Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T03:34:29.780Z Has data issue: false hasContentIssue false

Myopathies

from Part II - Neuromuscular Cases

Published online by Cambridge University Press:  29 November 2024

Jessica E. Hoogendijk
Affiliation:
University Medical Center Utrecht
Marianne de Visser
Affiliation:
Amsterdam University Medical Center
Pieter A. van Doorn
Affiliation:
Erasmus MC, University Medical Center, Rotterdam
Erik H. Niks
Affiliation:
Leiden University Medical Center
Get access
Type
Chapter
Information
Neuromuscular Disease
A Case-Based Approach
, pp. 172
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Suggested Reading

Birnkrant, DJ, Bushby, K, Bann, CM, et al.; DMD Care Considerations Working Group.Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. Lancet Neurol 2018;17(3):251267. doi: 10.1016/S1474-4422(18)30024-3. Epub 2018 Feb 3. Erratum in: Lancet Neurol. 2018 Apr 4: PMID: 29395989; PMCID: PMC5869704.Google Scholar
Birnkrant, DJ, Bushby, K, Bann, CM, et al.; DMD Care Considerations Working Group.Diagnosis and management of Duchenne muscular dystrophy, part 2: respiratory, cardiac, bone health, and orthopaedic management. Lancet Neurol 2018;17(4):347361. doi: 10.1016/S1474-4422(18)30025-5. Epub 2018 Feb 3. PMID: 29395990; PMCID: PMC5889091.Google Scholar
Birnkrant, DJ, Bushby, K, Bann, CM, et al.; DMD Care Considerations Working Group. Diagnosis and management of Duchenne muscular dystrophy, part 3: primary care, emergency management, psychosocial care, and transitions of care across the lifespan. Lancet Neurol 2018;17(5):445455.Google Scholar
Duan, D, Goemans, N, Takeda, S, Mercuri, E, Aartsma-Rus, A. Duchenne muscular dystrophy. Nat Rev Dis Primers 2021;7(1):13. doi: 10.1038/s41572-021-00248-3. PMID: 33602943.Google Scholar

Suggested Reading

Darras, BT, Urion, DK, Ghosh, PS. Dystrophinopathies. 2000 Sep 5 [updated 2022 Jan 20]. In Adam, MP, Mirzaa, GM, Pagon, RA, et al., editors. GeneReviews® [Internet]. Seattle, WA: University of Washington; 1993–2023. PMID: 20301298.Google Scholar
Fratter, C, Dalgleish, R, Allen, SK, et al. EMQN best practice guidelines for genetic testing in dystrophinopathies. Eur J Hum Genet 2020;28(9):11411159. doi: 10.1038/s41431-020-0643-7. Epub 2020 May 18. PMID: 32424326; PMCID: PMC7608854.Google Scholar
Papa, AA, D’Ambrosio, P, Petillo, R, Palladino, A, Politano, L. Heart transplantation in patients with dystrophinopathic cardiomyopathy: review of the literature and personal series. Intractable Rare Dis Res 2017;6(2):95101. doi: 10.5582/irdr.2017.01024. PMID: 28580208; PMCID: PMC5451754.Google Scholar
Straub, V, Guglieri, M. An update on Becker muscular dystrophy. Curr Opin Neurol 2023;36(5):450454. doi: 10.1097/WCO.0000000000001191. Epub 2023 Aug 21. PMID: 37591308; PMCID: PMC10487383.Google Scholar
Tasca, G, Iannaccone, E, Monforte, M, et al. Muscle MRI in Becker muscular dystrophy. Neuromuscul Disord 2012;22 Suppl 2:S100-6. doi: 10.1016/j.nmd.2012.05.015. PMID: 22980760.Google Scholar

Suggested Reading

Goselink, RJM, Mul, K, van Kernebeek, CR, et al. Early onset as a marker for disease severity in facioscapulohumeral muscular dystrophy. Neurology 2019;92(4):e378e385. doi: 10.1212/WNL.0000000000006819. Epub 2018 Dec 19. PMID: 30568007; PMCID: PMC6345117.Google Scholar
Mul, K, Berggren, KN, Sills, MY, et al. Effects of weakness of orofacial muscles on swallowing and communication in FSHD. Neurology 2019;92(9):e957e963. doi: 10.1212/WNL.0000000000007013. Epub 2019 Jan 25. PMID: 30804066; PMCID: PMC6404471.Google Scholar
Mul, K. Facioscapulohumeral muscular dystrophy. Continuum (Minneap Minn) 2022;28(6):17351751. doi: 10.1212/CON.0000000000001155. PMID: 36537978.Google Scholar
Vincenten, SCC, Van Der Stoep, N, Paulussen, ADC, et al. Facioscapulohumeral muscular dystrophy-Reproductive counseling, pregnancy, and delivery in a complex multigenetic disease. Clin Genet 2022;101(2):149160. doi: 10.1111/cge.14031. Epub 2021 Aug 1. PMID: 34297364; PMCID: PMC9291192.Google Scholar

Suggested Reading

Ashizawa, T, Gagnon, C, Groh, WJ, et al. Consensus-based care recommendations for adults with myotonic dystrophy type 1. Neurol Clin Pract 2018;8(6):507520. doi: 10.1212/CPJ.0000000000000531. PMID: 30588381; PMCID: PMC6294540.Google Scholar
Bird, TD. Myotonic dystrophy type 1. 1999 Sep 17 [updated 2021 Mar 25]. In Adam, MP, Mirzaa, GM, Pagon, RA, et al., editors. GeneReviews® [Internet]. Seattle, WA: University of Washington; 1993–2023. PMID: 20301344Google Scholar
Wahbi, K, Furling, D. Cardiovascular manifestations of myotonic dystrophy. Trends Cardiovasc Med 2020;30(4):232238. doi: 10.1016/j.tcm.2019.06.001. Epub 2019 Jun 13. PMID: 31213350.Google Scholar

