Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-20T04:35:17.529Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 February 2014

Bodil Branner
Affiliation:
Technical University of Denmark, Lyngby
Núria Fagella
Affiliation:
Universitat de Barcelona
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[Ah1] L., Ahlfors (1964) Finitely generated Kleinian groups, Amer. J. Math. 86, 413–129.Google Scholar
[Ah2] L., Ahlfors (1966) Lectures on Quasiconformal Mappings. Van Nostrand.Google Scholar
[Ah3] L., Ahlfors (1973) Conformal Invariants: Topics in Geometric Function Theory. McGraw-Hill.Google Scholar
[Ah4] L., Ahlfors (1978) Complex Analysis. An Introduction to the Theory of Analytic Functions ofOne Complex Variable, 3rd edition. McGraw-Hill.Google Scholar
[Ah5] L., Ahlfors (2006) Lectures on Quasiconformal Mappings, 2nd edition. Vol. 38, American Mathematical Society.Google Scholar
[AB] L., Ahlfors and L., Bers (1960) Riemann mapping's theorem for variable metrics, Annals of Math. 72, 385–404.Google Scholar
[An] J. W., Anderson (1998) A brief survey of the deformation theory of Kleinian groups, in The Epstein Birthday Schrift, eds I., Rivin, C., Rourke and C., Series. Geometry and Topology Monographs 1, pp. 23–49. Mathematics Institute, University of Warwick.Google Scholar
[AMa] J. W., Anderson and B., Maskit (1996) On the local connectivity of limit sets of Kleinian groups, Complex Variables Theory Appl. 31, 177–183.Google Scholar
[AIM] K., Astala, T., Iwaniec and G., Marten (2009) Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane. Princeton University Press.Google Scholar
[AM] K., Astala and G. J., Martin (2001) Holomorphic motions, in Papers on Analysis, pp. 27–40. Rep. Univ. Jyvaskyla Dep. Math. Stat., 83.Google Scholar
[Ar1] V. I., Arnol'd (1965) Small denominators. I: Mappings of the circumference onto itself, Am. Math. Soc., Transl., II. Ser. 46, 213–284; translated from Izv. Akad. Nauk SSSR, Ser. Mat. 25 (1961), 21–86.Google Scholar
[Ar2] V. I., Arnol'd (1983) Geometrical Methods in the Theory of Ordinary Differential Equations. Springer.Google Scholar
[As] K., Astala (1994) Area distortion of quasiconformal mappingsActa Math. 173, 37–60.Google Scholar
[BA] A., Beurling and L., Ahlfors (1956) The boundary correspondence under quasiconformal mappings, Acta Math. 96, 125–142.Google Scholar
[BC] X., Buff and A., Cheritat (2004) Upper bound for the size of quadratic Siegel discs, Invent. Math. 156, 1–24.Google Scholar
[BD] B., Branner and A., Douady (1986) Surgery on ComplexPolynomials, Proceedingsofthe Second International Colloquium on Dynamical Systems, Mexico, pp. 11–72. SpringerVerlag.Google Scholar
[BDH] C., Bodelón, R., Devaney, M., Hayes, G., Gareth, L., Goldberg and J. H., Hubbard (2000) Dynamical convergence of polynomials to the exponential, J. Differ. Eq. Appl. 6, 275–307.Google Scholar
[Be1] L., Bers (1960) Simultaneous uniformization, Bull. Amer. Math. Soc. 66, 95–97.Google Scholar
[Be2] L., Bers (1972) Uniformization, moduli, and Kleinian groups, Bull. Lon. Math. Soc. 4, 257–300.Google Scholar
[Be3] L., Bers (1985) On Sullivan's proof of the finiteness theorem and the eventual periodicity theorem, Amer. J. Math. 109, 833–852.Google Scholar
[Bea] A., Beardon (1991) Iteration of Rational Functions. Springer Verlag.Google Scholar
[Be1] E., Beltrami (1868) Saggio di interpretazione della geometria non euclidia, Giorn Math. 6, 285–315.Google Scholar
