Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-03T13:13:31.043Z Has data issue: false hasContentIssue false

11 - The Effects of Humans on the Primate Nutritional Landscape

A Review

from Part III - Climate Change in the Anthropocene

Published online by Cambridge University Press:  25 January 2019

Alison M. Behie
Affiliation:
Australian National University, Canberra
Julie A. Teichroeb
Affiliation:
University of Toronto, Scarborough
Nicholas Malone
Affiliation:
University of Auckland
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aktar, W., Sengupta, D. & Chowdhury, A. (2009). Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary Toxicology, 2(1), 112.Google Scholar
Altmann, J. & Alberts, S. C. (2005). Growth rates in a wild primate population: ecological influences and maternal effects. Behavioral Ecology and Sociobiology, 57(5),490501.Google Scholar
Altmann, J. & Muruthi, P. (1988). Differences in daily life between semiprovisioned and wild-feeding baboons. American Journal of Primatology, 15, 213–21.Google Scholar
Altmann, S. A., Post, D. G. & Klein, D. F. (1987). Nutrients and toxins of plants in Amboseli, Kenya. African Journal of Ecology, 25(4), 279–93.CrossRefGoogle Scholar
Altmann, J., Schoeller, D., Altmann, S. A., Muruthi, P. & Sapolsky, R. M. (1993). Body size and fatness of free-living baboons reflect food availability and activity levels. American Journal of Primatology, 30(2), 149–61.Google Scholar
Arroyo-Rodriguez, V. & Dias, P. A. D. (2010). Effects of habitat fragmentation and disturbance on howler monkeys: a review. American Journal of Primatology, 72, 16.Google Scholar
Banks, W. A., Altmann, J., Sapolsky, R. M., Phillips-Conroy, J. E. & Morley, J. E. (2003). Serum leptin levels as a marker for a syndrome x-like condition in wild baboons. Journal of Clinical Endocrinology and Metabolism, 88, 1234–40.Google Scholar
Baranga, D., Chapman, C. A., Mucunguzi, P. & Reyna-Hurtado, R. (2014). Fragments and food: red-tailed monkey abundance in privately owned forest fragments of Central Uganda. In Marsh, L. & Chapman, C. A. (eds) Primates in Fragments: Complexity and Resilience. New York: Springer Science Business, pp. 213–25.Google Scholar
Bicca-Marques, J. C. & Calegaro-Marques, C. (1994). Exotic plant species can serve as staple food sources for wild howler populations. Folia Primatologica, 63, 209–11.CrossRefGoogle ScholarPubMed
Biegelmeyer, R., Mello Andrade, J. M., Aboy, A. L., et al. (2011). Comparative analysis of the chemical composition and antioxidant activity of red (Psidium cattleianum) and yellow (Psidium cattleianum var. lucidum) strawberry guava fruit. Food Chemistry, 76, C991C996.Google Scholar
Boyle, S. A. & Smith, A. T. (2010). Can landscape and species characteristics predict primate presence in forest fragments in the Brazilian Amazon? Biological Conservation, 143, 1134–43.Google Scholar
Campera, M., Serra, V., Balestri, M., et al. (2014). Effects of habitat quality and seasonality on ranging patterns of collared brown lemur (Eulemur collaris) in littoral forest fragments. International Journal of Primatology, 35, 957–75.Google Scholar
Cancelliere, E. C., DeAngelis, N., Nkurunungi, J. B., Raubenheimer, D. & Rothman, J. M. (2014). Minerals in the foods eaten by mountain gorillas (Gorilla beringei). PLoS One, 9(11), e112117.CrossRefGoogle ScholarPubMed
Chapman, C. A., Chapman, L. J., Bjorndal, K. A. & Onderdonk, D. A. (2002). Application of protein-to-fiber ratios to predict colobine abundance on different spatial scales. International Journal of Primatology, 23(2), 283310.Google Scholar
Chapman, C. A., Chapman, L. J., Naughton-Treves, L., Lawes, M. J. & McDowell, L. R. (2004a). Predicting folivorous primate abundance: validation of a nutritional model. American Journal of Primatology, 62(2), 5569.Google Scholar
Chapman, C. A., Chapman, L. J., Struhsaker, T. T., et al. (2004b). A long-term evaluation of fruit phenology: importance of climate change. Journal of Tropical Ecology, 21, 114.Google Scholar
