Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-06T08:28:17.225Z Has data issue: false hasContentIssue false

Chapter 9 - Collaborating with the Microbiology Laboratory

Published online by Cambridge University Press:  06 April 2018

Tamar F. Barlam
Affiliation:
Boston Medical Center
Melinda M. Neuhauser
Affiliation:
Department of Veteran Affairs
Pranita D. Tamma
Affiliation:
The Johns Hopkins University School of Medicine
Kavita K. Trivedi
Affiliation:
Trivedi Consults, LLC.
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dellit, TH, Owens, RC, McGowan, JE Jr., Gerding, DN, Weinstein, RA, Burke, JP, et al. Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America guidelines for developing an institutional program to enhance antimicrobial stewardship. Clin Infect Dis 2007; 44(2):159177.CrossRefGoogle Scholar
Barlam, TF, Cosgrove, SE, Abbo, LM, MacDougall, C, Schuetz, AN, Septimus, EJ, et al. Implementing an antibiotic stewardship program: guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin Infect Dis 2016; 62(10):e51–77.Google Scholar
Procop, GW, Winn, W, Microbiology Resource Committee CoAP. Outsourcing microbiology and offsite laboratories. Implications on patient care, cost savings, and graduate medical education. Arch Pathol Lab Med 2003; 127(5):623624.Google Scholar
Bauer, KA, Perez, KK, Forrest, GN, Goff, DA. Review of rapid diagnostic tests used by antimicrobial stewardship programs. Clin Infect Dis 2014; 59(Suppl 3):S134–145.Google Scholar
Baron, EJ, Miller, JM, Weinstein, MP, Richter, SS, Gilligan, PH, Thomson, RB Jr., et al. A guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2013 recommendations by the Infectious Diseases Society of America (IDSA) and the American Society for Microbiology (ASM). Clin Infect Dis 2013; 57(4):e22e121.Google Scholar
Park, GE, Kang, CI, Wi, YM, Ko, JH, Lee, WJ, Lee, JY, et al. Case-control study of the risk factors for acquisition of Pseudomonas and Proteus species during tigecycline therapy. Antimicrob Agents Chemother 2015; 59(9):58305833.Google Scholar
Clinical and Laboratory Standards Institute (CaLSI). Analysis and presentation of cumulative antimicrobial susceptibility test data: approved guideline – 4th edition. CLSI document M39–4A, 2014.Google Scholar
Hindler, JF, Stelling, J. Analysis and presentation of cumulative antibiograms: a new consensus guideline from the Clinical and Laboratory Standards Institute. Clin Infect Dis 2007; 44(6):867873.Google Scholar
Magee, JT. Effects of duplicate and screening isolates on surveillance of community and hospital antibiotic resistance. J Antimicrob Chemother 2004; 54(1):155162.Google Scholar
Shannon, KP, French, GL. Validation of the NCCLS proposal to use results only from the first isolate of a species per patient in the calculation of susceptibility frequencies. J Antimicrob Chemother 2002; 50(6):965969.Google Scholar
Binkley, S, Fishman, NO, LaRosa, LA, Marr, AM, Nachamkin, I, Wordell, D, et al. Comparison of unit-specific and hospital-wide antibiograms: potential implications for selection of empirical antimicrobial therapy. Infect Control Hosp Epidemiol 2006; 27(7):682687.Google Scholar
Kaufman, D, Haas, CE, Edinger, R, Hollick, G. Antibiotic susceptibility in the surgical intensive care unit compared with the hospital-wide antibiogram. Arch Surg 1998; 133(10):10411045.Google Scholar
Saxena, S, Ansari, SK, Raza, MW, Dutta, R. Antibiograms in resource limited settings: are stratified antibiograms better? Infect Dis (London) 2015; 48(4):299302.Google Scholar