[Ber] W., Bergweiler (1993) Iteration of meromorphic functions, Bull. Amer. Math. Soc. 29, 151–188.Google Scholar
[BerE] W., Bergweiler and A., Eremenko (1995) On the singularities of the inverse of a meromorphic function of finite order, Rev. Mat. Iberoamericana 11, 355–373.Google Scholar
[BF1] B., Branner and N., Fagella (1999) Homeomorphisms between limbs of the Mandelbrot set, J. Geom. Anal. 9, 327–390.Google Scholar
[BF2] B., Branner and N., Fagella (2001) Extension of homeomorphisms between limbs of the Mandelbrot set, Conf. Geom. and Dyn. 5, 100–139.Google Scholar
[BFGH] X., Buff, N., Fagella, L., Geyer and C., Henriksen (2005) Herman rings and Arnold disks, J. Lon. Math. Soc. 72, 689–716.Google Scholar
[BH] B., Branner and J. H., Hubbard (1988) The iteration of cubic polynomials. Part I: the global topology of parameter space, Acta Math. 160, 143–206.Google Scholar
[BHai] S., Bullett and P., Haissinsky (2007) Pinching holomorphic correspondences, Conf. Geom. Dyn. 11, 65–89.Google Scholar
[BHar] S., Bullett and W., Harvey (2000) Mating quadratic maps with Kleinian groups via quasiconformal surgery, Electronic Research Announcements of the AMS, 6, 21–30.Google Scholar
[BHe] X., Buff and C., Henriksen (2001) Julia sets in parameter space, Comm. Math. Phys. 220, 333–375.Google Scholar
[Bi1] B., Bielefeld (1989) Changing the order of critical points of polynomials using quasiconformal surgery, PhD thesis, Cornell UniversityGoogle Scholar
[Bi2] B., Bielefeld (1990) Questions in quasiconformal surgery, 2–8, in Conformal Dynamics Problem List, ed. B., Bielefeld. Stony Brook IMS Preprint 1990/1. Also published in part 2 of Linear and Complex Analysis Problem Book 3 (1994), eds. V. P. Havin and N. Nikolskii. Springer-Verlag.Google Scholar
[B1] P., Blanchard (1984) Complex analytic dynamics on the Riemann sphere, Bull. Amer. Math. Soc. 11, 85–141.Google Scholar
[Bo1] B., Bojarski (1955) Homeomorphic solutions of Beltrami systems, Dokl. Akad. Nauk. SSSR 102, 661–664.Google Scholar
[Bo2] B., Bojarski (2010) On the Beltrami equation, once again: 54 years later, Ann. Acad. Sci. Fenn. Math. 35, 5973.Google Scholar
[Bö] L. E., Böttcher (1904) The principal law of convergence of iterates and their applications to analysis (in Russian), Izv. Kazan. Fiz.-Mat. Bsch. 14, 155–234.Google Scholar
[BP1] S., Bullett and C., Penrose (1994) Mating quadratic maps with the modular group, Invent. Math. 115, 483–511.Google Scholar
[BP2] S., Bullett and C., Penrose (2001) Regular and limit sets for holomorphic correspondences, Fund. Math. 167, 111–171.Google Scholar
[BPer] A., Bridy and R., Perez (2005) A count of maximal small copies in multibrot sets, Nonlinearity 18, 1945–1953.Google Scholar
[BR] L., Bers and H. L., Royden (1986) Holomorphic families of injections, Acta Math. 157, 259–286Google Scholar
[Bra1] B., Branner (1989) The Mandelbrot set, Proc. Symp. Applied Math. 39, 75–105.Google Scholar
[Bra2] B., Branner (1993) Cubic polynomials: turning around the connectedness locus, in Topological Methods in Modern Mathematics, eds. L. R., Goldberg and A. V., Philips, pp. 391–427. Publish or Perish, Inc.Google Scholar
[BrHa] M. R., Bridson and A., Haefliger (1999) Metric Spaces of Non-positive Curvature. Springer.Google Scholar
[Bry1] A. D., Bryuno (1965) Convergence of transformations of differential equations to normal forms, Dokl. Akad. Nauk USSR 165, 987–989 (Soviet Math. Dokl., 1536–1538).Google Scholar
[Bu] X., Buff, Personal communication.
