Book contents
- Frontmatter
- Contents
- Index of Participants
- Preface
- I Evidence and Implications of Anisotropy in AGN
- II Luminosity Functions and Continuum Energy Distributions
- III The Broad Line Region: Variability and Structure
- IV X-rays and Accretion Disks
- X-ray Variability in AGN
- Thermal Reprocessing of X-rays in NGC 5548
- New Ginga Observation and Model of NGC 6814 Periodicity
- Power Spectrum Fits to EXOSAT Long Looks
- Dramatic X-ray Spectral Variability of Mkn 841
- Thermal and Non-Thermal Emission from Accretion Disks
- Ultra-Soft X-ray Emission in AGN
- Highly Ionized Gas in Seyfert Galaxies
- EUV Observations of Seyfert 1 Galaxies and Quasars
- 0.1–;20 keV Spectra of 3C 273 and E1821+643
- Iron Lines from Ionized Discs
- Reflection Effects in Realistic Discs
- X-Ray Polarization Properties in the Two-Phase Model for AGN
- X-Ray Reprocessing and UV Continuum in NGC 4151
- Dense Clouds Near the Center of Active Galactic Nuclei
- Accretion Discs in AGN Context: Hints Toward Non-Standard Discs?
- Accretion Disk Instabilities
- Compton-Heated Winds from Accretion Disks
- Determination of a Transonic Solution in a Stationary Accretion Disc
- Black Holes and Accretion Disks
- Testing the “Disc X-ray Reprocessing” in UV-Optical Continuum and Line Emission in NGC 5548
- Accretion Discs in Realistic Potentials
- Test of the Accretion Disc Model and Orientation Indicator
- Orientation Effects in QSO Spectra
- The Luminosity-Colour Distribution of Quasar Accretion Disks
- V Beams, Jets and Blazars
- VI Concluding Talk
X-Ray Reprocessing and UV Continuum in NGC 4151
from IV - X-rays and Accretion Disks
Published online by Cambridge University Press: 04 August 2010
- Frontmatter
- Contents
- Index of Participants
- Preface
- I Evidence and Implications of Anisotropy in AGN
- II Luminosity Functions and Continuum Energy Distributions
- III The Broad Line Region: Variability and Structure
- IV X-rays and Accretion Disks
- X-ray Variability in AGN
- Thermal Reprocessing of X-rays in NGC 5548
- New Ginga Observation and Model of NGC 6814 Periodicity
- Power Spectrum Fits to EXOSAT Long Looks
- Dramatic X-ray Spectral Variability of Mkn 841
- Thermal and Non-Thermal Emission from Accretion Disks
- Ultra-Soft X-ray Emission in AGN
- Highly Ionized Gas in Seyfert Galaxies
- EUV Observations of Seyfert 1 Galaxies and Quasars
- 0.1–;20 keV Spectra of 3C 273 and E1821+643
- Iron Lines from Ionized Discs
- Reflection Effects in Realistic Discs
- X-Ray Polarization Properties in the Two-Phase Model for AGN
- X-Ray Reprocessing and UV Continuum in NGC 4151
- Dense Clouds Near the Center of Active Galactic Nuclei
- Accretion Discs in AGN Context: Hints Toward Non-Standard Discs?
- Accretion Disk Instabilities
- Compton-Heated Winds from Accretion Disks
- Determination of a Transonic Solution in a Stationary Accretion Disc
- Black Holes and Accretion Disks
- Testing the “Disc X-ray Reprocessing” in UV-Optical Continuum and Line Emission in NGC 5548
- Accretion Discs in Realistic Potentials
- Test of the Accretion Disc Model and Orientation Indicator
- Orientation Effects in QSO Spectra
- The Luminosity-Colour Distribution of Quasar Accretion Disks
- V Beams, Jets and Blazars
- VI Concluding Talk
Summary
Abstract
The correlation observed in NGC4151 between the O, UV and X-ray fluxes is explained in terms of reprocessing of hard X-rays by a thick disk that reradiates the incoming energy into O and UV photons. The flatness of the UV spectrum and the upper limits on X-ray reprocessed components (high energy bump, variable part of iron line) demand tight limits on the mass of the central object, the luminosity (absolute and relative to the Eddington one) and the extension of the spectrum in the γ-ray region.
Introduction
Reprocessing of X-rays by a thick medium has been called for to explain two X-ray features observed in several Seyfert galaxies: the iron line and the high energy bump. The fact that reprocessing of hard X-rays may play an important role also in the optical and UV, an idea firstly advanced in, has been recently proposed to account for the short time-scale correlation of optical and UV light curves, too short to be explained by processes directly connected to accretion by a disk.
Similar considerations apply to the case of NGC4151, where the optical, UV and X-ray fluxes are correlated down to a time scale of 1 l.d. - although the correlation between UV and X-ray breaks at higher UV luminosities (we will comment on this behaviour in the following). In this object, however, the absence of an high energy bump as well as of a broad and variable iron line apparently argues against the presence of a thick reprocessor near the central source.
- Type
- Chapter
- Information
- The Nature of Compact Objects in Active Galactic NucleiProceedings of the 33rd Herstmonceux Conference, held in Cambridge, July 6-22, 1992, pp. 310 - 311Publisher: Cambridge University PressPrint publication year: 1994