Zatorski, C, Jordan, JA, Cosgrove, SE, Zocchi, M, May, L. Comparison of antibiotic susceptibility of Escherichia coli in urinary isolates from an emergency department with other institutional susceptibility data. Am J Health Syst Pharm 2015; 72(24):21762180.CrossRefGoogle ScholarPubMed
Dahle, KW, Korgenski, EK, Hersh, AL, Srivastava, R, Gesteland, PH. Clinical value of an ambulatory-based antibiogram for uropathogens in children. J Pediatric Infect Dis Soc 2012; 1(4):333336.Google Scholar
McGregor, JC, Bearden, DT, Townes, JM, Sharp, SE, Gorman, PN, Elman, MR, et al. Comparison of antibiograms developed for inpatients and primary care outpatients. Diagn Microbiol Infect Dis 2013; 76(1):7379.Google Scholar
Ferrer, R, Martin-Loeches, I, Phillips, G, Osborn, TM, Townsend, S, Dellinger, RP, et al. Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock from the first hour: results from a guideline-based performance improvement program. Crit Care Med 2014; 42(8):17491755.Google Scholar
Christoff, J, Tolentino, J, Mawdsley, E, Matushek, S, Pitrak, D, Weber, SG. Optimizing empirical antimicrobial therapy for infection due to gram-negative pathogens in the intensive care unit: utility of a combination antibiogram. Infect Control Hosp Epidemiol 2010; 31(3):256261.Google Scholar
Hsu, AJ, Carroll, KC, Milstone, AM, Avdic, E, Cosgrove, SE, Vilasoa, M, et al. The use of a combination antibiogram to assist with the selection of appropriate antimicrobial therapy for carbapenemase-producing Enterobacteriaceae infections. Infect Control Hosp Epidemiol 2015; 36(12):14581460.CrossRefGoogle ScholarPubMed
Randhawa, V, Sarwar, S, Walker, S, Elligsen, M, Palmay, L, Daneman, N. Weighted-incidence syndromic combination antibiograms to guide empiric treatment of critical care infections: a retrospective cohort study. Crit Care 2014; 18(3):R112.CrossRefGoogle ScholarPubMed
Hebert, C, Ridgway, J, Vekhter, B, Brown, EC, Weber, SG, Robicsek, A. Demonstration of the weighted-incidence syndromic combination antibiogram: an empiric prescribing decision aid. Infect Control Hosp Epidemiol 2012; 33(4):381388.CrossRefGoogle ScholarPubMed
Var, SK, Hadi, R, Khardori, NM. Evaluation of regional antibiograms to monitor antimicrobial resistance in Hampton Roads. Virginia. Ann Clin Microbiol Antimicrob 2015; 14:22.Google Scholar
Moehring, RW, Hazen, KC, Hawkins, MR, Drew, RH, Sexton, DJ, Anderson, DJ. Challenges in preparation of cumulative antibiogram reports for community hospitals. J Clin Microbiol 2015; 53(9):29772982.Google Scholar
Avdic, E, Carroll, KC. The role of the microbiology laboratory in antimicrobial stewardship programs. Infect Dis Clin North Am 2014; 28(2):215235.Google Scholar
Forrest, GN. PNA FISH: present and future impact on patient management. Expert Rev Mol Diagn 2007; 7(3):231236.CrossRefGoogle ScholarPubMed
Forrest, GN, Mankes, K, Jabra-Rizk, MA, Weekes, E, Johnson, JK, Lincalis, DP, et al. Peptide nucleic acid fluorescence in situ hybridization-based identification of Candida albicans and its impact on mortality and antifungal therapy costs. J Clin Microbiol 2006; 44(9):33813383.Google Scholar
Forrest, GN, Mehta, S, Weekes, E, Lincalis, DP, Johnson, JK, Venezia, RA. Impact of rapid in situ hybridization testing on coagulase-negative staphylococci positive blood cultures. J Antimicrob Chemother 2006; 58(1):154158.Google Scholar
Forrest, GN, Roghmann, MC, Toombs, LS, Johnson, JK, Weekes, E, Lincalis, DP, et al. Peptide nucleic acid fluorescent in situ hybridization for hospital-acquired enterococcal bacteremia: delivering earlier effective antimicrobial therapy. Antimicrob Agents Chemother 2008; 52(10):35583563.Google Scholar
Jabra-Rizk, MA, Johnson, JK, Forrest, G, Mankes, K, Meiller, TF, Venezia, RA. Prevalence of Candida dubliniensis fungemia at a large teaching hospital. Clin Infect Dis 2005; 41(7):10641067.Google Scholar