Chapman, C. A., Wasserman, M. D., Gillespie, T. R., et al. (2006). Do nutrition, parasitism, and stress have synergistic effects on red colobus populations living in forest fragments? American Journal of Physical Anthropology, 131, 525–34.Google Scholar
Chapman, C. A., Struhsaker, T. T., Skorupa, J., Snaith, T. V. & Rothman, J. M. (2010). Understanding long-term primate community dynamics: implications for forest change. Ecological Applications, 20, 179–91.Google Scholar
Chaves, O. M., Stoner, K. E. & Arroyo-Rodriguez, V. (2012). Differences in diet between spider monkey groups living in forest fragments and continuous forest in Mexico. Biotropica, 44, 105–33.CrossRefGoogle Scholar
Colborn, T., vom Saal, F. S. & Soto, A. M. (1993). Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environmental Health Perspectives, 101, 378–84.Google Scholar
Dela, J. D. S. (2011). Western purple-faced langurs (Semnopithecus vetulus nestor) feed on ripe and ripening fruits in human-modified environments in Sri Lanka. International Journal of Primatology, 33(1), 4072.Google Scholar
Dunbar, R. I. M. (1998). Impact of global warming on the distribution and survival of the gelada baboon: a modeling approach. Global Change Biology, 4, 293304.Google Scholar
Dunham, A., Erhart, E. M. & Wright, P. C. (2011). Global climate cycles and cyclones: consequences for rainfall patterns and lemur reproduction in southeastern Madagascar. Global Change Biology, 17, 219–27.Google Scholar
Eppley, T. M., Donati, G., Ramanamanjato, J. B., et al. (2015). The use of an invasive species habitat by a small folivorous primate: implications for lemur conservation in Madagascar. PLoS One, 10, e0140981.Google Scholar
Fashing, P. J., Nguyen, N., Venkataraman, V. V. & Kerby, JT. (2014). Gelada feeding ecology in an intact ecosystem at Guassa, Ethiopia: variability over time and implications for theropith and hominin dietary evolution. American Journal of Physical Anthropology, 155, 116.Google Scholar
Felton, A. M., Felton, A., Lindenmayer, D. B. & Foley, W. J. (2009a). Nutritional goals of wild primates. Functional Ecology, 23, 70–8.CrossRefGoogle Scholar
Felton, A. M., Felton, A., Raubenheimer, D., et al. (2009b). Protein content of diets dictates the daily energy intake of a free-ranging primate. Behavioral Ecology, 20(4), 685–90.Google Scholar
Fuentes, A., Kalchik, S., Gettler, L., et al. (2008). Characterizing human–macaque interactions in Singapore. American Journal of Primatology, 70, 879–83.Google Scholar
Ganzhorn, J. U. (1992). Leaf chemistry and the biomass of folivorous primates in tropical forests: tests of a hypothesis. Oecologia, 91, 540–7.Google Scholar
Gessa, S. J. & Rothman, J. M. (2018). The role of public relations in primate conservation: examples from Uganda. In preparation.Google Scholar
Gogarten, J. F., Guzman, M., Chapman, C. A., et al. (2012). What is the predictive power of the colobine protein-to-fiber model and its conservation value? Tropical Conservation Science, 5, 381–93.Google Scholar
Gogarten, J. F., Jacob, A. L., Ghai, R. R., et al. (2015). Group size dynamics over 15+ years in an African forest primate community. Biotropica, 47, 101–12.Google Scholar
Hambali, K., Ismail, A., Zulkifli, S. Z. & Amir, A. (2012). Human–macaque conflict and pest behaviors of long-tailed macaques (Macaca fascicularis) in Kuala Selangor Nature Park. Tropical Natural History, 12, 189205.Google Scholar
Harcourt, A. H., Coppeto, S. A. & Parks, S. A. (2002). Rarity, specialization and extinction in primates. Journal of Biogeography, 29, 445–56.Google Scholar
Harcourt, C. (1987). Brief trap/retrap study of the brown mouse lemur (Microcebus rufus). Folia Primatologica, 49, 209–11.Google Scholar
Harris, T. R. & Chapman, C. A. (2007). Variation in diet and ranging of black and white colobus monkeys in Kibale National Park, Uganda. Primates, 48, 208–21.Google Scholar
