[1] L., Boltzmann, Theoretical Physics and Philosophical Problems (Dordrecht: Reidel, 1974).
[2] P., Duhem, The Aim and Structure of Physical Theory (Princeton, NJ: Princeton University Press, 1991).
[3] W. V., Quine, Two dogmas of empiricism. Philosophical Review, 60 (1951), 20–43.
[4] L., Susskind & A., Friedman, Quantum Mechanics: The Theoretical Minimum (Basic Books: 2014, 2014).
[5] D. Z., Albert, Quantum Mechanics and Experience (Cambridge, MA: Harvard University Press, 1992).
[6] A., Whitaker, Einstein, Bohr and the Quantum Dilemma: From Quantum Theory to Quantum Information, 2nd ed. (Cambridge: Cambridge University Press, 2006).
[7] H., Margenau, The Nature of Physical Reality (Woodbridge, CT: Ox Bow Press, 1977).
[8] D., Hume, A Treatise of Human Nature, Penguin Classics (London: Penguin Books, 1985).
[9] S. L., Altmann, Is Nature Supernatural? (Amherst, NY: Prometheus Books, 2002).
[10] T. Y., Cao, From Current Algebra to Quantum Chromodynamics: A Case for Structural Realism (Cambridge: Cambridge University Press, 2010).
[11] L., Boltzmann, Populare Schriften (Leipzig: Barth, 1905).
[12] W., James, The Meaning of Truth, Great Books in Philosophy (Amherst, NY: Prometheus Books, 1997).
[13] P. K., Feyerabend, Problems of microphysics. In R. G., Colodny, ed., Frontiers of Science and Philosophy, University of Pittsburgh Series in the Philosophy of Science, Volume 1 (Pittsburg: University of Pittsburgh Press, 1962), pp. 189–283.
[14] T. S., Kuhn, The Structure of Scientific Revolutions, 3rd ed. (Chicago: University of Chicago Press, 1996).
[15] A. A. P., Videira, Atomisme epistémologique et pluralisme théorique dans la pensée de Boltzmann, PhD Thesis, University of Paris VII (1992).
[16] M. B., Ribeiro, A. A. P., Videira, Dogmatism and theoretical pluralism in modern cosmology. Apeiron, 5 (1998), 227–234.
[17] B. C. van, Fraassen, The Scientific Image (Oxford: Oxford University Press, 1980).
[18] C., Cercignani, Ludwig Boltzmann: The Man Who Trusted Atoms (Oxford: Oxford University Press, 1998).
[19] K. G., Wilson & J. B., Kogut, The renormalization group and the expansion. Physics Reports, 12 (1974), 75–200.
[20] P. A. M., Dirac, The inadequacies of quantum field theory. In B. N., Kursunoglu and E. P., Wigner, eds., Reminiscences about a Great Physicist: Paul Adrien Maurice Dirac (Cambridge: Cambridge University Press, 1987), pp. 194–198.
[21] P. A. M., Dirac, Directions in Physics (New York: Wiley, 1978).
[22] T. Y., Cao, Conceptual Developments of 20th Century Field Theories (Cambridge: Cambridge University Press, 1997).
[23] R., Dworkin, Religion without God (Cambridge, MA: Harvard University Press, 2013).
[24] S. Y., Auyang, How Is Quantum Field Theory Possible? (New York: Oxford University Press, 1995).
[25] B., Russell, On the notion of cause. Proceedings of the Aristotelian Society, 13 (1912), 1–26.
[26] I., Kant, Critik der reinen Vernunft (Riga: Hartknoch, 1781).
[27] M. von, Laue, Erkenntnistheorie und Relativitatstheorie. In Gesammelte Schriften und Vortrage, Band III (Braunschweig: Vieweg, 1961), pp. 159–167.
[28] A., Lasenby, C., Doran, & S., Gull, Gravity, gauge theories and geometric algebra. Philosophical Transactions of the Royal Society of London A, 356 (1998), 487–582.