Suggested Reading

Meola, G. Myotonic dystrophy type 2: the 2020 update. Acta Myol 2020;39(4):222234. doi: 10.36185/2532-1900-026. PMID: 33458578; PMCID: MC7783423.Google Scholar
Schoser, B, Montagnese, F, Bassez, G, et al.; Myotonic Dystrophy Foundation. Consensus-based care recommendations for adults with myotonic dystrophy type 2. Neurol Clin Pract 2019;9(4):343353. doi: 10.1212/CPJ.0000000000000645. PMID: 31583190; PMCID: PMC6745739.Google Scholar
Wenninger, S, Montagnese, F, Schoser, B. Core clinical phenotypes in myotonic dystrophies. Front Neurol 2018;9:303. doi: 10.3389/fneur.2018.00303. PMID: 29770119; PMCID: PMC5941986.Google Scholar

Suggested Reading

Barp, A, Laforet, P, Bello, L, Tasca, G, et al. European muscle MRI study in limb girdle muscular dystrophy type R1/2A (LGMDR1/LGMD2A). J Neurol 2020;267(1):45-56. doi: 10.1007/s00415-019-09539-y. Epub 2019 Sep 25. PMID: 31555977.Google Scholar
Johnson, NE, Statland, JM. The limb-girdle muscular dystrophies. Continuum (Minneap Minn) 2022;28(6):16981714. doi: 10.1212/CON.0000000000001178. PMID: 36537976.Google Scholar
Liewluck, T, Milone, M. Untangling the complexity of limb-girdle muscular dystrophies. Muscle Nerve 2018;58(2):167177. doi: 10.1002/mus.26077. Epub 2018 Feb 7. PMID: 29350766.Google Scholar
Lostal, W, Urtizberea, JA, Richard, I ; Calpain 3 study group. 233rd ENMC International Workshop: clinical trial readiness for calpainopathies, Naarden, the Netherlands, 15-17 September 2017. Neuromuscul Disord 2018;28(6):540549. doi: 10.1016/j.nmd.2018.03.010. Epub 2018 Mar 28. PMID: 29655529.Google Scholar
Spinazzi, M, Poupiot, J, Cassereau, J, et al. Late-onset camptocormia caused by a heterozygous in-frame CAPN3 deletion. Neuromuscul Disord 2021;31(5):450455. doi: 10.1016/j.nmd.2021.02.012. Epub 2021 Feb 14. PMID: 33741228.Google Scholar
Straub, V, Murphy, A, Udd, B ; LGMD workshop study group.229th ENMC International Workshop: limb girdle muscular dystrophies – nomenclature and reformed classification Naarden, the Netherlands, 17-19 March 2017. Neuromuscul Disord 2018;28(8):702710. doi: 10.1016/j.nmd.2018.05.007. Epub 2018 May 24. PMID: 30055862.Google Scholar

Suggested Reading

Bönnemann, CG, Wang, CH, Quijano-Roy, S, et al.; Members of International Standard of Care Committee for Congenital Muscular Dystrophies.Diagnostic approach to the congenital muscular dystrophies. Neuromuscul Disord 2014;24(4):289311. doi: 10.1016/j.nmd.2013.12.011. Epub 2014 Jan 9. PMID: 24581957; PMCID: PMC5258110.Google Scholar
Ten Dam, L, Frankhuizen, WS, Linssen, WHJP, et al. Autosomal recessive limb-girdle and Miyoshi muscular dystrophies in the Netherlands: The clinical and molecular spectrum of 244 patients. Clin Genet 2019;96(2):126133. doi: 10.1111/cge.13544. Epub 2019 May 6. PMID: 30919934.Google Scholar
Murphy, LB, Schreiber-Katz, O, Rafferty, K, et al. Global FKRP registry: observations in more than 300 patients with limb girdle muscular dystrophy R9. Ann Clin Transl Neurol 2020;7(5):757766. doi: 10.1002/acn3.51042. Epub 2020 Apr 28. PMID: 32342672; PMCID: PMC7261761.Google Scholar
Ortiz-Cordero, C, Azzag, K, Perlingeiro, RCR. Fukutin-related protein: from pathology to treatments. Trends Cell Biol 2021;31(3):197210. doi: 10.1016/j.tcb.2020.11.003. Epub 2020 Dec 1. PMID: 33272829; PMCID: PMC8657196.Google Scholar

Suggested Reading

Delbaere, S, Dhooge, T, Syx, D, et al. Novel defects in collagen XII and VI expand the mixed myopathy/Ehlers-Danlos syndrome spectrum and lead to variant-specific alterations in the extracellular matrix. Genet Med. 2020 Jan;22(1):112123. doi: 10.1038/s41436-019-0599-6. Epub 2019 Jul 5. PMID: 31273343.Google Scholar
Foley, AR, Quijano-Roy, S, Collins, J, et al. Natural history of pulmonary function in collagen VI-related myopathies. Brain. 2013 Dec;136(Pt 12):36253633. doi: 10.1093/brain/awt284. Epub 2013 Nov 22. PMID: 24271325; PMCID: PMC3859224.Google Scholar
Foley, AR, Mohassel, P, Donkervoort, S, Bolduc, V, Bönnemann, CG. Collagen VI-related dystrophies. 2004 Jun 25 [updated 2021 Mar 11]. In Adam, MP, Mirzaa, GM, Pagon, RA, et al., editors. GeneReviews® [Internet]. Seattle, WA: University of Washington; 1993–2023. PMID: 20301676.Google Scholar
Jöbsis, GJ, Boers, JM, Barth, PG, de Visser, M. Bethlem myopathy: a slowly progressive congenital muscular dystrophy with contractures. Brain. 1999 Apr;122 (Pt 4):649655. doi: 10.1093/brain/122.4.649. PMID: 10219778.Google Scholar
Salim, R, Dahlqvist, JR, Khawajazada, T, et al. Characteristic muscle signatures assessed by quantitative MRI in patients with Bethlem myopathy. J Neurol. 2020 Aug;267(8):24322442. doi: 10.1007/s00415-020-09860-x. Epub 2020 May 3. PMID: 32363432.Google Scholar