Hill, C. M. (2017). Primate crop feeding behavior, crop protection, and conservation. International Journal of Primatology, 2, 385400.Google Scholar
IPCC. (2002). Climate Change and Biodiversity. IPCC Technical Paper V. Geneva: IPCC.Google Scholar
Irwin, M. T. (2008). Feeding ecology of Propithecus diadema in forest fragments and continuous forest. International Journal of Primatology, 29, 95115.Google Scholar
Irwin, M. T., Raharison, J. L., Raubenheimer, D., Chapman, C. A. & Rothman, J. M. (2014). Nutritional correlates of the ‘lean season’: effects of seasonality and frugivory on the nutritional ecology of diademed sifakas. American Journal of Physical Anthropology, 153, 7891.Google Scholar
Irwin, M. T., Raharison, J. L., Raubenheimer, D. R., Chapman, C. A. & Rothman, J. M. (2015). The nutritional geometry of resource scarcity: effects of lean seasons and habitat disturbance on nutrient intakes and balancing in wild sifakas. PLoS One, 10(6), e0128046.CrossRefGoogle ScholarPubMed
Johnson, C. A., Raubenheimer, D., Chapman, C. A., et al. (2017). Macronutrient balancing affects patch departure by guerezas (Colobus guereza). American Journal of Primatology, 79, e22495.CrossRefGoogle ScholarPubMed
Kemnitz, J. W., Sapolsky, R. M., Muruthi, P., Mott, G. E. & Stefanick, M. L. (2002). Effects of food availability on serum insulin and lipid concentrations in free-ranging baboons. American Journal of Primatology, 57, 1319.Google Scholar
King, S. J., Arrigo-Nelson, S., Pochron, S. T., et al. (2005). Dental senescence in a long-lived primate links infant survival to rainfall. Proceedings of the National Academy of Sciences, 102, 16579–83.Google Scholar
Kirkpatrick, R. L. & Pekins, P. J. (2002). Nutritional value of acorns for wildlife. In McShea, W. J. & Healy, W. M. (eds) Oak Forest Ecosystems: Ecology and Management for Wildlife. Baltimore, MD: Johns Hopkins University Press, pp. 173–81.Google Scholar
Krief, S., Cibot, M., Bortolamiol, S., et al. (2014). Wild chimpanzees on the edge: nocturnal activites in croplands. PLoS One, 9, e109925.Google Scholar
Krief, S., Berny, P., Gumisiriza, F., et al. (2017). Agricultural expansion as risk to endangered wildlife: pesticide exposure in wild chimpanzees and baboons displaying facial dysplasia. Science of the Total Environment, 598, 647–56.CrossRefGoogle ScholarPubMed
Kurita, H., Sugiyama, Y., Ohsawa, H., Hamada, Y. & Watanabe, T. (2008). Changes in demographic parameters of Macaca fuscata at Takasakiyama in relation to decrease in provisioned foods. International Journal of Primatology, 29, 1189–202.Google Scholar
Lambert, J. E. (2002a). Digestive retention times in forest guenons (Cercopithecus spp.) with reference to chimpanzee (Pan troglodytes). International Journal of Primatology, 23, 1169–85.Google Scholar
Lambert, J. E. (2002b). Resource switching in guenons: a community analysis of dietary flexibility. In Glenn, M. & Cords, M. (eds) The Guenons: Diversity and Adaptation in African Monkeys. New York: Kluwer Academic Press, pp. 303–17.Google Scholar
Lee, J., Jung, W. Y., Lee, G., et al. (2012). Heavy metal concentrations in hair of newly imported China-origin rhesus macaques (Macaca mulatta). Laboratory Animal Research, 28, 151–4.CrossRefGoogle ScholarPubMed
Mallapur, A. (2013). Macaque tourism: implications for their management and conservation. In Radhakrishna, S. (ed.) The Macaque Connection: Cooperation and Conflict Between Humans and Macaques, London: Springer Science and Businees Media, pp. 93105.Google Scholar
Marechal, L., Semple, S., Majolo, B. & MacLarnon, A. (2016). Assessing the effects of tourist provisioning on the health of wild Barbary macaques in Morocco. PLoS One, 11, e0155920.Google Scholar
Mau, M., Sudekum, K. H., Johann, A., Sliwa, A. & Kaiser, T. M. (2009). Saliva of the graminivorous Theropithecus gelada lacks proline-rich proteins and tannin-binding capacity. American Journal of Primatology, 71, 663–9.Google Scholar