[29] E., Wigner, On unitary representations of the inhomogeneous Lorentz group. Annals of Mathematics, 40 (1939), 149–204.
[30] A., Duncan, The Conceptual Framework of Quantum Field Theory (Oxford: Oxford University Press, 2012).
[31] A., Kolmogoroff, Grundbegriffe der Wahrscheinlichkeitsrechnung (Berlin: Springer, 1933).
[32] H., Bauer, Probability Theory and Elements of Measure Theory, 2nd ed. (London: Academic Press, 1981).
[33] A. L., Fetter & J. D., Walecka, Quantum Theory of Many-Particle Systems, International Series in Pure and Applied Physics (New York: McGraw-Hill, 1971).
[34] J. D., Bjorken & S. D., Drell, Relativistic Quantum Fields, International Series in Pure and Applied Physics (New York: McGraw-Hill, 1965).
[35] M. E., Fisher & M. N., Barber, Scaling theory for finite-size effects in the critical region. Physical Review Letters, 28 (1972), 1516–1519.
[36] V., Privman (Ed.), Finite Size Scaling and Numerical Simulations of Statistical Systems (Singapore: World Scientific, 1990).
[37] L., Ruetsche, Interpreting Quantum Theories (Oxford: Oxford University Press, 2011).
[38] J. S., Briggs, A derivation of the time-energy uncertainty relation. Journal of Physics: Conference Series, Journal of Physics: Conference Series (99), 2008.
[39] H. C., Öttinger, Beyond Equilibrium Thermodynamics (Hoboken, NJ: Wiley, 2005).
[40] H., Price, Time's arrow and Eddington's challenge. In B., Duplantier, ed., Time: Poincaré Seminar 2010, Progress in Mathematical Physics, Volume 63 (Basel: Birkhauser, 2013), pp. 187–215.
[41] H., Price, Time's Arrow and Archimedes' Point (New York: Oxford University Press, 1996).
[42] M., Kuhlmann, The Ultimate Constituents of the Material World: In Search of an Ontology for Fundamental Physics, Philosophical Analysis, Volume 37 (Frankfurt: Ontos Verlag, 2010).
[43] A. N., Gorban, N., Kazantzis, I. G., Kevrekidis, H. C., Öttinger, & C., Theodoropoulos, eds., Model Reduction and Coarse-Graining Approaches for Multiscale Phenomena (Berlin: Springer, 2006).
[44] W. G., Hoover, Time Reversibility, Computer Simulation, and Chaos, Advanced Series in Nonlinear Dynamics, Volume 13 (Singapore: World Scientific, 1999).
[45] D. Z., Albert, Time and Chance (Cambridge, MA: Harvard University Press, 2000).
[46] T., Petrosky & I., Prigogine, Poincaré resonances and the extension of classical dynamics. Chaos, Solitons & Fractals, 7(1996), 441–497.
[47] T., Petrosky & I., Prigogine, The Liouville space extension of quantum mechanics. Advances in Chemical Physics, 99 (1997), 1–120.
[48] T. Y., Petrosky & I., Prigogine, Poincaré's theorem and unitary transformations for classical and quantum systems. Physica A, 147 (1988), 439–460.
[49] R. de la, Madrid, The role of the rigged Hilbert space in quantum mechanics. European Journal of Physics, 26 (2005), 287–312.
[50] S. A., Rice, Obituary for Ilya Prigogine. Physics Today, 57/4 (2004), 102–103.
[51] G. C., Ghirardi, A., Rimini & T., Weber, Unified dynamics for microscopic and macroscopic systems. Physics Review D, 34 (1986), 470–491.
[52] V., Allori, S., Goldstein, R., Tumulka, & N., Zanghı, On the common structure of Bohmian mechanics and the Ghirardi-Rimini-Weber theory. British Journal for the Philosophy of Science, 59 (2008), 353–389.
[53] T., Maudlin, Three measurement problems. Topoi, 14 (1995), 7–15.
