Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-05T11:51:58.542Z Has data issue: false hasContentIssue false

14 - Observations of Mercury’s Exosphere: Composition and Structure

Published online by Cambridge University Press:  10 December 2018

Sean C. Solomon
Affiliation:
Lamont-Doherty Earth Observatory, Columbia University, New York
Larry R. Nittler
Affiliation:
Carnegie Institution of Washington, Washington DC
Brian J. Anderson
Affiliation:
The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland
Get access

Summary

Mercury is surrounded by a tenuous exosphere in which particles travel on ballistic trajectories under the influence of a combination of gravity and solar radiation pressure. The densities are so small that the surface forms the exobase, and particles in the exosphere are more likely to collide with it rather than with each other. During the three flybys of Mercury by the Mariner 10 spacecraft in 1974–1975, the probe's Ultraviolet Spectrometer made measurements of hydrogen and helium and a tentative detection of oxygen. These observations were followed a decade later by discoveries with Earth-based telescopes of exospheric sodium and potassium, and still later of calcium, aluminum, and iron. In addition to characterizing sodium, calcium, and hydrogen in Mercury’s exosphere, the Mercury Atmospheric and Surface Composition Spectrometer instrument on the MESSENGER spacecraft detected magnesium, ionized calcium, aluminum, and manganese. Thus, the total inventory of confirmed exospheric neutral species now includes H, He, Na, K, Ca, Mg, Al, Fe, and Mn. This chapter summarizes both ground-based and space-based observations of Mercury’s exosphere that have been made from its discovery by Mariner 10 through the four Earth years of nearly continuous orbital observations by the MESSENGER spacecraft.
Type
Chapter
Information
Mercury
The View after MESSENGER
, pp. 371 - 406
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, B. J., Acuña, M. H., Lohr, D. A., Scheifele, J., Raval, A., Korth, H. and Slavin, J. A. (2007). The Magnetometer instrument on MESSENGER. Space Sci. Rev., 131, 417450, doi:10.1007/s11214-007–9246-7.CrossRefGoogle Scholar
Anderson, B. J., Johnson, C. L., Korth, H., Purucker, M. E., Winslow, R. M., Slavin, J. A., Solomon, S. C., McNutt, R. L. Jr., Raines, J. M. and Zurbuchen, T. H. (2011). The global magnetic field of Mercury from MESSENGER orbital observations. Science, 333, 18591862, doi:10.1126/science.1211001.Google Scholar
Andrews, G. B., Zurbuchen, T. H., Mauk, B. H., Malcom, H., Fisk, L. A., Gloeckler, G., Ho, G. C., Kelley, J. S., Koehn, P. L., Lefevere, T. W., Livi, S. S., Lundgren, R. A. and Raines, J. M. (2007). The Energetic Particle and Plasma Spectrometer instrument on the MESSENGER spacecraft. Space Sci. Rev., 131, 523556, doi:10.1007/s11214-007–9272-5.CrossRefGoogle Scholar
Baker, D. N., Poh, G., Odstrcil, D., Arge, C. N., Benna, M., Johnson, C. L., Korth, H., Gershman, D. J., Ho, G. C., McClintock, W. E., Cassidy, T. A., Merkel, A., Raines, J. M., Schriver, D., Slavin, J. A., Solomon, S. C., Travnicek, P. M., Winslow, R. M. and Zurbuchen, T. H. (2013). Solar wind forcing at Mercury: WSA-ENLIL model results. J. Geophys. Res. Space Physics, 118, 4557, doi:10.1029/2012JA018064.Google Scholar
Baumgardner, J., Wilson, J. K. and Mendillo, M. (2008). Imaging the sources and full extent of the sodium tail of the planet Mercury. Geophys. Res. Lett., 35, L03201, doi:10.1029/2007GL032337.Google Scholar