Ly, T, Gulia, J, Pyrgos, V, Waga, M, Shoham, S. Impact upon clinical outcomes of translation of PNA FISH-generated laboratory data from the clinical microbiology bench to bedside in real time. Ther Clin Risk Manag 2008; 4(3):637640.Google ScholarPubMed
Heil, EL, Johnson, JK. Impact of CLSI breakpoint changes on microbiology laboratories and antimicrobial stewardship programs. J Clin Microbiol 2016; 54(4):840844.CrossRefGoogle ScholarPubMed
Holtzman, C, Whitney, D, Barlam, T, Miller, NS. Assessment of impact of peptide nucleic acid fluorescence in situ hybridization for rapid identification of coagulase-negative staphylococci in the absence of antimicrobial stewardship intervention. J Clin Microbiol 2011; 49(4):15811582.Google Scholar
Wong, JR, Bauer, KA, Mangino, JE, Goff, DA. Antimicrobial stewardship pharmacist interventions for coagulase-negative staphylococci positive blood cultures using rapid polymerase chain reaction. Ann Pharmacother 2012; 46(11):14841490.Google Scholar
Carver, PL, Lin, SW, DePestel, DD, Newton, DW. Impact of mecA gene testing and intervention by infectious disease clinical pharmacists on time to optimal antimicrobial therapy for Staphylococcus aureus bacteremia at a University Hospital. J Clin Microbiol 2008; 46(7):23812383.Google Scholar
Bauer, KA, West, JE, Balada-Llasat, JM, Pancholi, P, Stevenson, KB, Goff, DA. An antimicrobial stewardship program’s impact with rapid polymerase chain reaction methicillin-resistant Staphylococcus aureus/S. aureus blood culture test in patients with S. aureus bacteremia. Clin Infect Dis 2010; 51(9):10741080.Google Scholar
Nguyen, DT, Yeh, E, Perry, S, Luo, RF, Pinsky, BA, Lee, BP, et al. Real-time PCR testing for mecA reduces vancomycin usage and length of hospitalization for patients infected with methicillin-sensitive staphylococci. J Clin Microbiol 2010; 48(3):785790.Google Scholar
Frye, AM, Baker, CA, Rustvold, DL, Heath, KA, Hunt, J, Leggett, JE, et al. Clinical impact of a real-time PCR assay for rapid identification of staphylococcal bacteremia. J Clin Microbiol 2012; 50(1):127133.Google Scholar
Sharff, KA, Monecke, S, Slaughter, S, Forrest, G, Pfeiffer, C, Ehricht, R, et al. Genotypic resistance testing creates new treatment challenges: two cases of oxacillin-susceptible methicillin-resistant Staphylococcus aureus. J Clin Microbiol 2012; 50(12):41514153.Google Scholar
Sango, A, McCarter, YS, Johnson, D, Ferreira, J, Guzman, N, Jankowski, CA. Stewardship approach for optimizing antimicrobial therapy through use of a rapid microarray assay on blood cultures positive for Enterococcus species. J Clin Microbiol 2013; 51(12):40084011.Google Scholar
Box, MJ, Sullivan, EL, Ortwine, KN, Parmenter, MA, Quigley, MM, Aguilar-Higgins, LM, et al. Outcomes of rapid identification for gram-positive bacteremia in combination with antibiotic stewardship at a community-based hospital system. Pharmacotherapy 2015; 35(3):269276.CrossRefGoogle Scholar
Beal, SG, Thomas, C, Dhiman, N, Nguyen, D, Qin, H, Hawkins, JM, et al. Antibiotic utilization improvement with the Nanosphere Verigene Gram-Positive Blood Culture assay. Proc (Bayl Univ Med Cent) 2015; 28(2):139143.Google Scholar
Bork, JT, Leekha, S, Heil, EL, Zhao, L, Badamas, R, Johnson, JK. Rapid testing using the Verigene Gram-negative blood culture nucleic acid test in combination with antimicrobial stewardship intervention against Gram-negative bacteremia. Antimicrob Agents Chemother 2015; 59(3):15881595.Google Scholar