[54] R. P., Feynman, Simulating physics with computers. International Journal of Theoretical Physics, 21 (1982), 467–488.
[55] M., Gell-Mann, What are the building blocks of matter? In D., Huff and O., Prewett, eds., The Nature of the Physical Universe: Nobel Conference, 1976 (New York: Wiley, 1979), pp. 27–45.
[56] J. A., Barrett, Entanglement and disentanglement in relativistic quantum mechanics. Studies in History and Philosophy of Modern Physics, 48 (2014), 168–174.
[57] B., Schroer, Modular localization and the holistic structure of causal quantum theory, a historical perspective. Studies in History and Philosophy of Modern Physics, 49 (2015), 109–147.
[58] P., Teller, An Interpretive Introduction to Quantum Field Theory (Princeton, NJ: Princeton University Press, 1995).
[59] D., Malament, In defense of dogma: Why there cannot be a relativistic quantum mechanics of (localizable) particles. In R., Clifton, ed., Perspectives on Quantum Reality (Dordrecht: Kluwer, 1996), pp. 1–10.
[60] G. C., Hegerfeldt, Instantaneous spreading and Einstein causality in quantum theory. Annalen der Physik (Leipzig), 7 (1998), 716–725.
[61] G. C., Hegerfeldt, Particle localization and positivity of the energy in quantum theory. In A., Bohm, H.-D., Doebner, and P., Kielanowski, eds., Irreversibility and Causality: Semigroups and Rigged Hilbert Spaces, Lecture Notes in Physics, Volume 504 (Berlin: Springer, 1998), pp. 238–245.
[62] J. W., Gibbs, Elementary Principles in Statistical Mechanics (New York: Charles Scribner's Sons, 1902).
[63] D., Fraser, The fate of ‘particles’ in quantum field theories with interactions. Studies in History and Philosophy of Modern Physics, 39 (2008), 841–859.
[64] P. A. M., Dirac, The Principles of Quantum Mechanics (Oxford: Clarendon Press, 1930).
[65] M. E., Peskin & D. V., Schroeder, An Introduction to Quantum Field Theory (Reading, MA: Perseus Books, 1995).
[66] A., Zee, Quantum Field Theory in a Nutshell, 2nd ed. (Princeton, NJ: Princeton University Press, 2010).
[67] R. P., Feynman, Space-time approach to non-relativistic quantum mechanics. Review of Modern Physics, 20 (1948), 367–387.
[68] S., Weinberg, Foundations, Vol. 1 of The Quantum Theory of Fields (Cambridge: Cambridge University Press, 2005).
[69] H., Goldstein, Classical Mechanics, 2nd ed. (Reading, MA: Addison-Wesley, 1980).
[70] R. M., Santilli, The Inverse Problem in Newtonian Mechanics, Vol. I of Foundations of Theoretical Mechanics (Berlin: Springer, 1978).
[71] D., Wallace, In defence of naiveté: The conceptual status of Lagrangian quantum field theory. Synthese, 151 (2006), 33–80.
[72] R., Haag, D., Kastler, An algebraic approach to quantum field theory. Journal of Mathematical Physics, 5 (1964), 848–861.
[73] R., Haag, Local Quantum Physics: Fields, Particles, Algebras, 2nd ed., Texts and Monographs in Physics (Berlin: Springer, 1996).
[74] A. S., Wightman, Quantum field theory in terms of vacuum expectation values. Physical Review, 101 (1956), 860–866.
[75] H. C., Öttinger, Kinetic theory and stochastic simulation of field quanta. Physical Review D, Physical Review D (90), 2014.
[76] C., Becchi, A., Rouet, R., Stora, Renormalization of gauge theories. Annals of Physics (N.Y.), 98 (1976), 287–321.
[77] I. V., Tyutin, Gauge invariance in field theory and statistical physics in operator formalism, preprint of P. N. Lebedev Physical Institute, No. 39, 1975, arXiv:0812.0580 (1975).
