/brain/115.3.711CrossRefGoogle ScholarPubMed
Parasuraman, R., Greenwood, P. M., Kumar, R., & Fossella, J. (2005). Beyond heritability: Neurotransmitter genes differentially modulate visuospatial attention and working memory. Psychological Science, 16(3), 200–7. http://dx.doi.org/10.1111/j.0956-7976.2005.00804.xCrossRefGoogle ScholarPubMed
Pardo, J. V., Pardo, P. J., Janer, K. W., & Raichle, M. E. (1990). The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proceedings of the National Academy of Sciences of the United States of America, 87(1), 256–9. http://dx.doi.org/10.1073/pnas.87.1.256Google ScholarPubMed
Perlman, D. M., Salomons, T. V., Davidson, R. J., & Lutz, A. (2010). Differential effects on pain intensity and unpleasantness of two meditation practices. Emotion, 10(1), 6571. http://dx.doi.org/10.1037/a0018440CrossRefGoogle ScholarPubMed
Perry, R., & Zeki, S. (2000). The neurology of saccades and covert shifts in spatial attention: An event-related fMRI study. Brain, 123(11), 2273–88. http://dx.doi.org/10.1093/brain/123.11.2273CrossRefGoogle ScholarPubMed
Peterson, B. S., & Cohen, D. J. (1998). The treatment of Tourette's syndrome: Multimodal, developmental intervention. Journal of Clinical Psychiatry, 59(1), 6272.Google ScholarPubMed
Peterson, B. S., Skudlarski, P., Anderson, A. W., Zhang, H., Gatenby, J. C., Lacadie, C. M., … Gore, J. C. (1998). A functional magnetic resonance imaging study of tic suppression in Tourette syndrome. Archives of General Psychiatry, 55(4), 326–33. http://dx.doi.org/10.1001/archpsyc.55.4.326CrossRefGoogle ScholarPubMed
Phelps, L. (2008). Tourette's disorder: Genetic update, neurological correlates, and evidence-based interventions. School Psychology Quarterly, 23(2), 282–9. http://dx.doi.org/10.1037/1045-3830.23.2.282CrossRefGoogle Scholar
Piacentini, J., Woods, D. W., Scahill, L., Wilhelm, S., Peterson, A. L., Chang, S., … Levi-Pearl, S. (2010). Behavior therapy for children with Tourette disorder. Journal of the American Medical Association, 303(19), 1929–37. http://dx.doi.org/10.1001/jama.2010.607Google ScholarPubMed
Posner, M. (2004). Cognitive neuroscience of attention (1st ed.). New York, NY: Guilford Press.Google Scholar
Posner, M. (2012a). Attention in a social world. New York, NY: Oxford University Press. http://dx.doi.org/10.1093/acprof:oso/9780199791217.001.0001CrossRefGoogle Scholar
Posner, M. (2012b). Cognitive neuroscience of attention (2nd ed.). New York, NY: Guilford Press.Google Scholar
Posner, M., & Fan, J. (2008). Attention as an organ system. In Pomerantz, J. R. (Ed.), Topics in integrative neuroscience (pp. 3161). New York, NY: Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511541681.005CrossRefGoogle Scholar
Posner, M., Inhoff, A. W., Friedrich, F. J., & Cohen, A. (1987). Isolating attentional systems: A cognitive-anatomical analysis. Psychobiology, 15(2), 107–21.CrossRefGoogle Scholar
Posner, M., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13(1), 2542. http://dx.doi.org/10.1146/annurev.ne.13.030190.000325CrossRefGoogle ScholarPubMed
Posner, M., & Raichle, M. E. (1994). Images of mind. New York, NY: Scientific American Library/Scientific American Books.Google Scholar
Posner, M., & Raichle, M. E. (1998). The neuroimaging of human brain function. Proceedings of the National Academy of Sciences of the United States of America, 95(3), 763–4. http://dx.doi.org/10.1073/pnas.95.3.763Google ScholarPubMed
Posner, M., & Rothbart, M. K. (2005). Influencing brain networks: Implications for education. Trends in Cognitive Sciences, 9(3), 99103. http://dx.doi.org/10.1016/j.tics.2005.01.007CrossRefGoogle ScholarPubMed