Suzuki, H, Hitomi, S, Yaguchi, Y, Tamai, K, Ueda, A, Kamata, K, et al. Prospective intervention study with a microarray-based, multiplexed, automated molecular diagnosis instrument (Verigene system) for the rapid diagnosis of bloodstream infections, and its impact on the clinical outcomes. J Infect Chemother 2015; 21(12):849856.Google Scholar
Rand, KH, Delano, JP. Direct identification of bacteria in positive blood cultures: comparison of two rapid methods, FilmArray and mass spectrometry. Diagn Microbiol Infect Dis 2014; 79(3):293297.Google Scholar
Rand, KH, Tremblay, EE, Hoidal, M, Fisher, LB, Grau, KR, Karst, SM. Multiplex gastrointestinal pathogen panels: implications for infection control. Diagn Microbiol Infect Dis 2015; 82(2):154157.Google Scholar
Rhein, J, Bahr, NC, Hemmert, AC, Cloud, JL, Bellamkonda, S, Oswald, C, et al. Diagnostic performance of a multiplex PCR assay for meningitis in an HIV-infected population in Uganda. Diagn Microbiol Infect Dis 2016; 84(3):268273.CrossRefGoogle Scholar
Pardo, J, Klinker, KP, Borgert, SJ, Butler, BM, Giglio, PG, Rand, KH. Clinical and economic impact of antimicrobial stewardship interventions with the FilmArray blood culture identification panel. Diagn Microbiol Infect Dis 2016; 84(2):159164.Google Scholar
Ray, ST, Drew, RJ, Hardiman, F, Pizer, B, Riordan, A. Rapid identification of microorganisms by FilmArray(R) blood culture identification panel improves clinical management in children. Pediatr Infect Dis J 2016; 35(5):e134–138.Google Scholar
Banerjee, R, Teng, CB, Cunningham, SA, Ihde, SM, Steckelberg, JM, Moriarty, JP, et al. Randomized trial of rapid multiplex polymerase chain reaction-based blood culture identification and susceptibility testing. Clin Infect Dis 2015; 61(7):10711080.Google Scholar
Laakso, S, Kirveskari, J, Tissari, P, Maki, M. Evaluation of high-throughput PCR and microarray-based assay in conjunction with automated DNA extraction instruments for diagnosis of sepsis. PLoS One 2011; 6(11):e26655.Google Scholar
Tang, YW, Kilic, A, Yang, Q, McAllister, SK, Li, H, Miller, RS, et al. StaphPlex system for rapid and simultaneous identification of antibiotic resistance determinants and Panton-Valentine leukocidin detection of staphylococci from positive blood cultures. J Clin Microbiol 2007; 45(6):18671873.Google Scholar
Duncan, R, Kourout, M, Grigorenko, E, Fisher, C, Dong, M. Advances in multiplex nucleic acid diagnostics for blood-borne pathogens: promises and pitfalls. Expert Rev Mol Diagn 2016; 16(1):8395.Google Scholar
Patel, R. Matrix-assisted laser desorption ionization-time of flight mass spectrometry in clinical microbiology. Clin Infect Dis 2013; 57(4):564572.Google Scholar
Tan, KE, Ellis, BC, Lee, R, Stamper, PD, Zhang, SX, Carroll, KC. Prospective evaluation of a matrix-assisted laser desorption ionization-time of flight mass spectrometry system in a hospital clinical microbiology laboratory for identification of bacteria and yeasts: a bench-by-bench study for assessing the impact on time to identification and cost-effectiveness. J Clin Microbiol 2012; 50(10):33013308.Google Scholar
March-Rossello, GA, Munoz-Moreno, MF, Garcia-Loygorri-Jordan de Urries, MC, Bratos-Perez, MA. A differential centrifugation protocol and validation criterion for enhancing mass spectrometry (MALDI-TOF) results in microbial identification using blood culture growth bottles. Eur J Clin Microbiol Infect Dis 2013; 32(5):699704.Google Scholar
Prod’hom, G, Bizzini, A, Durussel, C, Bille, J, Greub, G. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for direct bacterial identification from positive blood culture pellets. J Clin Microbiol 2010; 48(4):14811483.Google Scholar