[78] J. D., Bjorken, S. D., Drell, Relativistic Quantum Mechanics, International Series in Pure and Applied Physics (New York: McGraw-Hill, 1964).
[79] C., Itzykson, J. B., Zuber, Quantum Field Theory, International Series in Pure and Applied Physics (New York: McGraw-Hill, 1980).
[80] S., Weinberg, Modern Applications, Vol. 2 of The Quantum Theory of Fields (Cambridge: Cambridge University Press, 2005).
[81] S., Weinberg, Supersymmetry, Vol. 3 of The Quantum Theory of Fields (Cambridge: Cambridge University Press, 2005).
[82] E., Abdalla, M. C. B., Abdalla, K. D., Rothe, Non-Perturbative Methods in 2 Dimensional Quantum Field Theory (Singapore: World Scientific, 1991).
[83] H.-P., Breuer, F., Petruccione, The Theory of Open Quantum Systems (Oxford: Oxford University Press, 2002).
[84] H. C., Öttinger, The geometry and thermodynamics of dissipative quantum systems. Europhysics Letters
94 (2011), 10006.
[85] D., Taj, H. C., Öttinger, Natural approach to quantum dissipation. Physical Review A, 92 (2015), 062128.
[86] R., Kubo, Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. Journal of the Physical Society of Japan, 12 (1957), 570–586.
[87] P. C., Martin, J., Schwinger, Theory of many-particle systems. I. Physical Review, 115 (1959), 1342–1373.
[88] G., Lindblad, On the generators of quantum dynamical semigroups. Communications in Mathematical Physics, 48 (1976), 119–130.
[89] H. C., Öttinger, Dynamic coarse-graining approach to quantum field theory. Physical Review, D 84 (2011), 065007.
[90] H. C., Öttinger, Nonlinear thermodynamic quantum master equation: Properties and examples. Physical Review A, 82 (2010), 052119.
[91] E. B., Davies, Markovian master equations. Communication in Mathematical Physics, 39 (1974), 91–110.
[92] C. W., Gardiner, P., Zoller, Quantum Noise: A Handbook of Markovian and Non- Markovian Quantum Stochastic Methods with Applications to Quantum Optics, 3rd ed., Springer Series in Synergetics, Volume 56 (Berlin: Springer, 2004).
[93] P. G. de, Gennes, Scaling Concepts in Polymer Physics (Ithaca, NY: Cornell University Press, 1979).
[94] J. des, Cloizeaux, G., Jannink, Polymers in Solution: Their Modelling and Structure (Oxford: Clarendon Press, 1990).
[95] K. F., Freed, Renormalization Group Theory of Macromolecules, (New York: Wiley, 1987).
[96] Y., Oono, Statistical physics of polymer solutions: Conformation-space renormalization-group approach. Advances in Chemical Physics, 61 (1985), 301–437.
[97] H. C., Öttinger, Dynamic renormalization in the framework of nonequilibrium thermodynamics, Physical Review E, 79 (2009), 021124.
[98] H. C., Öttinger, Y., Rabin, Renormalization-group calculation of viscometric functions based on conventional polymer kinetic theory, Journal of Non-Newtonian Fluid Mechanics, 33 (1989), 53–93.
[99] H., Kleinert, V., Schulte-Frohlinde, Critical Properties of ϕ4-Theories (Singapore: World Scientific, 2001).
[100] L., Pietronero, The fractal structure of the universe: Correlations of galaxies and clusters and the average mass density. Physica A, 144 (1987), 257–284.
[101] E., Brézin, J. C. L., Guillon, J., Zinn-Justin, Field theoretical approach to critical phenomena. In: C., Domb, M. S., Green, eds., The Renormalization Group and Its Applications, Vol. 6 of Phase Transitions and Critical Phenomena (London: Academic Press, 1976), pp. 125–247.