Suggested Reading

Argov, Z, de Visser, M. Dysphagia in adult myopathies. Neuromuscul Disord 2021;31(1):520. doi: 10.1016/j.nmd.2020.11.001. Epub 2020 Nov 13. PMID: 33334661.Google Scholar
Brisson, JD, Gagnon, C, Brais, B, Côté, I, Mathieu, J. A study of impairments in oculopharyngeal muscular dystrophy. Muscle Nerve 2020;62(2):201207. doi: 10.1002/mus.26888. Epub 2020 May 22. PMID: 32270505.Google Scholar
Eura, N, Noguchi, S, Ogasawara, M, et al.; OPDM/OPMD Image Study Group. Characteristics of the muscle involvement along the disease progression in a large cohort of oculopharyngodistal myopathy compared to oculopharyngeal muscular dystrophy. J Neurol 2023 Dec;270(12):59885998. doi: 10.1007/s00415-023-11906-9. Epub 2023. PMID: 37634163.Google Scholar
Kim, HJ, Mohassel, P, Donkervoort, S, et al. Heterozygous frameshift variants in HNRNPA2B1 cause early-onset oculopharyngeal muscular dystrophy. Nat Commun 2022;13(1):2306. doi: 10.1038/s41467-022-30015-1. PMID: 35484142; PMCID: PMC9050844.Google Scholar
Richard, P, Trollet, C, Stojkovic, T, et al.; Neurologists of French Neuromuscular Reference Centers CORNEMUS and FILNEMUS. Correlation between PABPN1 genotype and disease severity in oculopharyngeal muscular dystrophy.Neurology 2017;88(4):359365. doi: 10.1212/WNL.0000000000003554. Epub 2016 Dec 23. PMID: 28011929; PMCID: PMC5272966.Google Scholar
Trollet, C, Boulinguiez, A, Roth, F, et al. Oculopharyngeal muscular dystrophy. 2001 Mar 8 [updated 2020 Oct 22]. In Adam, MP, Mirzaa, GM, Pagon, RA, et al., editors. GeneReviews® [Internet]. Seattle, WA: University of Washington; 1993–2023. PMID: 20301305.Google Scholar

Suggested Reading

Bonne, G, Leturcq, F, Ben, Yaou, R. Emery-Dreifuss muscular dystrophy. 2004 Sep 29 [updated 2019 Aug 15]. In Adam, MP, Mirzaa, GM, Pagon, RA, et al., editors. GeneReviews® [Internet]. Seattle, WA: University of Washington; 1993–2023. PMID: 20301609.Google Scholar
Heller, SA, Shih, R, Kalra, R, Kang, PB. Emery-Dreifuss muscular dystrophy. Muscle Nerve 2020;61(4):436448. doi: 10.1002/mus.26782. Epub 2019 Dec 28. PMID: 31840275; PMCID: PMC7154529.Google Scholar

Suggested Reading

Dubey, D, Beecher, G, Hammami, MB, et al. Identification of caveolae-associated protein 4 autoantibodies as a biomarker of immune-mediated rippling muscle disease in adults. JAMA Neurol 2022;79(8):808816. doi: 10.1001/jamaneurol.2022.1357. PMID: 35696196; PMCID: PMC9361081.Google Scholar
Scalco, RS, Gardiner, AR, Pitceathly, RD, et al. CAV3 mutations causing exercise intolerance, myalgia and rhabdomyolysis: Expanding the phenotypic spectrum of caveolinopathies. Neuromuscul Disord 2016;26(8):504510. doi: 10.1016/j.nmd.2016.05.006. Epub 2016 May 11. PMID: 27312022.Google Scholar

Suggested Reading

Bugiardini, E, Morrow, JM, Shah, S, et al. The diagnostic value of MRI pattern recognition in distal myopathies. Front Neurol 2018;9:456. doi: 10.3389/fneur.2018.00456. PMID: 29997562; PMCID: PMC6028608.Google Scholar
El Sherif, R, Hussein, RS, Nishino, I.Boule du biceps’ in dysferlinopathy. Neurology 2020;94(2):8384. doi: 10.1212/WNL.0000000000008782. Epub 2019 Dec 10. PMID: 31822577.Google Scholar
Milone, M, Liewluck, T. The unfolding spectrum of inherited distal myopathies. Muscle Nerve 2019;59(3):283294. doi: 10.1002/mus.26332. Epub 2018 Nov 28. PMID: 30171629.Google Scholar
Moore, U, Gordish, H, Diaz-Manera, J, et al.; Jain COS Consortium.Miyoshi myopathy and limb girdle muscular dystrophy R2 are the same disease. Neuromuscul Disord 2021;31(4):265280. doi: 10.1016/j.nmd.2021.01.009. Epub 2021 Jan 21. PMID: 33610434.Google Scholar
Pegoraro, E, Mendell, JR, Straub, V, Díaz-Manera, J. Expanding the muscle imaging spectrum in dysferlinopathy: description of an outlier population from the classical MRI pattern. Neuromuscul Disord 2023;33(4):349357. doi: 10.1016/j.nmd.2023.02.007. Epub 2023 Mar 2. PMID: 36972667.Google Scholar
Savarese, M, Sarparanta, J, Vihola, A, et al. Panorama of the distal myopathies. Acta Myol 2020;39(4):245265. doi: 10.36185/2532-1900-028. PMID: 33458580; PMCID: PMC7783427.Google Scholar
ten Dam, L, Frankhuizen, WS, Linssen, WHJP, et al. Autosomal recessive limb-girdle and Miyoshi muscular dystrophies in the Netherlands: the clinical and molecular spectrum of 244 patients. Clin Genet 2019;96(2):126133. doi: 10.1111/cge.13544. Epub 2019 May 6. PMID: 30919934.Google Scholar

Suggested Reading

Mullen, J, Alrasheed, K, Mozaffar, T. GNE myopathy: history, etiology, and treatment trials. Front Neurol 2022;13:1002310. doi: 10.3389/fneur.2022.1002310. PMID: 36330422; PMCID: PMC9623016.Google Scholar
Savarese, M, Sarparanta, J, Vihola, A, et al. Panorama of the distal myopathies. Acta Myol 2020;39(4):245265. doi: 10.36185/2532-1900-028. PMID: 33458580; PMCID: PMC7783427.Google Scholar
Yoshioka, W, Nishino, I, Noguchi, S. Recent advances in establishing a cure for GNE myopathy. Curr Opin Neurol 2022;35(5):629636. doi: 10.1097/WCO.0000000000001090. Epub 2022 Aug 11. PMID: 35959526.Google Scholar