[C] S.-S., Chern (1955) An elementary proof of the existence of isothermal parameters on a surface, Proc. Amer. Math. Soc. 6, 771–782.Google Scholar
[CG] L., Carleson and T., Gamelin (1993) Complex Dynamics. Springer Verlag.Google Scholar
[Ch] A., Cheritat (2006) Ghys-like models for Lavaurs and simple entire maps, Conform. Geom. Dyn. 10, 227–256.Google Scholar
[CL] E. F., Collingwood and A. J., Lohwater (1966) The Theory of Cluster Sets. Cambridge University Press.Google Scholar
[Co] J. B., Conway (1995) Functions of One Complex Variable II. Springer Verlag.Google Scholar
[Com] M., Comerford (2013) The Caratheodory topology for multiply connected domains I, Cent. Eur. J. Math. 11, 322–340.Google Scholar
[Cr] H., Cremer (1932) Über die Schrödersche Funktionalgleichung und das Schwarzsche Eckenabbildungsproblem, Ber. Verh. Sachs. Akad. Wiss. Leipzig, Math.-Phys. Kl. 84, 291–324.Google Scholar
[Da] G., David (1988) Solutions de l'équation de Beltrami avec ∥μ∥∞ = 1, Ann. Acad. Sci. Fenn. Ser. A 1 Math. 13, 25–70.Google Scholar
[DB] A., Douady and X., Buff (2000) Le théorème d'integrabilite des structures presque complexes, in The Mandelbrot Set, Theme and Variations, ed. Tan, Lei, pp. 307–324. Cambridge University Press.Google Scholar
[Den] A., Denjoy (1932) Sur les courbes définies par les équations differentieles á lasurface du tore, J. Math. Pure et Appl. 11, série 9, 333–375.Google Scholar
[Dev1] R. L., Devaney (ed.) (1994) Complex Dynamical Systems: The Mathematics Behind the Mandelbrot and Julia sets, Proceedings of Symposia in Applied Matehmatics, Vol. 49. American Mathematical Society.
[Dev2] R. L., Devaney (1989) An Introduction to Chaotic Dynamical Systems, 2nd edition. Addison-Wesley.Google Scholar
[DE] A., Douady and C., Earle (1986) Conformally natural extension of homeomorphisms of the circle, Acta Math. 157, 23–48.Google Scholar
[DF] P., Domínguez and N., Fagella (2004) Existence of Herman rings for transcendental meromorphic functions, Comp. Var. Theory and Appl. 49, 851–870.Google Scholar
[DH1] A., Douady and J. H., Hubbard (1982) Iterations des Polynomes Quadratiques Complexes, C.R. Acad. Sci., Paris, Ser. I 29, 123–126.Google Scholar
[DH2] A., Douady and J. H., Hubbard (19841985) Étude dynamique des polynômes complexes, I, II, Publ. Math. Orsay. English version at www.math.cornell.edu/~hubbard/OrsayEnglish.pdf.Google Scholar
[DH3] A., Douady and J. H., Hubbard (1985) On the dynamics of polynomial-like mappings, Ann. Scient., Ec. Norm. Sup. 4e series, 18, 287–343.Google Scholar
[dFdM] E., de Faria and W., de Melo (1999) Rigidity of critical circle mappings I, J. Eur. Math. Soc. (JEMS) 1, 339–392.Google Scholar
[dMvS] W., de Melo and S., van Strien (1991) One-Dimensional Dynamics. Springer-Verlag.Google Scholar
[Do1] A., Douady (1986) Chirugie sur les applications holomorphes, in Proc. Int. Congr. Math., Berkeley, pp. 724–738.Google Scholar
[Do2] A., Douady (1983) Systèmes dynamiques holomorphes, Astérisque, 105/106, 39–63.Google Scholar
[Do3] A., Douady (1987) Disques de Siegel et anneaux de Herman, Astérisque, 152/153, 151–172.Google Scholar
[DT] R. L., Devaney and F., Tangerman (1986) Dynamics of entire functions near the essential singularity, Erg. Th. Dyn. Syst. 6, 489–503.Google Scholar
[EL1] E. L., Eremenko and M., Lyubich (1990) The dynamics of analytic transformations, Leningrad Math. J. 1, 563–634.Google Scholar
[EL2] E. L., Eremenko and M., Lyubich (1992) Dynamical properties of some classes of entire functions, Ann. Inst. Fourier 42, 989–1020.Google Scholar
[Ep] A. L., Epstein (1993) Towers of finite type complex analytic maps, PhD thesis, CUNY. Available at http://homepages.warwick.ac.uk/~mases/Thesis.pdf.Google Scholar
[Ep1] A., Epstein, Counterexamples to the quadratic mating conjecture (unpublished manuscript).
