Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-04T21:34:16.402Z Has data issue: false hasContentIssue false

17 - Terrestrial ecosystem changes in the late Quaternary

Published online by Cambridge University Press:  05 June 2016

Jasper Knight
Affiliation:
University of the Witwatersrand, Johannesburg
Stefan W. Grab
Affiliation:
University of the Witwatersrand, Johannesburg
Get access

Summary

Abstract

This chapter provides a perspective on vegetation changes (as a proxy for overall terrestrial ecosystem changes) within southern Africa’s summer and winter rainfall zones. While climate is a major determinant on southern African ecosystems, topography, geology and fire also play critical roles in ecosystem pattern and processes. Late Quaternary climate changes impacted on southern African ecosystems but did not result in wholesale migration of these biomes. Instead, the palaeoenvironmental record reveals that community dynamics within biomes or at their ecotonal boundaries changed as individual species were favoured or disadvantaged by changing conditions (e.g. climate, fire regimes and/or human impacts) over time.

Type
Chapter
Information
Quaternary Environmental Change in Southern Africa
Physical and Human Dimensions
, pp. 269 - 283
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J. and Faure, H. (1997). Review and Atlas of Palaeovegetation: Preliminary Land Ecosystem Maps of the World since the Last Glacial Maximum. Oak Ridge National Laboratory, TN, USA. Available from www.esd.ornl.gov/projects/qen/adams1.html.Google Scholar
Baker, A., Routh, J., Blaauw, M. and Roychoudhury, A.N. (2014). Geochemical records of palaeoenvironmental controls on peat forming processes in the Mfabeni peatland, Kwazulu Natal, South Africa since the Late Pleistocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 395, 95106.CrossRefGoogle Scholar
Baxter, A. (1996). Late Quaternary Palaeoenvironments of the Sandveld, Western Cape Province, South Africa. Unpublished PhD Thesis, University of Cape Town, 710pp.Google Scholar
Bond, W. J., Midgley, G. F. and Woodward, F. I. (2003). The importance of low atmospheric CO2 and fire in promoting the spread of grasslands and savannas. Global Change Biology, 9, 973982.CrossRefGoogle Scholar
Bragg, F. J., Prentice, I. C., Harrison, S. P., Eglinton, G., Foster, P. N., Rommerskirchen, F. and Rullkötter, J. (2013). Stable isotope and modelling evidence for CO2 as a driver of glacial–interglacial vegetation shifts in southern Africa. Biogeosciences, 10, 20012010.CrossRefGoogle Scholar
Brown, K. S., Marean, C. W., Herries, A. I. R., Jacobs, Z., Tribolo, C., Braun, D., Roberts, D. L., Meyer, M. C. and Bernatchez, J. (2009). Fire as an engineering tool of early modern humans. Science, 325, 859862.CrossRefGoogle ScholarPubMed
Burrough, S. L. and Thomas, D. S. G. (2008). Late Quaternary lake-level fluctuations in the Mababe Depression: Middle Kalahari palaeolakes and the role of Zambezi inflows. Quaternary Research, 69, 388403.CrossRefGoogle Scholar
Burrough, S. L. and Thomas, D. S. G. (2013). Central southern Africa at the time of the African Humid Period: A new analysis of Holocene palaeoenvironmental and palaeoclimate data. Quaternary Science Reviews, 80, 2946.CrossRefGoogle Scholar
Burrough, S. L., Thomas, D. S. G. and Bailey, R. M. (2009). Mega-Lake in the Kalahari: A late Pleistocene record of the Palaeolake Makgadikgadi system. Quaternary Science Reviews, 28, 13921411.CrossRefGoogle Scholar
Burrough, S. L., Thomas, D. S. G., Shaw, P. A. and Bailey, R. M. (2007). Multiphase Quaternary highstands at Lake Ngami, Kalahari, northern Botswana. Palaeogeography, Palaeoclimatology, Palaeoecology, 253, 280299.CrossRefGoogle Scholar
Carr, A. S., Boom, A., Grimes, H. L., Chase, B. M., Meadows, M. E. and Harris, A. (2014). Leaf wax n-alkane distributions in arid zone South African flora: Environmental controls, chemotaxonomy and palaeoecological implications. Organic Geochemistry, 67, 7284.CrossRefGoogle Scholar
