Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-05T14:38:22.576Z Has data issue: false hasContentIssue false

6 - Standardizing Steel Rails: Engineered Innovation

from Part II - RUNNING THE MACHINE, 1876–1904

Published online by Cambridge University Press:  12 August 2009

Steven W. Usselman
Affiliation:
Georgia Institute of Technology
Get access

Summary

Perhaps no area of technology better reflected the turn toward engineered innovation and the process of negotiated improvement through technical specifications than the sustained efforts by railroads to obtain heavier and more durable steel rails. According to the systematic assessment of economic historian Albert Fishlow, changes in rails contributed a larger share to railroad productivity improvements between 1870 and 1910 than any other technology. By the end of that period, he concludes, railroads were saving an estimated $479 million per year by using the stronger and more durable steel rails then available in place of iron rails of 1870 quality and price. Some of those savings accrued directly from the superior capacity of steel to resist wear. A section of track laid with steel rails lasted significantly longer for less cost than a similarly used section laid with iron. But most of the benefits identified by Fishlow flowed indirectly from changes associated with the increased strength of the rail. Steel rails could, quite simply, support heavier locomotives and cars without breaking, and trains made up of such equipment carried passengers and freight at substantially lower costs per mile than their lighter predecessors. Innovation in rail technology thus was a great facilitator. It eliminated a potentially debilitating constraint and paved the way, so to speak, for a mode of operations made possible by a host of additional innovations in management and machinery.

Type
Chapter
Information
Regulating Railroad Innovation
Business, Technology, and Politics in America, 1840–1920
, pp. 215 - 241
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×