[Ep2] A. L., Epstein (1999) Infinitesimal Thurston rigidity and the Fatou–Shishikura inequality, Stony Brook I.M.S. Preprint 1999#1 or arXiv:math./9902158 at arXiv.org.Google Scholar
[Ep3] A. L., Epstein (2013) Algebraic dynamics I: Contraction and finiteness principles (in preparation).
[EY] A., Epstein and M., Yampolsky (1999) Geography of the cubic connectedness locus I: Intertwining surgery, Ann. Scient. Ec. Norm. Sup. 32, 151–185.Google Scholar
[Fat] P., Fatou, Sur les equations fonctionnelles, Bull. Soc. Math. Fr. 47 (1919), 161–271; 48(1920), 33–94, 208–304.
[Fau] D., Faught (1992) Local connectivity in a family of cubic polynomials, PhD thesis, Cornell University.Google Scholar
[FK] H., Farkas and I., Kra (1980) Riemann Surfaces. Springer.Google Scholar
[FG] N., Fagella and L., Geyer (2003) Surgery on Herman rings of the complex standard family, Erg. Th. and Dyn. Sys. 23, 493–508.Google Scholar
[FSY] M., Flexor, P., Sentenac and J. C., Yoccoz (eds.) (2000) Geometrie complexe et systemes dynamiques, Astérisque 261.Google Scholar
[Ga] C. F., Gauss (1973) Werke. Band IV, 193–216. Reprint of the 1863 original. Georg Olms Verlag, Hildesheim.Google Scholar
[Ge1] L., Geyer (1995) Iteration of quasiregular mappings in two dimensions (preprint).Google Scholar
[Ge2] L., Geyer (2001) Siegel disks, Herman rings and the Arnold family, Trans. Amer. Math. Soc. 353, 3661–3683.Google Scholar
[Gh] E., Ghys (1984) Transformations holomorphes au voisinage d'une courbe de Jordan, C.R. Acad. Sc. Paris 289, 383–388Google Scholar
[GK] L. R., Goldberg and L., Keen (1986) A finiteness theorem for a dynamical class of entire functions, Erg. Th. and Dyn. Syst. 6, 183–192.Google Scholar
[GM] L., Goldberg and J., Milnor (1993) Fixed points of polynomial maps II, Ann. Scient. Éc. Norm. Sup., 4e série, 26, 51–98.Google Scholar
[Go] G. M., Goluzin (1969) Geometric Theory of Functions of a Complex Variable, Vol. 26. American Mathematical Society.Google Scholar
[GRSY] V., Gutlyanskii, V., Ryazanov, U., Srebro and E., Yakubov (2012) The Beltrami Equation, A Geometric Approach, Developments in Mathematics, Vol. 26, Springer.Google Scholar
[GS] J., Graczyk and G., Swiatek (1997) Generic hyperbolicity in the logistic family, Ann. Math. 146, 1–52.Google Scholar
[Ha1] P., Haïssinsky (2000) Chirurgie croisée, Bull. Soc. Math. de France 128, 599–654Google Scholar
[Ha2] P., Haïssinsky (1998) Chirurgie parabolique, C.R. Acad. Sci. Paris Ser. I Math. 327, 195–198.Google Scholar
[Ha3] P., Haïssinsky (2000) Déformation J-équivalente de polynômes geometriquement finis, Fund. Math. 163, (2), 131–141.Google Scholar
[He1] M., Herman (1979) Sur la conjugaison différentiable des diffeomorphismes du cercle à des rotations, Publ. Math. I. H. E. S. 49, 5–234.Google Scholar
[He2] M., Herman (1986) Conjugaison quasi-symétrique des difféphismes du cercels et applications aux disques singuliers de Siegel (unpublished manuscript).Google Scholar
[He3] M., Herman (1987) Conjugaison quasi-symétrique des homeomorphismes analytiques du cercels à des rotations (unpublished manuscript).