Chase, B. M., Boom, A., Carr, A. S., Meadows, M. E. and Reimer, P. J. (2013). Holocene climate change in southernmost South Africa: Rock hyrax middens record shifts in the southern westerlies. Quaternary Science Reviews, 82, 199205.CrossRefGoogle Scholar
Chase, B. M. and Meadows, M. E. (2007). Late Quaternary dynamics of southern Africa’s winter rainfall zone. Earth-Science Reviews, 84, 103138.CrossRefGoogle Scholar
Chase, B. M., Meadows, M. E., Carr, A. S. and Reimer, P. J. (2010). Evidence for progressive Holocene aridification in southern Africa recorded in Namibian hyrax middens: Implications for African Monsoon dynamics and the “African Humid Period”. Quaternary Research, 74, 3645.CrossRefGoogle Scholar
Chase, B. M., Meadows, M. E., Scott, L., Thomas, D. S. G., Marais, E., Sealy, J. and Reimer, P. J. (2009). A record of rapid Holocene climate change preserved in hyrax middens from southwestern Africa. Geology, 37, 703706.CrossRefGoogle Scholar
Chase, B. M., Quick, L. J., Meadows, M. E., Scott, L., Thomas, D. S. G. and Reimer, P. J. (2011). Late glacial interhemispheric climate dynamics revealed in South African hyrax middens. Geology, 39, 1922.CrossRefGoogle Scholar
Daniau, A.-L., Sánchez Goñi, M. F., Martinez, P., Urrego, D. H., Bout-Roumazeilles, V., Desprat, S. and Marlon, J. R. (2013). Orbital-scale climate forcing of grassland burning in southern Africa. Proceedings of the National Academy of Sciences, 110, 50695073.CrossRefGoogle ScholarPubMed
deMenocal, P., Ortiz, J., Guilderson, T., Adkins, J., Sarnthein, M., Baker, L. and Yarusinsky, M. (2000). Abrupt onset and termination of the African Humid Period: Rapid climate responses to gradual insolation forcing. Quaternary Science Reviews, 19, 347361.CrossRefGoogle Scholar
Finch, J. M. and Hill, T. R. (2008). A late Quaternary pollen sequence from Mfabeni Peatland, South Africa: Reconstructing forest history in Maputaland. Quaternary Research, 70, 442450.CrossRefGoogle Scholar
Heaton, T. H. E., Talma, A. S. and Vogel, J. C. (1983). Origin and history of nitrate in confined groundwater in the western Kalahari. Journal of Hydrology, 62, 243262.CrossRefGoogle Scholar
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. and Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 19651978.CrossRefGoogle Scholar
Kristen, I., Fuhrmann, A., Thorpe, J., Röhl, U., Wilkes, H. and Oberhänsli, H. (2007). Hydrological changes in southern Africa over the last 200 Ka as recorded in lake sediments from the Tswaing impact crater. South African Journal of Geology, 110, 311326.CrossRefGoogle Scholar
Kulongoski, J. T., Hilton, D. R. and Selaolo, E. T. (2004). Climate variability in the Botswana Kalahari from the late Pleistocene to the present day. Geophysical Research Letters, 31, L10204, doi:10.1029/2003GL019238.CrossRefGoogle Scholar
Meadows, M. and Asmal, O. (1996). Chronology, sedimentology and geochemistry of sediments at Verlorenvlei (Western Cape Province, South Africa) as evidence of anthropogenically-induced land degradation. Zeitschrift für Geomorphologie, Supplementband, 107, 4562.Google Scholar
Meadows, M. E. and Baxter, A. J. (1999). Late Quaternary palaeoenvironments of the southwestern Cape, South Africa: A regional synthesis. Quaternary International, 57–58, 193206.CrossRefGoogle Scholar
Meadows, M. E. and Baxter, A. J. (2001). Holocene vegetation history and palaeoenvironments at Klaarfontein Springs, Western Cape, South Africa. The Holocene, 11, 699706.CrossRefGoogle Scholar
Meadows, M. E., Baxter, A. J. and Parkington, J. (1996). Late Holocene environments at Verlorenvlei, Western Cape Province, South Africa. Quaternary International, 33, 8195.CrossRefGoogle Scholar
Meadows, M. E. and Chase, B. M. (2013). Pollen Records. In Encyclopedia of Quaternary Science (2nd Ed), ed. Scott, A. E.. Amsterdam: Elsevier, pp. 917.CrossRefGoogle Scholar