Suggested Reading

Carroll, LS, Walker, M, Allen, D, et al. Desminopathy presenting as late onset bilateral facial weakness, with diagnosis supported by lower limb MRI. Neuromuscul Disord 2021;31(3):249252. doi: 10.1016/j.nmd.2020.12.013. Epub 2021 Jan 8. PMID: 33546848.Google Scholar
Carvalho, AAS, Lacene, E, Brochier, G, et al. Genetic mutations and demographic, clinical, and morphological aspects of myofibrillar myopathy in a French cohort. Genet Test Mol Biomarkers 2018;22(6):374383. doi: 10.1089/gtmb.2018.0004. PMID: 29924655Google Scholar
Fichna, JP, Maruszak, A, Żekanowski, C. Myofibrillar myopathy in the genomic context. J Appl Genet 2018;59(4):431439. doi: 10.1007/s13353-018-0463-4. Epub 2018 Sep 10. PMID: 30203143.Google Scholar
Jungbluth, H. Myopathology in times of modern imaging. Neuropathol Appl Neurobiol 2017;43(1):2443. doi: 10.1111/nan.12385. PMID: 28111795.Google Scholar
Venturelli, N, Tordjman, M, Ammar, A, et al. Contribution of muscle MRI for diagnosis of myopathy. Rev Neurol (Paris) 2023;179(1-2):6180. doi: 10.1016/j.neurol.2022.12.002. Epub 2022 Dec 21. PMID: 36564254.Google Scholar
Wahbi, K, Béhin, A, Charron, P, et al. High cardiovascular morbidity and mortality in myofibrillar myopathies due to DES gene mutations: a 10-year longitudinal study. Neuromuscul Disord 2012;22(3):211218. doi: 10.1016/j.nmd.2011.10.019. Epub 2011 Dec 5. PMID: 22153487.Google Scholar

Suggested Reading

Dunø, M, Vissing, J. Myotonia congenita. 2005 Aug 3 [updated 2021 Feb 25]. In Adam, MP, Mirzaa, GM, Pagon, RA, et al., editors. GeneReviews® [Internet]. Seattle, WA: University of Washington; 1993–2023. PMID: 20301529.Google Scholar
Matthews, E, Holmes, S, Fialho, D. Skeletal muscle channelopathies: a guide to diagnosis and management. Pract Neurol 2021;21(3):196204. doi: 10.1136/practneurol-2020-002576. Epub 2021 Feb 9. PMID: 33563766.Google Scholar
Sekhon, DS, Vaqar, S, Gupta, V. Hyperkalemic periodic paralysis. 2023 May 8. In StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing; 2023 Jan–. PMID: 33231989.Google Scholar
Siddamreddy, S, Dandu, VH. Thyrotoxic periodic paralysis. 2022 Jul 25. In StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing; 2023 Jan–. PMID: 32809505.Google Scholar
Statland, JM, Fontaine, B, Hanna, MG, et al. Review of the diagnosis and treatment of periodic paralysis. Muscle Nerve 2018;57(4):522530. doi: 10.1002/mus.26009. Epub 2017 Nov 29. PMID: 29125635; PMCID: PMC5867231.Google Scholar
Veerapandiyan, A, Statland, JM, Tawil, R. Andersen-Tawil syndrome. 2004 Nov 22 [updated 2018 Jun 7]. In Adam, MP, Mirzaa, GM, Pagon, RA, et al., editors. GeneReviews® [Internet]. Seattle, WA: University of Washington; 1993–2023. PMID: 20301441.Google Scholar
Vicart, S, Franques, J, Bouhour, F, et al. Efficacy and safety of mexiletine in non-dystrophic myotonias: a randomised, double-blind, placebo-controlled, cross-over study. Neuromuscul Disord 2021;31(11):11241135. doi: 10.1016/j.nmd.2021.06.010. Epub 2021 Jun 27. PMID: 34702654.Google Scholar
Weber, F, Lehmann-Horn, F. Hypokalemic periodic paralysis. 2002 Apr 30 [updated 2018 Jul 26]. In Adam, MP, Mirzaa, GM, Pagon, RA, et al., editors. GeneReviews® [Internet]. Seattle, WA: University of Washington; 1993–2023. PMID: 20301512.Google Scholar

General Remarks and Suggested Reading

See Case 50.

Suggested Reading

Bolano-Diaz, C, Diaz-Manera, J. Therapeutic options for the management of Pompe disease: current challenges and clinical evidence in therapeutics and clinical risk management. Ther Clin Risk Manag 2022;18:10991115. doi: 10.2147/TCRM.S334232. PMID: 36536827; PMCID: PMC9759116.Google Scholar
Diaz-Manera, J, Kishnani, PS, Kushlaf, H, et al.; COMET Investigator Group. Safety and efficacy of avalglucosidase alfa versus alglucosidase alfa in patients with late-onset Pompe disease (COMET): a phase 3, randomised, multicentre trial. Lancet Neurol 2021;20(12):10121026. PMID: 34800399.Google Scholar
Dimachkie, MM, Barohn, RJ, Byrne, B, et al.; NEO-EXT investigators.Long-term safety and efficacy of avalglucosidase alfa in patients with late-onset Pompe disease. Neurology 2022;99(5):e536e548. doi: 10.1212/WNL.0000000000200746. Epub ahead of print. PMID: 35618441; PMCID: PMC9421599.Google Scholar
Harlaar, L, Ciet, P, van Tulder, G, et al. Chest MRI to diagnose early diaphragmatic weakness in Pompe disease. Orphanet J Rare Dis 2021;16(1):21. doi: 10.1186/s13023-020-01627-x. PMID: 33413525; PMCID: PMC7789462.Google Scholar
Schoser, B, Laforet, P. Therapeutic thoroughfares for adults living with Pompe disease. Curr Opin Neurol 2022;35(5):645650. doi: 10.1097/WCO.0000000000001092. Epub 2022 Aug 8. PMID: 35942661.Google Scholar
Schoser, B, Roberts, M, Byrne, BJ, et al.; PROPEL Study Group. Safety and efficacy of cipaglucosidase alfa plus miglustat versus alglucosidase alfa plus placebo in late-onset Pompe disease (PROPEL): an international, randomised, double-blind, parallel-group, phase 3 trial. Lancet Neurol 2021;20(12):10271037. doi: 10.1016/S1474-4422(21)00331-8. Erratum in: Lancet Neurol 2023 Aug 9; PMID: 34800400.Google Scholar
van der Beek, NA, de Vries, JM, Hagemans, ML, et al. Clinical features and predictors for disease natural progression in adults with Pompe disease: a nationwide prospective observational study. Orphanet J Rare Dis 2012;7:88. doi: 10.1186/1750-1172-7-88. PMID: 23147228; PMCID: PMC3551719.Google Scholar
van der Ploeg, AT, Kruijshaar, ME, Toscano, A, et al.; European Pompe Consortium. European consensus for starting and stopping enzyme replacement therapy in adult patients with Pompe disease: a 10-year experience. Eur J Neurol 2017;24(6):768–e31. doi: 10.1111/ene.13285. Epub 2017 May 6. PMID: 28477382.Google Scholar
van der Ploeg, AT, Reuser, AJ. Pompe’s disease. Lancet 2008;372(9646):13421353. doi: 10.1016/S0140-6736(08)61555-X. PMID: 18929906.Google Scholar