[102] S., Weinberg, Critical phenomena for field theorists. In: A., Zichichi, ed., Understanding the Fundamental Constituents of Matter, Proceedings of the 1976 International School of Subnuclear Physics, The Subnuclear Series, Volume 14 (New York: Plenum Press, 1978), pp. 1–52.
[103] C. N., Yang, R. L., Mills, Conservation of isotopic spin and isotopic gauge invariance, Physical Review, 96 (1954), 191–195.
[104] J., Flakowski, M., Schweizer, H. C., Öttinger, Stochastic process behind nonlinear thermodynamic quantum master equation. II. Simulation. Physical Review A, 86 (2012), 032102.
[105] H. C., Öttinger, Stochastic process behind nonlinear thermodynamic quantum master equation. I. Mean-field construction, Physical Review A, 86 (2012), 032101.
[106] F. M., Kronz, Quantum entanglement and nonideal measurements: A critique of Margenau's objections to the projection postulate. Synthese, 89 (1991), 229–251.
[107] S., Friederich, Interpreting Quantum Theory: A Therapeutic Approach (Basingstoke, UK: Palgrave Macmillan, 2015).
[108] A., Einstein, B., Podolsky, N., Rosen, Can quantum-mechanical description of physical reality be considered complete?
Physical Review, 47 (1935), 777–780.
[109] J. S., Bell, On the Einstein-Podolsky-Rosen paradox. Physics, 1 (1964), 195–200.
[110] J. S., Bell, On the problem of hidden variables in quantum mechanics. Reviews of Modern Physics, 38 (1966), 447–452.
[111] M., Born, W., Heisenberg, P., Jordan, Zur Quantenmechanik II. Zeitschrift für Physik, 35 (1926), 557–615.
[112] P. A. M., Dirac, The quantum theory of the emission and absorption of radiation. Proc. Roy. Soc. Proceedings of the Royal Society of London A, 114 (1927), 243–265.
[113] P., Jordan, O., Klein, Zum Mehrkorperproblem in der Quantentheorie, Zeitschrift für Physik, 45 (1927), 751–765.
[114] P., Jordan, E., Wigner, Über das Paulische Aquivalenzverbot. Zeitschrift fur Physik 47 (1928), 631–651.
[115] W., Heisenberg, W., Pauli, Zur Quantendynamik der Wellenfelder, Zeitschrift für Physik, 56 (1929), 1–61.
[116] V., Fock, Konfigurationsraum und zweite Quantelung. Zeitschrift für Physik, 75 (1932), 622–647.
[117] J., Glimm, A., Jaffe, Constructive Quantum Field Theory, Vol. 2 of Collected Papers (Boston: Birkhauser, 1985).
[118] D. C., Brydges, J., Frohlich, A. D., Sokal, A new proof of the existence and nontriviality of the continuum ϕ
4 and ϕ
4 quantum field theories. Communication in Mathematical Physics, 91 (1983), 141–186.
[119] J., Zinn-Justin, Quantum Field Theory and Critical Phenomena, 4th ed., International Series of Monographs on Physics, Volume 113 (Oxford: Oxford University Press, 2002).
[120] F. J., Dyson, Divergence of perturbation theory in quantum electrodynamics. Physical Review, 85 (1952), 631–632.
[121] S. N., Gupta, Theory of longitudinal photons in quantum electrodynamics. Proceedings of the Physical Society A, 63 (1950), 681–691.
[122] K., Bleuler, Eine neue Methode zur Behandlung der longitudinalen und skalaren Photonen. Helvetica Physica Acta, 23 (1950), 567–586.
[123] O. M., Boyarkin, Particles, Fields, and Quantum Electrodynamics, Vol. I of Advanced Particle Physics (Boca Raton, FL: Taylor & Francis, 2011).
[124] C., Cohen-Tannoudji, J., Dupont-Roc, G., Grynberg, Photons and Atoms: Introduction to Quantum Electrodynamics (New York: Wiley, 1989).