[HP] P. G., Hjorth and C. L., Petersen (eds.) (2006) Dynamics on the Riemann Sphere. European Mathematical Society.
[HT] P., Haïssinsky and Tan, Lei (2004) Convergence of pinching deformations and matings of geometrically finite polynomials, Fund. Math. 181(2), 143–188.Google Scholar
[Hu1] J. H., Hubbard (1992) Local connectivity of Julia sets and bifurcation loci: three theorems of J.-C. Yoccoz, in Topological Methods in Modern Mathematics, pp. 467–511 and 375–378. Publish or Perish, Inc.Google Scholar
[Hu2] J. H., Hubbard (2006) Teichmüller Theory and Applications to Geometry, Topology and Dynamics, Vol. 1. Matrix Editions.Google Scholar
[HY] Xin-Hou, Hua and Chung-Chun, Yang (1998) Dynamics of Transcendental Functions. Gordon and Breach Science Publishers.Google Scholar
[J] G., Julia (1918) Memoire sur l'iteration des fonctions rationnelles, J. Math. Pure Appl. 8, 47–245.Google Scholar
[K] L., Keen (ed.) (2010) Special issue dedicated to Robert L. Devaney on the occasion of his 60th Birthday, J. Diff. Eq. Appl. 16.
[Ke] J. L., Kelley (1975) General Topology. Springer-Verlag.Google Scholar
[Kin] A. Ya., Khinchin (1997) Continued Fractions. Dover Publications.Google Scholar
[Kiw] J., Kiwi (2000) Non-accessible critical points of Cremer polynomials, Erg. Th. Dyn. Syst. 20, 1391–1403.Google Scholar
[Ko] A., Korn (1914) Zwei Anwendungen der Methode der sukzessiven Annaherungen, in Schwarz-Festschr. pp. 215–229.Google Scholar
[Kæ] G., Kænigs (1884) Recherches sur les intégrales de certaines équations fonctionelles, Ann. Sci. École Norm. Sup. Paris 1, supplém., 1–41.Google Scholar
[Kre] E., Kreyszig (1978) Inroductory Functional Analysis with Applications. Wiley.Google Scholar
[Kri] H., Kriete (ed.) (1998) Progress in Holomorphic Dynamics. Longman.