Clerc, O, Prod’hom, G, Vogne, C, Bizzini, A, Calandra, T, Greub, G. Impact of matrix-assisted laser desorption ionization time-of-flight mass spectrometry on the clinical management of patients with Gram-negative bacteremia: a prospective observational study. Clin Infect Dis 2013; 56(8):11011107.Google Scholar
Perez, KK, Olsen, RJ, Musick, WL, Cernoch, PL, Davis, JR, Land, GA, et al. Integrating rapid pathogen identification and antimicrobial stewardship significantly decreases hospital costs. Arch Pathol Lab Med 2013; 137(9):12471254.Google Scholar
Huang, AM, Newton, D, Kunapuli, A, Gandhi, TN, Washer, LL, Isip, J, et al. Impact of rapid organism identification via matrix-assisted laser desorption/ionization time-of-flight combined with antimicrobial stewardship team intervention in adult patients with bacteremia and candidemia. Clin Infect Dis 2013; 57(9):12371245.Google Scholar
Tamma, PD, Tan, K, Nussenblatt, VR, Turnbull, AE, Carroll, KC, Cosgrove, SE. Can matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF) enhance antimicrobial stewardship efforts in the acute care setting? Infect Control Hosp Epidemiol 2013; 34(9):990995.Google Scholar
Vlek, AL, Bonten, MJ, Boel, CH. Direct matrix-assisted laser desorption ionization time-of-flight mass spectrometry improves appropriateness of antibiotic treatment of bacteremia. PLoS One 2012; 7(3):e32589.Google Scholar
Wenzler, E, Goff, DA, Mangino, JE, Reed, EE, Wehr, A, Bauer, KA. Impact of rapid identification of Acinetobacter Baumannii via matrix-assisted laser desorption ionization time-of-flight mass spectrometry combined with antimicrobial stewardship in patients with pneumonia and/or bacteremia. Diagn Microbiol Infect Dis 2016; 84(1):6368.Google Scholar
Timbrook, TT, Morton, JB, McConeghy, KW, Caffrey, AR, Mylonakis, E, LaPlante, KL. The effect of molecular rapid diagnostic testing on clinical outcomes in bloodstream infections: a systematic review and meta-analysis. Clin Infect Dis 2017; 64(1):1523.Google Scholar
Mancini, N, Carletti, S, Ghidoli, N, Cichero, P, Burioni, R, Clementi, M. The era of molecular and other non-culture-based methods in diagnosis of sepsis. Clin Microbiol Rev 2010; 23(1):235251.Google Scholar
Lehmann, LE, Hunfeld, KP, Emrich, T, Haberhausen, G, Wissing, H, Hoeft, A, et al. A multiplex real-time PCR assay for rapid detection and differentiation of 25 bacterial and fungal pathogens from whole blood samples. Med Microbiol Immunol 2008; 197(3):313324.Google Scholar
Dark, P, Wilson, C, Blackwood, B, McAuley, DF, Perkins, GD, McMullan, R, et al. Accuracy of LightCycler(R) SeptiFast for the detection and identification of pathogens in the blood of patients with suspected sepsis: a systematic review protocol. BMJ Open 2012; 2(1):e000392.Google Scholar
Mancini, N, Sambri, V, Corti, C, Ghidoli, N, Tolomelli, G, Paolucci, M, et al. Cost-effectiveness of blood culture and a multiplex real-time PCR in hematological patients with suspected sepsis: an observational propensity score-matched study. Expert Rev Mol Diagn 2014; 14(5):623632.CrossRefGoogle Scholar
Suberviola, B, Marquez-Lopez, A, Castellanos-Ortega, A, Fernandez-Mazarrasa, C, Santibanez, M, Martinez, LM. Microbiological diagnosis of sepsis: polymerase chain reaction system versus blood cultures. Am J Crit Care 2016; 25(1):6875.Google Scholar
Tafelski, S, Nachtigall, I, Adam, T, Bereswill, S, Faust, J, Tamarkin, A, et al. Randomized controlled clinical trial evaluating multiplex polymerase chain reaction for pathogen identification and therapy adaptation in critical care patients with pulmonary or abdominal sepsis. J Int Med Res 2015; 43(3):364377.Google Scholar