[125] J., Schwinger, Field theory commutators. Physical Review Letters, 3 (1959), 296–297.
[126] K., Nishijima, R., Sasaki, Nature of the Schwinger term in spinor electrodynamics. Progress of Theoretical Physics, 53 (1975), 1809–1812.
[127] J., Kubo, An analysis on the convergence of equal-time commutators and the closure of the BRST algebra in Yang-Mills theories. Nuclear Physics B, 427 (1994), 398–424.
[128] T., Kinoshita (Ed.), Quantum Electrodynamics, Advanced Series on Directions in High Energy Physics, Volume 7 (Singapore: World Scientific, 1990).
[129] D., Nemeschansky, C., Preitschopf, M., Weinstein, A BRST primer. Annals of Physics (N.Y.), 183 (1988), 226–268.
[130] C. S., Gardner, J. M., Greene, M. D., Kruskal, R. M., Miura, Method for solving the Korteweg-deVries equation. Physical Review Letters, 19 (1967), 1095–1097.
[131] H. B., Thacker, Polynomial conservation laws in (1 + 1)-dimensional classical and quantum field theory. Physical Review, D 17 (1978), 1031–1040.
[132] J., Honerkamp, P., Weber, A., Wiesler, On the connection between the inverse transform method and the exact quantum eigenstates. Nuclear Physics B, 152 (1979), 266–272.
[133] L. D., Faddeev, Quantum completely integral models of field theory. Soviet Scientific Reviews C, 1 (1980), 107–155.
[134] H. C., Öttinger, Correlation functions for n species of one-dimensional impenetrable bosons. Physica A, 107 (1981), 423–430.
[135] L., Faddeev, Instructive history of the quantum inverse scattering method. Acta Applicandae Mathematicae, 39 (1995), 69–84.
[136] C. N., Yang, Some exact results for the many-body problem in one dimension with repulsive delta-function interaction. Physical Review Letters, 19 (1967), 1312–1315.
[137] R. J., Baxter, Partition function of the eight-vertex lattice model. Annals of Physics, 70 (1972), 193–228.
[138] A. B., Zamolodchikov, Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models, Annals of Physics, 120 (1979), 253–291.
[139] H. C., Öttinger, J., Honerkamp, Note on the Yang-Baxter equations for generalized Baxter models. Physics Letters A, 88 (1982), 339–343.
[140] J., Schwinger, Gauge invariance and mass. II. Physical Review, 128 (1962), 2425–2429.
[141] J. H., Lowenstein, J. A., Swieca, Quantum electrodynamics in two dimensions. Annals of Physics, 68 (1971), 172–195.
[142] J. B., Kogut, L., Susskind, How quark confinement solves the η → 3π problem. Physical Review D, 11 (1975), 3594–3610.
[143] F., Englert, R., Brout, Broken symmetry and the mass of gauge vector mesons. Physical Review Letters, 13 (1964), 321–323.
[144] P. W., Higgs, Broken symmetries and the masses of gauge bosons. Physical Review Letters, 13 (1964), 508–509.
[145] G. S., Guralnik, C. R., Hagen, T.W. B., Kibble, Global conservation laws and massless particles. Physical Review Letters, 13 (1964), 585–587.
[146] M. B., Halpern, Equivalent-boson method and free currents in two-dimensional gauge theories. Physical Review D, 13 (1976), 337–342.
[147] D. C., Mattis, E. H., Lieb, Exact solution of a many-fermion system and its associated boson field. Journal of Mathematical Physics, 6 (1965), 304–312.
[148] S., Mandelstam, Soliton operators for the quantized sine-Gordon equation. Physical Review D, 11 (1975), 3026–3030.
[149] H., Lehmann, K., Symanzik, W., Zimmermann, Zur Formulierung quantisierter Feldtheorien. Nuovo Cimento, 1 (1955), 205–225.
[150] R., Haag, Quantum field theories with composite particles and asymptotic conditions. Physical Review, 112 (1958), 669–673.