[KSvS] O., Kozlovski, W., Shen and S., van Strien (2007) Density of hyperbolicity in dimension one, Ann. Mat. 166, 145–182.Google Scholar
[KZ] L., Keen and G., Zhang (2009) Bounded-type Siegel disks of a one-dimensional family of entire functions, Erg. Th. and Dyn. Syst. 29, 137–164.Google Scholar
[Lan] S., Lang (1995) Introduction to Diophantine Approximations. Springer-Verlag.Google Scholar
[Lav] P., Lavaurs (1989) Systèmes dynamiques holomorphes: explosion de points périodiques,These, Université de Paris-Sud.Google Scholar
[Lavr] M. A., Lavrentiev (1935) Sur une classe de répresentations continues, Rec. Math. 48, 407–423.Google Scholar
[Lea] L., Leau (1897) Étude sur les equations fonctionelles à une ou plusiérs variables, Ann. Fac. Sci. Toulouse 11, E1–E110.Google Scholar
[Le] O., Lehto (1986) Univalent Functions and Teichmüller Spaces. Springer-Verlag.Google Scholar
[Li] L., Lichtenstein (1916) Zur Theorie der konformen Abbildung nichtanalytischer singu-laritätenfreier Flächenstücke auf ebene Gebiete, Kram. Anz., 192–217.Google Scholar
[LV] O., Lehto and K. I., Virtanen (1973) Quasiconformal Mappings in the Plane. Springer-Verlag.Google Scholar
[Ly] M., Lyubich, Conformal geometry and dynamics of quadratic polynomials (in preparation).
[Mar] A., Marden (2007) Outer Circles. An Introduction to Hyperbolic 3-Manifolds. Cambridge University Press.Google Scholar
[Mas] B., Maskit (1967) A characterization of Schottky groups, J. d'Analyse Mat. 19, 227–230.Google Scholar
[McM] C. T., McMullen, Simultaneous uniformization of Blaschke products (unpublished manuscript).
[McM1] C. T., McMullen (1986) Automorphisms of rational maps, in Holomorphic Functions and Moduli, Vol. I (Berkeley, CA, 1986), pp. 31–60. Math. Sci. Res. Inst. Publ., 10, Springer, 1988.Google Scholar
[McM2] C. T., McMullen (1994) Complex Dynamics and Renormalization. Princeton University Press.Google Scholar
[McM3] C., McMullen (1996) Renormalization and 3-Manifolds which Fiber Over the Circle. Princeton University Press.Google Scholar
[McM4] C. T., McMullen (1998) Self-similarity of Siegel discs and Hausdorff dimension of Julia sets, Acta. Math. 180, 247–292.Google Scholar
[Mi1] J., Milnor (2006) Dynamics in One Complex Variable: Introductory Lectures, 3rd ed., Princeton University Press.Google Scholar
[Mi2] J., Milnor (2004) Pasting together Julia sets, Exp. Math. 13(1), 55–92.Google Scholar
[Mi3] J., Milnor (1992) Remarks on iterated cubic maps, Exp. Math. 1, 5–24.Google Scholar
[Mi4] J., Milnor (2009) On cubic polynomials with periodic critical point, in Complex Dynamics: Families and Friends, p. 257. A.K. Peters.Google Scholar
[Mi5] J., Milnor (2012) Hyperbolic components, in Conformal Dynamics and Hyperbolic Geometry, pp. 183–232. American Mathematical Society.Google Scholar
[MNTU] S., Morosawa, Y., Nishimura, M., Taniguchi and T., Ueda (1999) Holomorphic Dynamics. Cambridge University Press.Google Scholar
[Mo] C. B., Morrey (1938) On the solutions of quasi-linear elliptic partial differential quations, Trans. Amer. Math. Soc. 43, 126–166.Google Scholar
[MS] C., McMullen and D., Sullivan (1998) Quasiconformal homeomorphisms and dynamics III: the Teichmuller space of a rational map. Adv. Math. 135, 351–395.Google Scholar
[MSS] R., Mañé, P., Sad and D., Sullivan (1983) On the dynamics of rational maps, Ann. Scie. École Norm. Sup.(4) 16, 51–98 and 193–217.Google Scholar
[MSW] D., Mumford, C., Series and D., Wright (2002) Indira's Pearls: The Vision of Felix Klein. Cambridge University Press.Google Scholar
[MT] K., Matsuzaki and M., Taniguchi (1998) Hyperbolic Manifolds and Kleinian Groups. Clarendon Press.Google Scholar
[N] V. I., Năishul' (1983) Topological invariants of analytic and area preserving mappings and their application to analytic differential equations in ℂ2 and ℂℙ2, Trans. Moscow Math. Soc. 42, 239–250.Google Scholar
[NZM] I., Niven, H. S., Zuckerman and H. L., Montgomery (1991) An Introduction to the Theory of Numbers, 5th ed. Wiley.Google Scholar
[Pe1] C. L., Petersen (1996) Local connectivity of some Julia sets containing a circle with an irrational rotation, Acta Math. 177, 163–224.Google Scholar
[Pe2] C. L., PetersenThe Herman–Świaa̧tek Theorems with applications, in The Mandelbrot Set, Theme and Variations, ed. Tan, Lei, pp. 211–225. Cambridge University Press.