Dark, P, Blackwood, B, Gates, S, McAuley, D, Perkins, GD, McMullan, R, et al. Accuracy of LightCycler® SeptiFast for the detection and identification of pathogens in the blood of patients with suspected sepsis: a systematic review and meta-analysis. Intensive Care Med 2015; 41(1):2133.Google Scholar
Neely, LA, Audeh, M, Phung, NA, Min, M, Suchocki, A, Plourde, D, et al. T2 magnetic resonance enables nanoparticle-mediated rapid detection of candidemia in whole blood. Sci Transl Med 2013; 5(182):182ra54.Google Scholar
Mylonakis, E, Clancy, CJ, Ostrosky-Zeichner, L, Garey, KW, Alangaden, GJ, Vazquez, JA, et al. T2 magnetic resonance assay for the rapid diagnosis of candidemia in whole blood: a clinical trial. Clin Infect Dis 2015; 60(6):892899.Google Scholar
Douglas, IS, Price, CS, Overdier, KH, Wolken, RF, Metzger, SW, Hance, KR, et al. Rapid automated microscopy for microbiological surveillance of ventilator-associated pneumonia. Am J Respir Crit Care Med 2015; 191(5):566573.CrossRefGoogle ScholarPubMed
Metzger, S, Frobel, RA, Dunne, WM Jr. Rapid simultaneous identification and quantitation of Staphylococcus aureus and Pseudomonas aeruginosa directly from bronchoalveolar lavage specimens using automated microscopy. Diagn Microbiol Infect Dis 2014; 79(2):160165.Google Scholar
Assicot, M, Gendrel, D, Carsin, H, Raymond, J, Guilbaud, J, Bohuon, C. High serum procalcitonin concentrations in patients with sepsis and infection. Lancet 1993; 341(8844):515518.Google Scholar
Barassi, A, Pallotti, F, Melzi d’Eril, G. Biological variation of procalcitonin in healthy individuals. Clin Chem 2004; 50(10):1878.Google Scholar
Cheval, C, Timsit, JF, Garrouste-Orgeas, M, Assicot, M, De Jonghe, B, Misset, B, et al. Procalcitonin (PCT) is useful in predicting the bacterial origin of an acute circulatory failure in critically ill patients. Intensive Care Med 2000; 26(Suppl 2):S153–158.Google Scholar
Simon, L, Gauvin, F, Amre, DK, Saint-Louis, P, Lacroix, J. Serum procalcitonin and C-reactive protein levels as markers of bacterial infection: a systematic review and meta-analysis. Clin Infect Dis 2004; 39(2):206217.Google Scholar
Uzzan, B, Cohen, R, Nicolas, P, Cucherat, M, Perret, GY. Procalcitonin as a diagnostic test for sepsis in critically ill adults and after surgery or trauma: a systematic review and meta-analysis. Crit Care Med 2006; 34(7):19962003.Google Scholar
Schuetz, P, Christ-Crain, M, Thomann, R, Falconnier, C, Wolbers, M, Widmer, I, et al. Effect of procalcitonin-based guidelines vs standard guidelines on antibiotic use in lower respiratory tract infections: the ProHOSP randomized controlled trial. JAMA 2009; 302(10):10591066.Google Scholar
Giamarellou, H, Giamarellos-Bourboulis, EJ, Repoussis, P, Galani, L, Anagnostopoulos, N, Grecka, P, et al. Potential use of procalcitonin as a diagnostic criterion in febrile neutropenia: experience from a multicentre study. Clin Microbiol Infect 2004; 10(7):628633.Google Scholar
Robinson, JO, Lamoth, F, Bally, F, Knaup, M, Calandra, T, Marchetti, O. Monitoring procalcitonin in febrile neutropenia: what is its utility for initial diagnosis of infection and reassessment in persistent fever? PLoS One 2011; 6(4):e18886.Google Scholar
Schuetz, P, Albrich, W, Christ-Crain, M, Chastre, J, Mueller, B. Procalcitonin for guidance of antibiotic therapy. Expert Rev Anti Infect Ther 2010; 8(5):575587.Google Scholar
Schuetz, P, Briel, M, Christ-Crain, M, Stolz, D, Bouadma, L, Wolff, M, et al. Procalcitonin to guide initiation and duration of antibiotic treatment in acute respiratory infections: an individual patient data meta-analysis. Clin Infect Dis 2012; 55(5):651662.Google Scholar