[151] D., Ruelle, On the asymptotic condition in quantum field theory. Helvetica Physica Acta, 35 (1962), 147–163.
[152] HRS Collaboration, Experimental study of the reactions e+ e− → e+ e− and e+ e− → γ γ at 29 GeV. Physical Review D, 34 (1986) 3286–3303.
[153] DELPHI Collaboration, Determination of the e+ e → γ γ(γ) cross-section at LEP 2. The European Physical Journal C, 37 (2004), 405–419.
[154] I. S., Gradshteyn, I. M., Ryzhik, Table of Integrals, Series and Products, 4th ed. (San Diego, CA: Academic Press, 1980).
[155] J., Schwinger, On quantum-electrodynamics and the magnetic moment of the electron. Physical Review, 73 (1948), 416–417.
[156] K. G., Wilson, Confinement of quarks. Physical Review D, 10 (1974), 2445–2459.
[157] S., Duane, J. B., Kogut, The theory of hybrid stochastic algorithms. Nuclear Physics B, 275 (1986), 398–420.
[158] S., Gottlieb, W., Liu, D., Toussaint, R. L., Renken, R. L., Sugar, Hybrid-moleculardynamics algorithms for the numerical simulation of quantum chromodynamics. Physical Review D, 35 (1987), 2531–2542.
[159] J. B., Kogut, E., Dagotto, A., Kocic, New phase of quantum electrodynamics: A nonperturbative fixed point in four dimensions. Physical Review Letters, 60 (1988), 772–775.
[160] J. B., Kogut, E., Dagotto, A., Kocic, A supercomputer study of strongly coupled QED. Nuclear Physics B, 317 (1989), 271–301.
[161] S., Kim, J. B., Kogut, M.-P., Lombardo, Gauged Nambu–Jona-Lasinio studies of the triviality of quantum electrodynamics. Physical Review D, 65 (2002), 054015.
[162] M., Gockeler, R., Horsley, E., Laermann, P., Rakow, G., Schierholz, R., Sommer, U.-J., Wiese, QED – A lattice investigation of the chiral phase transition and the nature of the continuum limit. Nuclear Physics B, 334 (1990), 527–558.
[163] M., Gockeler, R., Horsley, P., Rakow, G., Schierholz, R., Sommer, Scaling laws, renormalization group flow and the continuum limit in non-compact lattice QED. Nuclear Physics B, 371 (1992), 713–772.
[164] M., Gockeler, R., Horsley, V., Linke, P. E. L., Rakow, G., Schierholz, H., Stüben, Seeking the equation of state of non-compact lattice QED. Nuclear Physics B, 487 (1997), 313–341.
[165] M., Gockeler, R., Horsley, V., Linke, P., Rakow, G., Schierholz, H., Stüben, Is there a Landau pole problem in QED?
Physical Review Letters, 80 (1998), 4119–4122.
[166] A., Vassallo, M., Esfeld, Leibnizian relationalism for general relativistic physics. Studies in History and Philosophy of Modern Physics, 55 (2016), 101–107.
[167] T., Kugo, I., Ojima, Manifestly covariant canonical formulation of Yang-Mills theories physical state subsidiary conditions and physical S-matrix unitarity. Physics Letters B, 73 (1978), 459–462.
[168] T., Kugo, I., Ojima, Manifestly covariant canonical formulation of the Yang-Mills field theories. I. General formalism. Progress of Theoretical Physics, 60 (1978), 1869–1889.
[169] T., Kugo, I., Ojima, Manifestly covariant canonical formulation of the Yang- Mills field theories. II. SU(2) Higgs-Kibble model with spontaneous symmetry breaking. Progress of Theoretical Physics, 61 (1979), 294–314.
[170] T., Kugo, I., Ojima, Manifestly covariant canonical formulation of the Yang-Mills field theories. III. Pure Yang-Mills theories without spontaneous symmetry breaking. Progress of Theoretical Physics, 61 (1979), 644–655.