Suggested Reading

Godfrey, R, Quinlivan, R. Skeletal muscle disorders of glycogenolysis and glycolysis. Nat Rev Neurol 2016;12(7):393402. doi: 10.1038/nrneurol.2016.75. Epub 2016 May 27. PMID: 27231184.Google Scholar
Kazemi-Esfarjani, P, Skomorowska, E, Jensen, TD, Haller, RG, Vissing, J. A nonischemic forearm exercise test for McArdle disease. Ann Neurol 2002;52(2):153159. doi: 10.1002/ana.10263. PMID: 12210784.Google Scholar
Kruijt, N, van den Bersselaar, LR, Kamsteeg, EJ, et al. The etiology of rhabdomyolysis: an interaction between genetic susceptibility and external triggers. Eur J Neurol 2021;28(2):647659. doi: 10.1111/ene.14553. Epub 2020 Oct 25. PMID: 32978841; PMCID: PMC7821272.Google Scholar
Martín, MA, Lucia, A, Arenas, J, Andreu, AL. Glycogen storage disease type V. 2006 Apr 19 [updated 2019 Jun 20]. In Adam, MP, Mirzaa, GM, Pagon, RA, et al., editors. GeneReviews® [Internet]. Seattle, WA: University of Washington; 1993–2023. PMID: 20301518.Google Scholar
Nance, JR, Mammen, AL. Diagnostic evaluation of rhabdomyolysis. Muscle Nerve 2015;51(6):793810. doi: 10.1002/mus.24606. Epub 2015 Mar 14. PMID: 25678154; PMCID: PMC4437836.Google Scholar
Scalco, RS, Gardiner, AR, Pitceathly, RD, et al. Rhabdomyolysis: a genetic perspective. Orphanet J Rare Dis 2015;10:51. doi: 10.1186/s13023-015-0264-3. PMID: 25929793; PMCID: PMC4522153.Google Scholar
Stahl, K, Rastelli, E, Schoser, B. A systematic review on the definition of rhabdomyolysis. J Neurol 2020;267(4):877882. doi: 10.1007/s00415-019-09185-4. Epub 2019 Jan 7. PMID: 30617905.Google Scholar
Zutt, R, van der Kooi, AJ, Linthorst, GE, Wanders, RJ, de Visser, M. Rhabdomyolysis: review of the literature. Neuromuscul Disord 2014;24(8):651659. doi: 10.1016/j.nmd.2014.05.005. Epub 2014 May 21. PMID: 24946698. dGoogle Scholar

Suggested Reading

Kruijt, N, van den Bersselaar, LR, Kamsteeg, EJ, et al. The etiology of rhabdomyolysis: an interaction between genetic susceptibility and external triggers. Eur J Neurol 2021;28(2):647659. doi: 10.1111/ene.14553. Epub 2020 Oct 25. PMID: 32978841; PMCID: PMC7821272.Google Scholar
Merritt, JL 2nd, Norris, M, Kanungo, S. Fatty acid oxidation disorders. Ann Transl Med 2018;6(24):473. doi: 10.21037/atm.2018.10.57. PMID: 30740404; PMCID: PMC6331364.Google Scholar
Scalco, RS, Gardiner, AR, Pitceathly, RD, et al. Rhabdomyolysis: a genetic perspective. Orphanet J Rare Dis 2015;10:51. doi: 10.1186/s13023-015-0264-3. PMID: 25929793; PMCID: PMC4522153.Google Scholar
Wieser, T. Carnitine palmitoyltransferase II deficiency. 2004 Aug 27 [updated 2019 Jan 3]. In Adam, MP, Mirzaa, GM, Pagon, RA, et al., editors. GeneReviews® [Internet]. Seattle, WA: University of Washington; 1993–2023. PMID: 20301431.Google Scholar

Suggested Reading

Chinnery, PF. Primary mitochondrial disorders overview. 2000 Jun 8 [updated 2021 Jul 29]. In Adam, MP, Mirzaa, GM, Pagon, RA, et al., editors. GeneReviews® [Internet]. Seattle, WA: University of Washington; 1993–2023. PMID: 20301403.Google Scholar
Hathazi, D, Griffin, H, Jennings, MJ, et al. Metabolic shift underlies recovery in reversible infantile respiratory chain deficiency. EMBO J 2020;39(23):e105364. doi: 10.15252/embj.2020105364. Epub 2020 Oct 31. PMID: 33128823; PMCID: PMC7705457.Google Scholar
Heighton, JN, Brady, LI, Sadikovic, B, Bulman, DE, Tarnopolsky, MA. Genotypes of chronic progressive external ophthalmoplegia in a large adult-onset cohort. Mitochondrion 2019;49:227231. doi: 10.1016/j.mito.2019.09.002. Epub 2019 Sep 12. PMID: 31521625.Google Scholar
McClelland, C, Manousakis, G, Lee, MS. Progressive external ophthalmoplegia. Curr Neurol Neurosci Rep 2016;16(6):53. doi: 10.1007/s11910-016-0652-7. PMID: 27072953.Google Scholar
Orsucci, D, Caldarazzo Ienco, E, Rossi, A, Siciliano, G, Mancuso, M. Mitochondrial syndromes revisited. J Clin Med 2021;10(6):1249. doi: 10.3390/jcm10061249. PMID: 33802970; PMCID: PMC8002645.Google Scholar
Parikh, S, Karaa, A, Goldstein, A, et al. Diagnosis of ‘possible’ mitochondrial disease: an existential crisis. J Med Genet 2019;56(3):123130. doi: 10.1136/jmedgenet-2018-105800. Epub 2019 Jan 25. PMID: 30683676.Google Scholar
Quadir, A, Pontifex, CS, Lee Robertson, H, Labos, C, Pfeffer, G. Systematic review and meta-analysis of cardiac involvement in mitochondrial myopathy. Neurol Genet 2019;5(4):e339. doi: 10.1212/NXG.0000000000000339. PMID: 31403078; PMCID: PMC6659349.Google Scholar
Schon, KR, Ratnaike, T, van den Ameele, J, Horvath, R, Chinnery, PF. Mitochondrial diseases: a diagnostic revolution. Trends Genet 2020;36(9):702717. doi: 10.1016/j.tig.2020.06.009. Epub 2020 Jul 13. PMID: 32674947.Google Scholar