[Pe3] C. L., Petersen (2004) On holomorphic critical quasi-circle maps, Erg. Th. Dyn. Syst. 24, 1739–1751.Google Scholar
[PeT] C. L., Petersen and Tan, Lei (2006) Branner–Hubbard motions and attracting dynamics, in Dynamics on the Riemann Sphere, eds. P. G., Hjorth and C. L., Petersen, pp. 45–70. European Mathematical Society.Google Scholar
[Pi] G., Piranian (1958) The boundary of a simply connected domain, Bull. Amer. Math. Soc. 64, 45–55.Google Scholar
[PM] R., Perez-Marco (1997) Fixed points and circle maps, Acta Math. 179, 273–294.Google Scholar
[Poi] H., Poincaré (1885) Sur les courbes défines par des équations différentielles, J. Math. Pures et Appl., 4e série, 1, 167–244.Google Scholar
[Pom] Ch., Pommerenke (1992) Boundary Behavior of Conformal Maps. Springer.Google Scholar
[PT1] K., Pilgrim and Tan, Lei (1999) On disc-annulus surgery of rational maps, in Proceedings ofthe International Conference in Honor of Professor Shantao Liao, eds. Y., JiangandL., Wen, pp. 237–250. World Scientific.Google Scholar
[PT2] K., Pilgrim and Tan, Lei (2000) Rational maps with disconnected Julia set, Astérisque 261, 349–384.Google Scholar
[PZ] C. L., Petersen and S., Zakeri (2004) On the Julia set of a typical quadratic polynomial with a Siegel disk, Ann. Math. (2) 159, 1–52.Google Scholar
[R] J., Riedl (2000) Arcs in multibrot sets, locally connected Julia sets and their construction by quasiconformal surgery, PhD thesis, Technische Universität München Zentrum Mathematik.Google Scholar
[Ro] R. C., Robinson (2004) An Introduction to Dynamical Systems. Northwestern University.Google Scholar
[Roh] S., Rohde (1997) Bilipschitz maps and the modulus of rings, Ann. Acad. Sci. Fen. Math. 22, 465–474.Google Scholar
[Rü] H., Rüssman (1967) Über die Iteration analytischer Funcionen (in German), J. Math. Mech 17, 523–532.Google Scholar
[RS] P. J., Rippon and G. M., Stallard (eds.) (2008) Transcendental Dynamics and Complex Analysis. Cambridge University Press.
[Sc] D., Schleicher (ed.) (2009) Complex Dynamics: Families and Friends. A.K. Peters.