Posner, M., Rothbart, M. K., Sheese, B. E., & Voelker, P. (2012). Control networks and neuromodulators of early development. Developmental Psychology, 48(3), 827–35. http://dx.doi.org/10.1037/a0025530CrossRefGoogle ScholarPubMed
Posner, M. I., Rothbart, M. K., Sheese, B. E., & Voelker, P. (2014). Developing attention: Behavioral and brain mechanisms. Advances in Neuroscience. http://dx.doi.org/10.1155/2014/405094CrossRefGoogle Scholar
Posner, M. I., Walker, J. A., Friedrich, F. J., & Rafal, R. D. (1984). Effects of parietal injury on covert orienting of attention. Journal of Neuroscience, 4(7), 1863–74.CrossRefGoogle ScholarPubMed
Pringsheim, T., & Pearce, M. (2010). Complications of antipsychotic therapy in children with Tourette syndrome. Pediatric Neurology, 43(1), 1720. http://dx.doi.org/10.1016/j.pediatrneurol.2010.02.012CrossRefGoogle ScholarPubMed
Rabipour, S., & Raz, A. (2012). Training the brain: Fact and fad in cognitive and behavioral remediation. Brain and Cognition, 79(2), 159–79. http://dx.doi.org/10.1016/j.bandc.2012.02.006CrossRefGoogle ScholarPubMed
Raz, A. & Harris, C. (Eds.). (in press). Talking placebos: Modern perspectives on placebos in society. Oxford, England: Oxford University Press.Google Scholar
Raz, A. (2012). Hypnosis as a lens to the development of attention. Consciousness and Cognition, 21, 1595–8. http://dx.doi.org/10.1016/j.concog.2012.05.011CrossRefGoogle Scholar
Raz, A., & Buhle, J. (2006). Typologies of attentional networks. Nature Reviews Neuroscience, 7(5), 367–79. http://dx.doi.org/10.1038/nrn1903CrossRefGoogle ScholarPubMed
Raz, A., Hongtu, Z., Shan, Y., Bansal, R., Zhishun, W., Alexander, G. M., … Peterson, B. S. (2009). Neural substrates of self-regulatory control in children and adults with Tourette syndrome. Canadian Journal of Psychiatry, 54(9), 579–88.CrossRefGoogle ScholarPubMed
Raz, A., Keller, S., Norman, K., & Senechal, D. (2007). Elucidating Tourette's syndrome: Perspectives from hypnosis, attention and self-regulation. American Journal of Clinical Hypnosis, 49(4), 289309. http://dx.doi.org/10.1080/00029157.2007.10524506CrossRefGoogle ScholarPubMed
Raz, A., Kirsch, I., Pollard, J., & Nitkin-Kaner, Y. (2006). Suggestion reduces the Stroop effect. Psychological Science, 17(2), 91–5. http://dx.doi.org/10.1111/j.1467-9280.2006.01669.xCrossRefGoogle ScholarPubMed
Raz, A., Moreno-Íniguez, M., Martin, L., & Zhu, H. (2007). Suggestion overrides the Stroop effect in highly hypnotizable individuals. Consciousness and Cognition, 16(2), 331–8. http://dx.doi.org/10.1016/j.concog.2006.04.004CrossRefGoogle ScholarPubMed
Raz, A., Shapiro, T., Fan, J., & Posner, M. (2002). Hypnotic suggestion and the modulation of Stroop interference. Archives of General Psychiatry, 59(12), 1155. http://dx.doi.org/10.1001/archpsyc.59.12.1155CrossRefGoogle ScholarPubMed
Raz, A., & Wolfson, J. B. (2010). From dynamic lesions to brain imaging of behavioral lesions: Alloying the gold of psychoanalysis with the copper of suggestion. Neuropsychoanalysis: An Interdisciplinary Journal for Psychoanalysis and the Neurosciences, 12(1), 518. http://dx.doi.org/10.1080/15294145.2010.10773621CrossRefGoogle Scholar
Robertson, M. M. (2006). Mood disorders and Gilles de la Tourette's syndrome: An update on prevalence, etiology, comorbidity, clinical associations, and implications. Journal of Psychosomatic Research, 61(3), 349–58. http://dx.doi.org/10.1016/j.jpsychores.2006.07.019CrossRefGoogle ScholarPubMed
Rothbart, M. K. (2011). Becoming who we are: Temperament and personality in development. New York, NY: Guilford Press.Google Scholar
Rothbart, M. K., Posner, M., & Kieras, J. (2006). Temperament, attention, and the development of self-regulation. In McCartney, K. & Phillips, D. (Eds.), Blackwell handbook of early childhood development (pp. 338–57). Malden, MA: Blackwell. http://dx.doi.org/10.1002/9780470757703.ch17Google Scholar