Suggested Reading

Claeys, KG. Congenital myopathies: an update. Dev Med Child Neurol 2020;62(3):297302. doi: 10.1111/dmcn.14365. Epub 2019 Oct 2. PMID: 31578728.Google Scholar
Dosi, C, Rubegni, A, Baldacci, J, et al. Using cluster analysis to overcome the limits of traditional phenotype-genotype correlations: the example of RYR1-related myopathies. Genes (Basel) 2023;14(2):298. doi: 10.3390/genes14020298. PMID: 36833224; PMCID: PMC9956305.Google Scholar
Kruijt, N, den Bersselaar, LV, Snoeck, M, et al. RYR1-related rhabdomyolysis: a spectrum of hypermetabolic states due to ryanodine receptor dysfunction. Curr Pharm Des 2022;28(1):214. doi: 10.2174/1381612827666210804095300. PMID: 34348614.Google Scholar
Lawal, TA, Todd, JJ, Witherspoon, JW, et al. Ryanodine receptor 1-related disorders: an historical perspective and proposal for a unified nomenclature. Skelet Muscle 2020;10(1):32. doi: 10.1186/s13395-020-00243-4. PMID: 33190635; PMCID: PMC7667763.Google Scholar
O’Connor, TN, van den Bersselaar, LR, Chen, YS, et al; RYR1 Myopathy Consortium.RYR-1-Related Diseases International Research Workshop: From Mechanisms To Treatments Pittsburgh, PA, U.S.A., 21-22 July 2022. J Neuromuscul Dis 2023;10(1):135154. doi: 10.3233/JND-221609. PMID: 36404556; PMCID: PMC10023165.Google Scholar
Papadimas, GK, Xirou, S, Kararizou, E, Papadopoulos, C. Update on congenital myopathies in adulthood. Int J Mol Sci 2020;21(10):3694. doi: 10.3390/ijms21103694. PMID: 32456280; PMCID: PMC7279481.Google Scholar
Sarkozy, A, Sa, M, Ridout, D, et al. Long-term natural history of pediatric dominant and recessive RYR1-related myopathy. Neurology 2023;101(15):e1495e1508. doi: 10.1212/WNL.0000000000207723. Epub 2023 Aug 29. PMID: 37643885.Google Scholar
Snoeck, M, van Engelen, BG, Küsters, B, et al. RYR1-related myopathies: a wide spectrum of phenotypes throughout life. Eur J Neurol 2015;22(7):10941112. doi: 10.1111/ene.12713. Epub 2015 May 11. PMID: 25960145.Google Scholar

Suggested Reading

Amburgey, K, Tsuchiya, E, de Chastonay, S, et al. A natural history study of X-linked myotubular myopathy. Neurology 2017;89(13):13551364. doi: 10.1212/WNL.0000000000004415. Epub 2017 Aug 25. PMID: 28842446; PMCID: PMC5649758.Google Scholar
Annoussamy, M, Lilien, C, Gidaro, T, et al. X-linked myotubular myopathy: a prospective international natural history study. Neurology 2019;92(16):e1852e1867. doi: 10.1212/WNL.0000000000007319. Epub 2019 Mar 22. PMID: 30902907; PMCID: PMC6550499.Google Scholar
Biancalana, V, Scheidecker, S, Miguet, M, et al. Affected female carriers of MTM1 mutations display a wide spectrum of clinical and pathological involvement: delineating diagnostic clues. Acta Neuropathol 2017;134(6):889904. doi: 10.1007/s00401-017-1748-0. Epub 2017 Jul 6. PMID: 28685322.Google Scholar
D’Amico, A, Longo, A, Fattori, F, et al. Hepatobiliary disease in XLMTM: a common comorbidity with potential impact on treatment strategies. Orphanet J Rare Dis 2021;16(1):425. doi: 10.1186/s13023-021-02055-1. Erratum in: Orphanet J Rare Dis 2022;17(1):18. PMID: 34641930; PMCID: PMC851335.Google Scholar
Graham, RJ, Muntoni, F, Hughes, I, et al. Mortality and respiratory support in X-linked myotubular myopathy: a RECENSUS retrospective analysis. Arch Dis Child 2020;105(4):332338. doi: 10.1136/archdischild-2019-317910. Epub 2019 Sep 4. PMID: 31484632; PMCID: PMC7054136.Google Scholar
Shieh, PB, Kuntz, NL, Dowling, JJ, et al. Safety and efficacy of gene replacement therapy for X-linked myotubular myopathy (ASPIRO): a multinational, open-label, dose-escalation trial. Lancet Neurology 2023; 22 (12):11251139.Google Scholar

Suggested Reading

Ahmed, MI, Iqbal, M, Hussain, N. A structured approach to the assessment of a floppy neonate. J Pediatr Neurosci 2016;11(1):26. doi: 10.4103/1817-1745.181250. PMID: 27195025; PMCID: PMC4862282.Google Scholar
Laitila, J, Wallgren-Pettersson, C. Recent advances in nemaline myopathy. Neuromuscul Disord 2021;31(10):955967. doi: 10.1016/j.nmd.2021.07.012. Epub 2021 Jul 24. PMID: 34561123.Google Scholar
Nicolau, S, Milone M. Sporadic Late-Onset Nemaline Myopathy: Current Landscape. Curr Neurol Neurosci Rep. 2023 Nov;23(11):777–784. doi: 10.1007/s11910-023-01311-0. Epub 2023 Oct 19. PMID: 37856049. Google Scholar
Veneruso, M, Fiorillo, C, Broda, P, et al. The role of muscle biopsy in diagnostic process of infant hypotonia: from clinical classification to the genetic outcome. Front Neurol 2021;12:735488. doi: 10.3389/fneur.2021.735488. PMID: 34675869; PMCID: PMC8523832.Google Scholar