Mbora, D. N. M. & Meikle, D. B. (2004). Forest fragmentation and the distribution, abundance and conservation of the Tana river red colobus. Biological Conservation, 2004, 6777.Google Scholar
McKinney, T. (2011). The effects of provisioning and crop raiding on the diet and foraging activities of human-commensal white-faced capuchins (Cebus capucinus). American Journal of Primatology, 73, 439–48.Google Scholar
McLennan, M. R. & Ganzhorn, J. U. (2017). Nutritional characteristics of wild and cultivated foods for chimpanzees (Pan troglodytes) in agricultural landscapes. International Journal of Primatology, 38, 122–50.Google Scholar
Milton, K. (1999). Nutritional characteristics of wild primate foods: do the diets of our closest living relatives have lessons for us? Nutrition, 15, 488–98.Google Scholar
Moser, S. C. & Ekstrom, J. A. (2010). A framework to diagnose barriers to climate change. Proceedings of the National Academy of Sciences, 107, 22026–31.Google Scholar
Mostafalou, S. & Abdollahi, M. (2013). Pesticides and human chronic diseases: evidences, mechanisms, and perspectives. Toxicology and Applied Pharmacology, 268, 157–77.Google Scholar
Muruthi, P., Altmann, J. & Altmann, S. (1991). Resource base, parity, and reproductive condition affect females’ feeding time and nutrient intake within and between groups of baboon populations. Oecologia, 87, 467–72.Google Scholar
Naughton-Treves, L., Treves, A., Chapman, C. & Wrangham, R. (1998). Temporal patterns of crop-raiding by primates: linking food availability in croplands and adjacent forest. Journal of Applied Ecology, 35, 596606.Google Scholar
O’Leary, H. O. & Fa, J. E. (1993). Effects of tourists on Barbary macaques at Gibraltar. Folia Primatologica, 61, 7791.Google Scholar
Oates, J. F. (1974). The Ecology and Behaviour of the Black-and-White Colobus Monkey (Colobus guereza Ruppell) in East Africa. London: University of London.Google Scholar
Onderdonk, D. A. & Chapman, C. A. (2000). Coping with forest fragmentation: the primates of Kibale National Park, Uganda. International Journal of Primatology, 21, 587611.Google Scholar
Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review in Ecolology and Evolutionary Systematics, 37, 637–9.Google Scholar
Parmesan, C. & Yohe, G. A. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 3742.Google Scholar
Pragatheesh, A. (2011). Effect of human feeding on the road mortality of rhesus macaques on National Highway 7 routed along Pench Tiger Reserve, India. Journal of Threatened Taxa, 3, 1656–62.Google Scholar
Rainwater, T. R., Sauther, M. L., Rainwater, K. A. E., et al. (2009). Assessment of organochlorine pesticides and metals in ring-tailed lemurs (Lemur catta) at Beza Mahafaly Special Reserve, Madagascar. American Journal of Primatology, 71, 9981010.Google Scholar
Raubenheimer, D., Simpson, S. J. & Mayntz, D. (2009). Nutrition, ecology and nutritional ecology: toward an integrated framework. Functional Ecology, 23, 416.Google Scholar
Riley, E. P., Tolbert, B. & Farida, W. R. (2013). Nutritional content explains the attractiveness of cacao to crop raiding Tonkean macaques. Current Zoology, 59, 160–9.Google Scholar
Rode, K. D., Chapman, C. A., Chapman, L. J. & McDowell, L. R. (2003). Mineral resource availability and consumption by colobus in Kibale National Park, Uganda. International Journal of Primatology, 24, 541–73.Google Scholar
Rothman, J. M., Dierenfeld, E. S., Molina, D. O., et al. (2006a). Nutritional chemistry of foods eaten by gorillas in Bwindi Impenetrable National Park, Uganda. American Journal of Primatology, 68, 675–91.Google ScholarPubMed
Rothman, J. M., Pell, A. N., Nkurunungi, J. B., et al. (2006b). Nutritional aspects of the diet of wild gorillas: how do Bwindi gorillas compare? In Newton-Fisher, N. E., Notman, H., Paterson, J. D. & Reynolds, V. (eds) Primates of Western Uganda. New York: Kluwer Academic, pp.153–69.Google Scholar
