Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-05T12:08:30.714Z Has data issue: false hasContentIssue false

Spatial heterogeneity and the spread of infectious diseases

Published online by Cambridge University Press:  04 August 2010

Valerie Isham
Affiliation:
University College London
Graham Medley
Affiliation:
University of Warwick
Get access

Summary

Numerous factors influence the likelihood of contact between susceptible and infectious people, including participation in different social activities, cultural barriers such as membership of particular ethnic groups with associated customs, or separation due to geographic distance. These factors guarantee that contact among individuals within a population is distinctly nonrandom. Results from several theoretical studies show that nonrandom mixing among subgroups has many consequences for the outcome of epidemic spread, including affecting the time at which a disease is introduced into different subgroups and the speed of propagation and severity of an epidemic.

Most recent models for the spread of infectious diseases in human populations incorporate nonrandom patterns of mixing across subgroups and include a parameter for contact between groups that depends on the subgroups from which the susceptible and infective individuals derive. This parameter represents only the end result of the mixing process, leaving implicit the mechanism by which contact occurs. Here we describe a model that explicitly incorporates the mechanism for contact among individuals from different subgroups. Contact between individuals occurs as a result of the mobility of participants across either geographic or social space. Because it is simpler to visualize, we limit our discussion here to geographic mobility. Models for behavioral mobility are straightforward adaptations of this process (e.g. Sattenspiel and Castillo-Chavez 1990, Jacquez et al 1989).

Consider a population that is distributed among n regions. Individuals from region i leave the region at a rate σi per unit time. These visitors are then distributed among the n – 1 destinations with probabilities vij to each destination j.

Type
Chapter
Information
Models for Infectious Human Diseases
Their Structure and Relation to Data
, pp. 286 - 289
Publisher: Cambridge University Press
Print publication year: 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×