Suggested Reading

Bellutti Enders, F, Bader-Meunier, B, Baildam, E, et al. Consensus-based recommendations for the management of juvenile dermatomyositis. Ann Rheum Dis 2017;76(2):329340. doi: 10.1136/annrheumdis-2016-209247. Epub 2016 Aug 11. PMID: 27515057; PMCID: PMC5284351.Google Scholar
Liang, WC, Uruha, A, Suzuki, S, et al. Pediatric necrotizing myopathy associated with anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase antibodies. Rheumatology (Oxford) 2017;56(2):287293. doi: 10.1093/rheumatology/kew386. Epub 2016 Nov 6. PMID: 27818386; PMCID: PMC5410926.Google Scholar
Pachman, LM, Nolan, BE, DeRanieri, D, Khojah, AM. Juvenile dermatomyositis: new clues to diagnosis and therapy. Curr Treatm Opt Rheumatol 2021;7(1):3962. doi: 10.1007/s40674-020-00168-5. Epub 2021 Feb 6. PMID: 34354904; PMCID: PMC8336914.Google Scholar
Wang, CH, Liang, WC. Pediatric immune-mediated necrotizing myopathy. Front Neurol 2023;14:1123380. doi: 10.3389/fneur.2023.1123380. PMID: 37021281; PMCID: PMC10067916.Google Scholar

Suggested Reading

Bhai, SF, Dimachkie, MM, de Visser, M. Is it really myositis? Mimics and pitfalls. Best Pract Res Clin Rheumatol 2022;36(2):101764. doi: 10.1016/j.berh.2022.101764. Epub 2022 Jun 23. PMID: 35752578.Google Scholar
Ezeofor, AJ, O’Connell, KA, Cobos, GA, et al. Distinctive cutaneous features of dermatomyositis in Black adults: a case series. JAAD Case Rep 2023;37:106109. doi: 10.1016/j.jdcr.2023.05.019. PMID: 37396484; PMCID: PMC10314225.Google Scholar
Gandiga, PC, Ghetie, D, Anderson, E, Aggrawal, R. Intravenous immunoglobulin in idiopathic inflammatory myopathies: a practical guide for clinical use. Curr Rheumatol Rep 2023;25(8):152168. doi: 10.1007/s11926-023-01105-w. Epub 2023 Jun 1. PMID: 37261663Google Scholar
Goswami, RP, Haldar, SN, Chatterjee, M, et al. Efficacy and safety of intravenous and subcutaneous immunoglobulin therapy in idiopathic inflammatory myopathy: a systematic review and meta-analysis. Autoimmun Rev 2022;21(2):102997. doi: 10.1016/j.autrev.2021.102997. Epub 2021 Nov 17. PMID: 34800685.Google Scholar
La Rocca, G, Ferro, F, Baldini, C, et al. Targeting intracellular pathways in idiopathic inflammatory myopathies: a narrative review. Front Med (Lausanne) 2023;10:1158768. doi: 10.3389/fmed.2023.1158768. PMID: 36993798; PMCID: PMC10040547.Google Scholar
Lundberg, IE, de Visser, M, Werth, VP. Classification of myositis. Nat Rev Rheumatol 2018;14(5):269278. doi: 10.1038/nrrheum.2018.41. Epub 2018 Apr 12. PMID: 29651121.Google Scholar
Mammen, AL, Allenbach, Y, Stenzel, W, Benveniste, O ; ENMC 239th Workshop Study Group. 239th ENMC International Workshop: classification of dermatomyositis, Amsterdam, the Netherlands, 14-16 December 2018. Neuromuscul Disord 2020;30(1):7092. doi: 10.1016/j.nmd.2019.10.005. Epub 2019 Oct 25. PMID: 31791867.Google Scholar
Oldroyd, AGS, Callen, JP, Chinoy, H, et al.; International Myositis Assessment and Clinical Studies Group Cancer Screening Expert Group; Aggarwal, R. International Guideline for Idiopathic Inflammatory Myopathy-Associated Cancer Screening: an International Myositis Assessment and Clinical Studies Group (IMACS) initiative. Nat Rev Rheumatol 2023;19(12):805817. doi: 10.1038/s41584-023-01045-w. Epub ahead of print. PMID: 37945774.Google Scholar
Tanboon, J, Nishino, I. Update on dermatomyositis. Curr Opin Neurol 2022;35(5):611621. doi: 10.1097/WCO.0000000000001091. Epub 2022 Aug 4. PMID: 35942671.Google Scholar

Suggested Reading

Allenbach, Y, Benveniste, O, Stenzel, W, Boyer, O. Immune-mediated necrotizing myopathy: clinical features and pathogenesis. Nat Rev Rheumatol 2020;16(12):689701. doi: 10.1038/s41584-020-00515-9. Epub 2020 Oct 22. PMID: 33093664.Google Scholar
Allenbach, Y, Mammen, AL, Benveniste, O, Stenzel, W ; Immune-Mediated Necrotizing Myopathies Working Group. 224th ENMC International Workshop: clinico-sero-pathological classification of immune-mediated necrotizing myopathies Zandvoort, the Netherlands, 14-16 October 2016. Neuromuscul Disord 2018;28(1):8799. doi: 10.1016/j.nmd.2017.09.016. Epub 2017 Oct 23. PMID: 29221629.Google Scholar
Lim, J, Rietveld, A, De Bleecker, JL, et al. Seronegative patients form a distinctive subgroup of immune-mediated necrotizing myopathy. Neurol Neuroimmunol Neuroinflamm 2018;6(1):e513. doi: 10.1212/NXI.0000000000000513. PMID: 30345336; PMCID: PMC6192692.Google Scholar