Mills, S. C., Grab, S. W., Rea, B. R., Carr, S. J. and Farrow, A. (2012). Shifting westerlies and precipitation patterns during the Late Pleistocene in southern Africa determined using glacier reconstruction and mass balance modelling. Quaternary Science Reviews, 55, 145159.CrossRefGoogle Scholar
Mucina, L. and Rutherford, M. C. (2006). The Vegetation of South Africa, Lesotho and Swaziland, Strelitzia 19. Pretoria: South African National Biodiversity Institute, 807pp.Google Scholar
Nash, D. J. and Meadows, M. E. (2012). Africa. In Quaternary Environmental Change in the Tropics, ed. Metcalfe, S. E. and Nash, D. J.. Chichester: Wiley & Sons, pp. 79150.CrossRefGoogle Scholar
Neumann, F. H., Botha, G. A. and Scott, L. (2014). 18,000 years of grassland evolution in the summer rainfall region of South Africa: evidence from Mahwaqa Mountain, KwaZulu-Natal. Vegetation History and Archaeobotany, 23, 665681.CrossRefGoogle Scholar
Neumann, F. H., Scott, L. and Bamford, M. K. (2011). Climate change and human disturbance of fynbos vegetation during the late Holocene at Princess Vlei, Western Cape, South Africa. The Holocene, 21, 11371149.CrossRefGoogle Scholar
Neumann, F. H., Scott, L., Bousman, C. B. and van As, L. (2010). A Holocene sequence of vegetation change at Lake Eteza, coastal KwaZulu-Natal, South Africa. Review of Palaeobotany and Palynology, 162, 3953.CrossRefGoogle Scholar
Neumann, F. H., Stager, J. C., Scott, L., Venter, H. J. T. and Weyhenmeyer, C. (2008). Holocene vegetation and climate records from Lake Sibaya, KwaZulu-Natal (South Africa). Review of Palaeobotany and Palynology, 152, 113128.CrossRefGoogle Scholar
Norström, E., Scott, L., Partridge, T. C., Risberg, J. and Holmgren, K. (2009). Reconstruction of environmental and climate changes at Braamhoek wetland, eastern escarpment South Africa, during the last 16,000 years with emphasis on the Pleistocene–Holocene transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 271, 240258.CrossRefGoogle Scholar
Parkington, J., Cartwright, C., Cowling, R. M., Baxter, A. and Meadows, M. (2000). Palaeovegetation at the Last Glacial Maximum in the Western Cape, South Africa: Wood charcoal and pollen evidence from Elands Bay Cave. South African Journal of Science, 96, 543546.Google Scholar
Partridge, T. C., deMenocal, P. B., Lorentz, S. A., Paiker, M. J. and Vogel, J. C. (1997). Orbital forcing of climate over South Africa: A 200,000-year rainfall record from the Pretoria saltpan. Quaternary Science Reviews, 16, 11251133.CrossRefGoogle Scholar
Quick, L. J., Chase, B. M., Meadows, M. E., Scott, L. and Reimer, P. J. (2011). A 19.5 kyr vegetation history from the central Cederberg Mountains, South Africa: Palynological evidence from rock hyrax middens. Palaeogeography, Palaeoclimatology, Palaeoecology, 309, 253270.CrossRefGoogle Scholar
Schefuß, E., Kuhlmann, H., Mollenhauer, G., Prange, M. and Pätzold, J. (2011). Forcing of wet phases in southeast Africa over the past 17,000 years. Nature, 480, 509512.CrossRefGoogle Scholar
Schulze, R. E. (1997). South African Atlas of Agrohydrology and Climatology. Pretoria: Water Resource Commission Report TT82/96, 276pp.Google Scholar
Scholes, R. J. (1997). Savanna. In Vegetation of Southern Africa, eds. Cowling, R. M., Richardson, D. M. and Pierce, S. M.. Cambridge: Cambridge University Press, pp. 258277.Google Scholar
Scott, L. (1999). Vegetation history and climate in the Savanna biome South Africa since 190,000 ka: A comparison of pollen data from the Tswaing Crater (the Pretoria Saltpan) and Wonderkrater. Quaternary International, 57/58, 215223.CrossRefGoogle Scholar
Scott, L. (2002). Grassland development under glacial and interglacial conditions in southern Africa: Review of pollen, phytolith and isotope evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 177, 4757.CrossRefGoogle Scholar