Rueda, M., Checa, P., & Santonja, M. (2008). Training executive attention in preschoolers: Lasting effects and transfer to affective self-regulation. Paper presented at the Annual Meeting of the Cognitive Neuroscience Society, San Francisco, CA, USA.Google Scholar
Rueda, M., Posner, M., & Rothbart, M. (2011). Attention and self regulation. In R. F. Baumeister & K. D. Vohs (Eds.), Handbook of self-regulation: Research, theory and applications (2nd ed., pp. 284–99). New York, NY: Guilford Press.Google Scholar
Scahill, L., Bitsko, R., Visser, S., & Blumberg, S. (2009). Prevalence of diagnosed Tourette syndrome in persons aged 6–17 years, United States, 2007. Morbidity and Mortality Weekly Report, 58(21), 581–5.Google Scholar
Schafer, R. J., & Moore, T. (2007). Attention governs action in the primate frontal eye field. Neuron, 56(3), 541–51. http://dx.doi.org/10.1016/j.neuron.2007.09.029CrossRefGoogle ScholarPubMed
Shafritz, K. M., Collins, S. H., & Blumberg, H. P. (2006). The interaction of emotional and cognitive neural systems in emotionally guided response inhibition. Neuroimage, 31(1), 468–75. http://dx.doi.org/10.1016/j.neuroimage.2005.11.053CrossRefGoogle ScholarPubMed
Sheese, B. E., Voelker, P. M., Rothbart, M. K., & Posner, M. (2007). Parenting quality interacts with genetic variation in dopamine receptor D4 to influence temperament in early childhood. Development and Psychopathology, 19(4), 1039. http://dx.doi.org/10.1017/S0954579407000521CrossRefGoogle ScholarPubMed
Sowell, E. R., Kan, E., Yoshii, J., Thompson, P. M., Bansal, R., Xu, D., … Peterson, B. S. (2008). Thinning of sensorimotor cortices in children with Tourette syndrome. Nature Neuroscience, 11(6), 637–9. http://dx.doi.org/10.1038/nn.2121CrossRefGoogle ScholarPubMed
Spanos, N. P., Lush, N. I., & Gwynn, M. I. (1989). Cognitive skill-training enhancement of hypnotizability: Generalization effects and trance logic responding. Journal of Personality and Social Psychology, 56(5), 795804. http://dx.doi.org/10.1037/0022-3514.56.5.795CrossRefGoogle Scholar
Steeves, T., McKinlay, B. D., Gorman, D., Billinghurst, L., Day, L., Carroll, A., … Sandor, P. (2012). Canadian guidelines for the evidence-based treatment of tic disorders: Behavioural therapy, deep brain stimulation, and transcranial magnetic stimulation. Canadian Journal of Psychiatry [Revue Canadienne de Psychiatrie], 57(3), 144–51.Google ScholarPubMed
Swain, J. E., Scahill, L., Lombroso, P. J., King, R. A., & Leckman, J. F. (2007). Tourette syndrome and tic disorders: A decade of progress. Journal of the American Academy of Child & Adolescent Psychiatry, 46(8), 947–68. http://dx.doi.org/10.1097/chi.0b013e318068fbccGoogle ScholarPubMed
Swanson, J. M., Posner, M., Potkin, S., Bonforte, S., Youpa, D., Fiore, C., … Crinella, F. (1991). Activating tasks for the study of visual-spatial attention in ADHD children: A cognitive anatomic approach. Journal of Child Neurology, 6(Suppl. 1), S119–27.CrossRefGoogle Scholar
Tang, Y.-Y., Lu, Q., Geng, X., Stein, E. A., Yang, Y., & Posner, M. (2010). Short-term meditation induces white matter changes in the anterior cingulate. Proceedings of the National Academy of Sciences of the United States of America, 107(35), 15649–52. http://dx.doi.org/10.1073/pnas.1011043107Google ScholarPubMed
Tang, Y.-Y., Ma, Y., Wang, J., Fan, Y., Feng, S., Lu, Q., … Fan, M. (2007). Short-term meditation training improves attention and self-regulation. Proceedings of the National Academy of Science of the United States of America, 104(43), 17152–6. http://dx.doi.org/10.1073/pnas.0707678104Google ScholarPubMed