Suggested Reading

Cox, FM, Titulaer, MJ, Sont, JK, et al. A 12-year follow-up in sporadic inclusion body myositis: an end stage with major disabilities. Brain 2011;134:31673175.Google Scholar
Greenberg, SA. Inclusion body myositis: clinical features and pathogenesis. Nat Rev Rheumatol 2019;15(5):257272.Google Scholar
Lilleker, JB, Naddaf E, Saris CGJ, Schmidt J, de Visser M, Weihl CC; 272nd ENMC workshop participants. 272nd ENMC international workshop: 10 Years of progress - revision of the ENMC 2013 diagnostic criteria for inclusion body myositis and clinical trial readiness. 16-18 June 2023, Hoofddorp, The Netherlands. Neuromuscul Disord. 2024 Apr;37:36-51. doi: 10.1016/j.nmd.2024.03.001. Epub 2024 Mar 7. PMID: 38522330.Google Scholar
Shelly, S, Mielke, MM, Mandrekar, J, et al. Epidemiology and natural history of inclusion body myositis: a 40-year population-based study. Neurology 2021;96(21):e2653e2661.Google Scholar

Suggested Reading

Duyff, RF, Van den Bosch, J, Laman, DM, van Loon BJ, , Linssen, WH. Neuromuscular findings in thyroid dysfunction: a prospective clinical and electrodiagnostic study. J Neurol Neurosurg Psychiatry 2000;68(6):750755. doi: 10.1136/jnnp.68.6.750. PMID: 10811699; PMCID: PMC1736982.Google Scholar
Klein, I, Ojamaa, K. Thyroid (neuro)myopathy. Lancet 2000;356(9230):614. doi: 10.1016/s0140-6736(00)02601-5. PMID: 10968432.Google Scholar
Jordan, B, Uer, O, Buchholz, T, Spens, A, Zierz, S. Physical fatigability and muscle pain in patients with Hashimoto thyroiditis. J Neurol 2021;268(7):24412449. doi: 10.1007/s00415-020-10394-5. Epub 2021 Jan 28. PMID: 33507372; PMCID: PMC8217009.Google Scholar

Suggested Reading

Abudalou, M, Mohamed AS, Vega EA, Al Sbihi A. Colchicine-induced rhabdomyolysis: a review of 83 cases. BMJ Case Rep. 2021 Jul 21;14(7):e241977. doi: 10.1136/bcr-2021-241977. PMID: 34290008; PMCID: PMC8296791.Google Scholar
Allenbach, Y, Anquetil C, Manouchehri A et al. Immune checkpoint inhibitor-induced myositis, the earliest and most lethal complication among rheumatic and musculoskeletal toxicities. Autoimmun Rev. 2020 Aug;19(8):102586. doi: 10.1016/j.autrev.2020.102586. Epub 2020 Jun 11. PMID: 32535094.Google Scholar
Batchelor, TT, Taylor, LP, Thaler, HT, Posner, JB, DeAngelis, LM. Steroid myopathy in cancer patients. Neurology 1997;48(5):12341238. doi: 10.1212/wnl.48.5.1234. PMID: 9153449.Google Scholar
Doughty, CT, Amato, AA. Toxic myopathies. Continuum (Minneap Minn) 2019;25(6):17121731. doi: 10.1212/CON.0000000000000806. PMID: 31794468.Google Scholar
Gunton, JE, Girgis, CM. Vitamin D and muscle. Bone Rep 2018;8:163167. doi: 10.1016/j.bonr.2018.04.004. PMID: 29963601; PMCID: PMC6021354.Google Scholar
Mammen, AL. Statin-associated myalgias and muscle injury-recognizing and managing both while still lowering the low-density lipoprotein. Med Clin North Am 2021;105(2):263272. doi: 10.1016/j.mcna.2020.10.004. Epub 2020 Dec 24. PMID: 33589101.Google Scholar
Naddaf, E, Paul, P, AbouEzzeddine, OF. Chloroquine and hydroxychloroquine myopathy: clinical spectrum and treatment outcomes. Front Neurol 2021;11:616075. doi: 10.3389/fneur.2020.616075. PMID: 33603707; PMCID: PMC7884308.Google Scholar
Penson, PE, Bruckert, E, Marais, D, et al.; International Lipid Expert Panel (ILEP).Step-by-step diagnosis and management of the nocebo/drucebo effect in statin-associated muscle symptoms patients: a position paper from the International Lipid Expert Panel (ILEP). J Cachexia Sarcopenia Muscle 2022;13(3):15961622. doi: 10.1002/jcsm.12960. Epub 2022 Mar 10. PMID: 35969116; PMCID: PMC9178378.Bottom of FormGoogle Scholar
Simon, L, Jolley, SE, Molina, PE. Alcoholic myopathy: pathophysiologic mechanisms and clinical implications. Alcohol Res 2017;38(2):207217. PMID: 28988574; PMCID: PMC5513686.Google Scholar

Suggested Reading

Brewster, LM, Mairuhu, G, Sturk, A, van Montfrans, GA. Distribution of creatine kinase in the general population: implications for statin therapy. Am Heart J 2007;154(4):655661. doi: 10.1016/j.ahj.2007.06.008. PMID: 17892987.Google Scholar
Janssens, L, De Puydt, J, Milazzo, M, et al. Risk of malignant hyperthermia in patients carrying a variant in the skeletal muscle ryanodine receptor 1 gene. Neuromuscul Disord 2022;32(11-12):864869. doi: 10.1016/j.nmd.2022.10.003. Epub 2022 Oct 19. PMID: 36283893.Google Scholar
Lilleng, H, Johnsen, SH, Wilsgaard, T, Bekkelund, SI. Are the currently used reference intervals for creatine kinase (CK) reflecting the general population? The Tromsø Study. Clin Chem Lab Med 2011;50(5):879884. doi: 10.1515/CCLM.2011.776. PMID: 22070220.Google Scholar
Kley, RA, Schmidt-Wilcke, T, Vorgerd, M. Differential diagnosis of hyperckemia. Neurol Int Open 2018;2:E72E83.Google Scholar
Rubegni, A, Malandrini, A, Dosi, C, et al. Next-generation sequencing approach to hyperCKemia: a 2-year cohort study. Neurol Genet 2019;5(5):e352. doi: 10.1212/NXG.0000000000000352. PMID: 31517061; PMCID: PMC6705647.Google Scholar

General Remarks and Suggested Reading

For more information on rhabdomyolysis, see Case 53 (McArdle disease) and Case 54 (CPT2 deficiency).Google Scholar
For more information on malignant hyperthermia, see Case 56 (RYR1-related disease) and Chapter 8 (Management).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×