Rothman, J. M., Van Soest, P. J. & Pell, A. N. (2006c). Decaying wood is a sodium source for mountain gorillas. Biology Letters, 2, 321–4.Google Scholar
Rothman, J. M., Raubenheimer, D. & Chapman, C. A. (2011). Nutritional geometry: gorillas prioritize non-protein energy while consuming surplus protein. Biology Letters, 7, 847–9.Google Scholar
Rothman, J. M., Makombo, J., Tumwesigye, C., Rwetsiba, A. & Chapman, C. A. (2014). Integrating research into primate conservation: insights from Uganda. American Journal of Physical Anthropology, 153, 225.Google Scholar
Rothman, J. M., Chapman, C. A., Struhsaker, T. T., et al. (2015). Long-term declines in nutritional quality of tropical leaves. Ecology, 96, 873–8.Google Scholar
Saj, T., Sicotte, P. & Paterson, J. D. (1999). Influence of human food consumption on the behaviour of vervets. International Journal of Primatology, 70, 977–94.Google Scholar
Sarnaik, S. S., Kanekar, P. P., Raut, V. M., et al. (2006). Effect of application of different pesticides to soybean on the soil microflora. Journal of Environmental Biology, 37(2), 423–6.Google Scholar
Seiler, N. & Robbins, M. M. (2015). Behavioural flexibility by mountain gorillas when ranging on community land and feeding on crops. Folia Primatologica, 86, 356357.Google Scholar
Seiler, N. & Robbins, M. M. (2016). Factors influencing ranging on community land and crop raiding by mountain gorillas. Animal Conservation, 19, 176–88.Google Scholar
Serio-Silva, J. C., Olguin, E. J., Garcia-Feria, L., Tapia-Fierro, K. & Chapman, C. A. (2015). Cascading impacts of anthropogenically driven habitat loss: deforestation, flooding, and possible lead poisoning in howler monkeys (Alouatta pigra). Primates, 56, 2935.Google Scholar
Sherry, S. P. (1971). The Black Wattle (Acacia mernsii De Wild). Pietermaritzburg: University of Natal Press.Google Scholar
Ssebugere, P., Wasswa, J., Mbabazi, J., et al. (2010). Organochlorine pesticides in soils from south-western Uganda. Chemosphere, 78, 1250–5.Google Scholar
Stephenson, R. A., Kurashina, H., Iverson, T. J. & Chiang, L. N. (2002). Visitors’ perceptions of cultural improprieties in Bali, Indonesia. Journal of National Parks, 12, 156–69.Google Scholar
Strier, K. B. (2009). Seeding the forest through the seeds: mechanisms of primate behavioral diversity from individuals to populations and beyond. Current Anthropology, 50, 213–28.Google Scholar
Tan, C. L. (1999). Group composition, home range size, and diet of three sympatric bamboo lemur species (genus Hapalemur) in Ranomafana National Park, Madagascar. International Journal of Primatology, 20, 547–66.Google Scholar
Tecot, S. R. (2007). Seasonality and predictability: the hormonal and behavioral responses of the red-bellied lemur, Eulemur rubriventer, in southeastern Madagascar. PhD dissertation, University of Texas at Austin.Google Scholar
Wimberger, K., Nowak, K. & Hill, R. A. (2017). Reliance on exotic plants by two groups of threatened samango monkeys, Cercopithecus albogularis labiatus, at their southern range limit. International Journal of Primatology, 38, 151–71.Google Scholar
Wong, S. N. P. & Sicotte, P. (2007). Activity budget and ranging patterns of Colobus vellerosus in forest fragments in Central Ghana. Folia Primatologica, 78, 245–54.Google Scholar
Worman, C. O. & Chapman, C. A. (2006). Densities of two frugivorous primates with respect to forest and fragment tree species composition and fruit availability. International Journal of Primatology, 27, 203–25.Google Scholar
Wright, P. C. (2007). Considering climate change effects in lemur ecology and conservation. In Gould, L. & Sauther, M. L. (eds) Lemurs: Ecology and Adapatation. New York: Springer Science and Business Media, pp. 385401.Google Scholar
Yamashita, N. (1996). Seasonality and site specificity of mechanical dietary patterns in two Malagasy lemur families (Lemuridae and Indriidae). International Journal of Primatology, 17(3), 355–87.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×