[Sh1] M., Shishikura (1987) On the quasiconformal surgery of rational functions, Ann. Sci. Ec. Norm. Sup. 20, 1–29.Google Scholar
[Sh2] M., Shishikura (1998) The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets. Ann. of Math. 147, 225–267.Google Scholar
[Sh3] M., Shishikura (2000) On a theorem of M. Rees for matings of polynomials, in The Mandelbrot Set, Theme and Variations, pp. 289–305. Cambridge University Press.Google Scholar
[Shu] M., Shub (1970) Expanding maps, in Global Analysis, AMS Proc. of Symp. XIV, pp. 273–276. American Mathematical Society.Google Scholar
[Si] C. L., Siegel (1942) Iteration of analytic functions, Ann. of Math. 43, 607–612.Google Scholar
[Sl] Z., Slodkowski (1991) Holomorphic motions and polynomial hulls, Proc. Amer. Math. Soc. 111, 347–355.Google Scholar
[St] N., Steinmetz (1993) Rational Iteration: Complex Analytic Dynamical Systems. Walter de Gruyter.Google Scholar
[Su1] D., Sullivan (1983) Conformal dynamical systems, in Geometric Dynamics (Rio de Janeiro, 1981), pp. 725–752. Springer.Google Scholar
[Su2] D., Sullivan (1985) Quasiconformal homeomorphisms and dynamics. I. Solution of the Fatou-Julia problem on wandering domains. Ann. of Math. 122, 401–418.Google Scholar
[ST] D., Sullivan and W. P., Thurston (1986) Extending holomorphic motions, Acta Math. 157, 243–257.Google Scholar
[Sw1] G., Świa̧tek (1988) Rational rotation numbers for maps of the circle, Comm. Math. Phys. 119, 109–128.Google Scholar
[Sw2] G., Świa̧tek (1998) On critical circle homeomorphisms, Bol. Soc. Bras. Mat. (N. S.), 29, 329–351.Google Scholar
[Ta1] Tan, L. (1992) Matings of quadratic polynomials, Erg. Th. Dyn. Syst. 12, 589–620.Google Scholar
[Ta2] Tan, L. (ed.) (2000) The Mandelbrot Set, Theme and Variations. Cambridge University Press.
[Tu1] P., Tukia (1986) On quasiconformal groups, J. Analyse Math. 46, 318–346.Google Scholar
[Tu2] P., Tukia (1991) Compactness properties of μ-homeomorphisms, Ann. Acad. Sci. Fenn. Ser. A I Math. 16, 47–69.Google Scholar
[TY] Tan, L. and Yin, Y. (1996) Local connectivity of the Julia set for geometrically finite rational maps, Sci. China Ser. A 39, 39–47Google Scholar
[Why] S., Whyburn (1942) Analytic Topology, AMS Coll. Publ. 28.Google Scholar
[Yo1] J.-C., Yoccoz (1988) Linéarisation des germes de difféomorphismes holomorphes de (ℂ, 0), C.R. Acad. Sci. Paris 306, 55–58.Google Scholar
[Yo2] J.-C., Yoccoz (1989) Structure des orbites des homéomorphismes analytiques posedant un point critique (unpublished manuscript).
[Yo3] J.-C., Yoccoz, Conjugaison des diffeomorphismes analytiques du cercle (unpublished manuscript).
[Yo4] J.-C., Yoccoz (1992) An introduction to small divisors problems, in From Number Theory to Physics, pp. 659–679. Springer-Verlag.Google Scholar
[YZ] M., Yampolsky and S., Zakeri (2001) Mating Siegel quadratic polynomials, J. Amer. Math. Soc. 14, 25–78.Google Scholar
[Z1] S., Zakeri (1999) Dynamics of cubic Siegel polynomials, Comm. Math. Phys. 206, 185–233.Google Scholar
[Z2] S., Zakeri (2010) On Siegel disks of a class of entire maps, Duke Math. J. 152, 481–532.Google Scholar
[Zh] G., Zhang (2011) All bounded type Siegel disks of rational maps are quasidisks, Ivent. Math. 185, 421–466.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Bodil Branner, Technical University of Denmark, Lyngby, Núria Fagella, Universitat de Barcelona
  • Book: Quasiconformal Surgery in Holomorphic Dynamics
  • Online publication: 05 February 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107337602.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Bodil Branner, Technical University of Denmark, Lyngby, Núria Fagella, Universitat de Barcelona
  • Book: Quasiconformal Surgery in Holomorphic Dynamics
  • Online publication: 05 February 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107337602.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Bodil Branner, Technical University of Denmark, Lyngby, Núria Fagella, Universitat de Barcelona
  • Book: Quasiconformal Surgery in Holomorphic Dynamics
  • Online publication: 05 February 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107337602.012
Available formats
×