Tang, Y.-Y., & Posner, M. (2009). Attention training and attention state training. Trends in Cognitive Sciences, 13(5), 222–7. http://dx.doi.org/10.1016/j.tics.2009.01.009CrossRefGoogle ScholarPubMed
Tang, Y.-Y., Rothbart, M. K., & Posner, M. (2012). Neural correlates of establishing, maintaining, and switching brain states. Trends in Cognitive Sciences, 16(6), 330–7. http://dx.doi.org/10.1016/j.tics.2012.05.001CrossRefGoogle ScholarPubMed
Thompson, K. G., Biscoe, K. L., & Sato, T. R. (2005). Neuronal basis of covert spatial attention in the frontal eye field. Journal of Neuroscience, 25(41), 9479–87. http://dx.doi.org/10.1523/JNEUROSCI.0741-05.2005CrossRefGoogle ScholarPubMed
Titchener, E. B. (1909). The psychology of feeling and attention. New York, NY: Macmillan.Google Scholar
Uttal, W. R. (2001). The new phrenology: The limits of localizing cognitive processes in the brain. Cambridge, MA: MIT Press.Google Scholar
Voelker, P., Sheese, B. E., Rothbart, M. K., & Posner, M. (2009). Variations in catechol-O-methyltransferase gene interact with parenting to influence attention in early development. Neuroscience, 164(1), 121–30. http://dx.doi.org/10.1016/j.neuroscience.2009.05.059CrossRefGoogle ScholarPubMed
Vuilleumier, P. O., & Rafal, R. D. (2000). A systematic study of visual extinction between- and within-field deficits of attention in hemispatial neglect. Brain, 123(6), 1263–79. http://dx.doi.org/10.1093/brain/123.6.1263Google ScholarPubMed
Welter, M.-L., Burbaud, P., Fernandez-Vidal, S., Bardinet, E., Coste, J., Piallat, B., … Devaux, B. (2011). Basal ganglia dysfunction in OCD: Subthalamic neuronal activity correlates with symptoms severity and predicts high-frequency stimulation efficacy. Translational Psychiatry, 1(5), e5. http://dx.doi.org/10.1038/tp.2011.5CrossRefGoogle ScholarPubMed
Wile, D. J., & Pringsheim, T. M. (2013). Behavior therapy for Tourette syndrome: A systematic review and meta-analysis. Current Treatment Options in Neurology, 15(4), 385–95. http://dx.doi.org/10.1007/s11940-013-0238-5CrossRefGoogle ScholarPubMed
Willcutt, E. G., Doyle, A. E., Nigg, J. T., Faraone, S. V., & Pennington, B. F. (2005). Validity of the executive function theory of attention-deficit/hyperactivity disorder: A meta-analytic review. Biological Psychiatry, 57(11), 1336–46. http://dx.doi.org/10.1016/j.biopsych.2005.02.006CrossRefGoogle ScholarPubMed
Zeidan, F., Johnson, S. K., Diamond, B. J., David, Z., & Goolkasian, P. (2010). Mindfulness meditation improves cognition: Evidence of brief mental training. Consciousness and Cognition, 19(2), 597605. http://dx.doi.org/10.1016/j.concog.2010.03.014CrossRefGoogle ScholarPubMed

References

Andreasen, N. (1984). The broken brain. New York, NY: Harper & Row.Google Scholar
Bentall, R., Fernyhough, C., Morrison, A., Lewis, S., & Corcoran, R. (2007). Prospects for a cognitive-developmental account of psychotic experiences. British Journal of Clinical Psychology, 46, 155–73. http://dx.doi.org/10.1348/014466506X123011CrossRefGoogle ScholarPubMed
Bentall, R. P., Wickham, S., Shevlin, M., & Varese, F. (2012). Do specific early life adversities lead to specific symptoms of psychosis? A study from the 2007 Adult Psychiatric Morbidity Survey. Schizophrenia Bulletin, 38(4), 734–40. http://dx.doi.org/ 10.1093/schbul/sbs049CrossRefGoogle ScholarPubMed
Bilder, R. M. (2015). Dimensional and categorical approaches to mental illness: Let biology decide. In Kirmayer, L. J., Lemelson, R., & Cummings, C. A. (Eds.), Re-visioning psychiatry: Cultural phenomenology, critical neuroscience, and global mental health (pp. 179–205). New York, NY: Cambridge University Press.Google Scholar