Scott, L., Holmgren, K., Talma, A. S., Woodborne, S. and Vogel, J. C. (2003). Age interpretation of the Wonderkrater spring sediments and vegetation change in the savanna biome, Limpopo Province, South Africa. South African Journal of Science, 99, 484488.Google Scholar
Scott, L., Marais, E. and Brook, G. A. (2004). Fossil hyrax dung and evidence of Late Pleistocene and Holocene vegetation types in the Namib Desert. Journal of Quaternary Science, 19, 829832.CrossRefGoogle Scholar
Scott, L. and Thackeray, J. F. (1987). Multivariate analysis of Late Pleistocene and Holocene pollen spectra from Wonderkrater, Transvaal, South Africa. South African Journal of Science, 83, 9398.Google Scholar
Scott, L. and Woodborne, S. (2007). Pollen analysis and dating of Late Quaternary faecal deposits (hyraceum) in the Cederberg, Western Cape, South Africa. Review of Palaeobotany and Palynology, 144, 123134.CrossRefGoogle Scholar
Shi, N., Dupont, L. M., Beug, H.-J. and Schneider, R. (2000). Correlation between vegetation in southwestern Africa and oceanic upwelling in the past 21,000 years. Quaternary Research, 54, 7280.CrossRefGoogle Scholar
Shi, N., Schneider, R., Beug, H.-J. and Dupont, L. M. (2001). Southeast trade wind variations during the last 135 kyr: Evidence from pollen spectra in eastern South Atlantic sediments. Earth and Planetary Science Letters, 187, 311321.CrossRefGoogle Scholar
Stager, J. C., Mayewski, P. A., White, J., Chase, B. M., Neumann, F. H., Meadows, M. E., King, C. D. and Dixon, D. A. (2012). Precipitation variability in the winter rainfall zone of South Africa during the last 1400 yr linked to the austral westerlies. Climate of the Past, 8, 877887.CrossRefGoogle Scholar
Stokes, S., Haynes, G., Thomas, D. S. G., Horrocks, J. L., Higginson, M. and Malifa, M. (1998). Punctuated aridity in southern Africa during the last glacial cycle: The chronology of linear dune construction in the northeastern Kalahari. Palaeogeography, Palaeoclimatology, Palaeoecology, 137, 305322.CrossRefGoogle Scholar
Stute, M. and Talma, A. S., (1997). Isotope techniques in the study of past and current environmental changes in the hydrosphere and the atmosphere. IAEA Vienna Symposium 1997, Isotopic Techniques in the Study of Environmental Change. Vienna: International Atomic Energy Agency, pp. 307318.Google Scholar
Talma, A. S. and Vogel, J. C. (1992). Late Quaternary paleotemperatures derived from a speleothem from Cango Caves, Cape Province, South Africa. Quaternary Research, 37, 203213.CrossRefGoogle Scholar
Thomas, D. S. G., Knight, M. and Wiggs, G. F. S. (2005). Remobilization of southern African desert dune systems by twenty-first century global warming. Nature, 435, 12181221.CrossRefGoogle ScholarPubMed
Truc, L., Chevalier, M., Favier, C., Cheddadi, R., Meadows, M. E., Scott, L., Carr, A. S., Smith, G. F. and Chase, B. M. (2013). Quantification of climate change for the last 20,000 years from Wonderkrater, South Africa: Implications for the long-term dynamics of the Intertropical Convergence Zone. Palaeogeography, Palaeoclimatology, Palaeoecology, 386, 575587.CrossRefGoogle Scholar
Valsecchi, V., Chase, B. M., Slingsby, J. A., Carr, A. S., Quick, L. J., Meadows, M. E., Cheddadi, R. and Reimer, P. J. (2013). A high resolution 15,600-year pollen and microcharcoal record from the Cederberg Mountains, South Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 387, 616.CrossRefGoogle Scholar
van Wilgen, B. W., Richardson, D. M., Kruger, F. J. and van Hensbergen, H. J. (eds) (1992). Fire in South African Mountain Fynbos: Ecosystem, Community, and Species Response at Swartboskloof. Berlin: Springer-Verlag, 325pp.CrossRefGoogle Scholar
Wu, H., Guiot, J., Brewer, S. and Guo, Z. (2007). Climatic changes in Eurasia and Africa at the last glacial maximum and mid-Holocene: Reconstruction from pollen data using inverse vegetation modelling. Climate Dynamics, 29, 211229.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×