Schuetz, P, Christ-Crain, M, Wolbers, M, Schild, U, Thomann, R, Falconnier, C, et al. Procalcitonin guided antibiotic therapy and hospitalization in patients with lower respiratory tract infections: a prospective, multicenter, randomized controlled trial. BMC Health Serv Res 2007; 7:102.Google Scholar
Schuetz, P, Muller, B, Christ-Crain, M, Stolz, D, Tamm, M, Bouadma, L, et al. Procalcitonin to initiate or discontinue antibiotics in acute respiratory tract infections. Evid Based Child Health 2013; 8(4):12971371.CrossRefGoogle ScholarPubMed
Shehabi, Y, Sterba, M, Garrett, PM, Rachakonda, KS, Stephens, D, Harrigan, P, et al. Procalcitonin algorithm in critically ill adults with undifferentiated infection or suspected sepsis. A randomized controlled trial. Am J Respir Crit Care Med 2014; 190(10):11021110.Google Scholar
Burkhardt, O, Ewig, S, Haagen, U, Giersdorf, S, Hartmann, O, Wegscheider, K, et al. Procalcitonin guidance and reduction of antibiotic use in acute respiratory tract infection. Eur Respir J 2010; 36(3):601607.Google Scholar
Christ-Crain, M, Muller, B. Procalcitonin in bacterial infections – hype, hope, more or less? Swiss Med Wkly 2005; 135(31–32):451460.Google Scholar
Kristoffersen, KB, Sogaard, OS, Wejse, C, Black, FT, Greve, T, Tarp, B, et al. Antibiotic treatment interruption of suspected lower respiratory tract infections based on a single procalcitonin measurement at hospital admission–a randomized trial. Clin Microbiol Infect 2009; 15(5):481487.CrossRefGoogle ScholarPubMed
Stolz, D, Christ-Crain, M, Bingisser, R, Leuppi, J, Miedinger, D, Muller, C, et al. Antibiotic treatment of exacerbations of COPD: a randomized, controlled trial comparing procalcitonin-guidance with standard therapy. Chest 2007; 131(1):919.Google Scholar
Bouadma, L, Luyt, CE, Tubach, F, Cracco, C, Alvarez, A, Schwebel, C, et al. Use of procalcitonin to reduce patients’ exposure to antibiotics in intensive care units (PRORATA trial): a multicentre randomised controlled trial. Lancet 2010; 375(9713):463474.Google Scholar
Hochreiter, M, Kohler, T, Schweiger, AM, Keck, FS, Bein, B, von Spiegel, T, et al. Procalcitonin to guide duration of antibiotic therapy in intensive care patients: a randomized prospective controlled trial. Crit Care 2009; 13(3):R83.Google Scholar
Nobre, V, Harbarth, S, Graf, JD, Rohner, P, Pugin, J. Use of procalcitonin to shorten antibiotic treatment duration in septic patients: a randomized trial. Am J Respir Crit Care Med 2008; 177(5):498505.Google Scholar
Oliveira, CF, Botoni, FA, Oliveira, CR, Silva, CB, Pereira, HA, Serufo, JC, et al. Procalcitonin versus C-reactive protein for guiding antibiotic therapy in sepsis: a randomized trial. Crit Care Med 2013; 41(10):23362343.Google Scholar
Rodriguez, AH, Aviles-Jurado, FX, Diaz, E, Schuetz, P, Trefler, SI, Sole-Violan, J, et al. Procalcitonin (PCT) levels for ruling-out bacterial coinfection in ICU patients with influenza: A CHAID decision-tree analysis. J Infect 2015.Google Scholar
Stocker, M, Fontana, M, El Helou, S, Wegscheider, K, Berger, TM. Use of procalcitonin-guided decision-making to shorten antibiotic therapy in suspected neonatal early-onset sepsis: prospective randomized intervention trial. Neonatology 2010; 97(2):165174.Google Scholar
Wacker, C, Prkno, A, Brunkhorst, FM, Schlattmann, P. Procalcitonin as a diagnostic marker for sepsis: a systematic review and meta-analysis. Lancet Infect Dis 2013; 13(5):426435.Google Scholar
Newton, J, Lim, C., Robinson, S, Kuper, K, Garey, K.W., Trivedi, K.K. Impact of procalcitonin (PCT) guidance on antimicrobial stewardship in a community hospital. Open forum Infect Dis 2015; 2(Supp1 1):217.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×