Connor, C., & Birchwood, M. (2013). Power and perceived expressed emotion of voices: Their impact on depression and suicidal thinking in those who hear voices. Clinical Psychology and Psychotherapy, 20, 199205. http://dx.doi.org/10.1002/cpp.798CrossRefGoogle ScholarPubMed
D'Andrade, R. (1987). A folk model of the mind. In Holland, D. & Quinn, N. (Eds.), Cultural models in language and thought (pp. 113–47). Cambridge, England: Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511607660.006Google Scholar
Desjarlais, R. (1995). Shelter blues. Philadelphia: Pennsylvania University Press.Google Scholar
Hopper, K., Harrison, G., Janca, A., & Sartorius, N. (Eds.). (2007). Recovery from schizophrenia. New York, NY: Oxford University Press.CrossRefGoogle ScholarPubMed
Hopper, K. (2003). Reckoning with homelessness. Ithaca, NY: Cornell University Press.Google Scholar
Jenkins, J., & Barrett, R. (Eds.). (2004). Schizophrenia, culture, and subjectivity. Cambridge, England: Cambridge University Press.Google Scholar
Kirmayer, L., & Crafa, D. (2014). What kind of science for psychiatry? Frontiers in Human Neuroscience, 8, 435. http://dx.doi.org/10.3389/fnhum.2014.00435CrossRefGoogle ScholarPubMed
Luhrmann, T. M. (2007). Social defeat and the culture of chronicity: Or, why schizophrenia does so well over there and so badly here. Culture, Medicine, and Psychiatry, 31, 135–72. http://dx.doi.org/10.1007/s11013-007-9049-zCrossRefGoogle Scholar
Luhrmann, T. M. (2012). When God talks back. New York, NY: Knopf.Google Scholar
Luhrmann, T. M., & Marrow, J. (Eds.). (2015). Our most troubling madness: Schizophrenia and social condition. Manuscript in preparation.Google Scholar
Luhrmann, T. M., Padmavati, R., Tharoor, H., & Osei, A. (2015). Differences in hearing voices associated with psychosis in San Mateo, Chennai and Accra. British Journal of Psychiatry, 206(1), 41–4. http://dx.doi.org/10.1192/bjp.bp.113.139048Google Scholar
Luhrmann, T. M., Padmavati, R., Tharoor, H., & Osei, A. (in press). Social kindling of voice-hearing in serious psychotic disorder. Topics in Cognitive Science.Google Scholar
Markus, H. R., Mullally, P. R., & Kitayama, S. (1997). Selfways: Diversity in modes of cultural participation. In Neisser, U. & Jopling, D. A. (Eds.), The conceptual self in context: Culture, experience, self-understanding (pp. 1361). Cambridge, England: Cambridge University Press.Google Scholar
McKenzie, K., & Shah, J. (2015). Understanding the social etiology of psychosis. In Kirmayer, L. J., Lemelson, R., & Cummings, C. A. (Eds.), Re-visioning psychiatry: Cultural phenomenology, critical neuroscience, and global mental health (pp. 317–42). New York, NY: Cambridge University Press.Google Scholar
Morgan, C., McKenzie, K., & Fearon, P. (Eds.). (2008). Society and psychosis. Cambridge, England: Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511544064CrossRefGoogle Scholar
Nisbett, R. (2003). The geography of thought. New York, NY: Free Press.Google Scholar
Raz, A., & Macdonald, E. (2015). Paying attention to a field in crisis: Psychiatry, neuroscience, and functional systems of the brain. In Kirmayer, L. J., Lemelson, R., & Cummings, C. A. (Eds.), Re-visioning psychiatry: Cultural phenomenology, critical neuroscience, and global mental health (pp. 273–304). New York, NY: Cambridge University Press.Google Scholar
Read, J. (2005). The bio-bio-bio model of madness. The Psychologist, 18, 596–97.Google Scholar
Scheper-Hughes, N. (1979). Saints, scholars, and schizophrenics. Berkeley: University of California Press.Google Scholar
Taylor, C. (2007). A secular age. Cambridge, MA: Harvard University Press.Google Scholar
Tuttle, G. (1902). Hallucinations and illusions. American Journal of Psychiatry, 58, 443–67.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×