Benkhoff, J., van Casteren, J., Hayakawa, H., Fujimoto, M., Laakso, H., Novara, M., Ferri, P., Middleton, H. R. and Ziethe, R. (2010). BepiColombo – Comprehensive exploration of Mercury: Mission overview and science goals. Planet. Space Sci., 58, 220, doi:10.1016/j.pss.2009.09.020.CrossRefGoogle Scholar
Bida, T. A. and Killen, R. M. (2011). Observations of Al, Fe, and Ca+ in Mercury’s exosphere. EPSC-DPS Joint Meeting Abstracts and Program, 6, abstract EPSC-DPS2011-1621. European Planetary Science Congress – Division for Planetary Sciences Joint Meeting, Nantes, France, 2–7 October. Available at http://adsabs.harvard.edu/abs/2011epsc.conf.1621B.Google Scholar
Bida, T. A. and Killen, R. M. (2016). Observations of the minor species Al, Fe, and Ca+ in Mercury’s exosphere. Icarus, 268, 3236, doi:10.1016/j.icarus.2016.10.019.Google Scholar
Bida, T. A., Killen, R. M. and Morgan, T. H. (2000). Discovery of calcium in Mercury’s atmosphere. Nature, 404, 159161, doi:10.1038/35004521.CrossRefGoogle ScholarPubMed
Bishop, J. and Chamberlain, J. W. (1989). Radiation pressure dynamics in planetary exospheres: A “natural” framework. Icarus, 81, 145163, doi:10.1016/0019–1035(89)90131–0.CrossRefGoogle Scholar
Borin, P., Bruno, M., Cremonese, G. and Marzari, F. (2010). Estimate of the neutral atoms’ contribution to the Mercury exosphere caused by a new flux of micrometeoroids. Astron. Astrophys., 517, A89, doi:10.1051/0004–6361/201014312.Google Scholar
Borland, D. and Taylor, R. M. (2007). Rainbow color map (still) considered harmful. IEEE Comput. Graph. Appl., 27, 1417.CrossRefGoogle ScholarPubMed
Broadfoot, A. L., Kumar, S., Belton, M. J. S. and McElroy, M. B. (1974). Mercury’s atmosphere from Mariner 10: Preliminary results. Science, 185, 166169, doi:10.1126/science.185.4146.166.Google Scholar
Broadfoot, A. L., Shemansky, D. E. and Kumar, S. (1976). Mariner 10: Mercury atmosphere. Geophys. Res. Lett., 3, 577580, doi:10.1029/GL003i010p00577.Google Scholar
Burger, M. H., Killen, R. M., Vervack, R. J. Jr., Bradley, E. T., McClintock, W. E., Sarantos, M., Benna, M. and Mouawad, N. (2010). Monte Carlo modeling of sodium in Mercury’s exosphere during the first two MESSENGER flybys. Icarus, 209, 6374, doi:10.1016/j.icarus.2010.05.007.CrossRefGoogle Scholar
Burger, M. H., Killen, R. M., McClintock, W. E., Vervack, R. J. Jr., Merkel, A. W., Sprague, A. L. and Sarantos, M. (2012). Modeling MESSENGER observations of calcium in Mercury’s exosphere. J. Geophys. Res., 117, E00L11, doi:10.1029/2012JE004158.Google Scholar
Burger, M. H., Killen, R. M., McClintock, W. E., Merkel, A. W., Vervack, R. J., Cassidy, T. A. and Sarantos, M. (2014). Seasonal variations in Mercury’s dayside calcium exosphere. Icarus, 238, 5158, doi:10.1016/j.icarus.2014.04.049.Google Scholar
Cassidy, T. A., Merkel, A. W., Burger, M. H., Sarantos, M., Killen, R. M., McClintock, W. E. and Vervack, R. J. Jr. (2015). Mercury’s seasonal sodium exosphere: MESSENGER orbital observations. Icarus, 248, 547559, doi:10.1016/j.icarus.2014.10.037.Google Scholar
Cassidy, T. A., McClintock, W. E., Killen, R. M., Sarantos, M., Merkel, A. W., Vervack, R. J. Jr. and Burger, M. H. (2016). A cold-pole enhancement in Mercury’s sodium exosphere. Geophys. Res. Lett., 43, 11,121–11,128, doi:10.1002/2016GL071071.CrossRefGoogle ScholarPubMed
Chamberlain, J. W. (1961). Physics of the Aurora and Airglow. New York: Academic Press. Available at: http://onlinelibrary.wiley.com/doi/10.1002/9781118668047.fmatter/summary.Google Scholar
Chamberlain, J. W. (1963). Planetary coronae and atmospheric evaporation. Planet. Space Sci., 11, 901960, doi:10.1016/0032–0633(63)90122–3.Google Scholar
Chamberlain, J. W. and Hunten, D. M. (1987). Theory of Planetary Atmospheres. An Introduction to Their Physics and Chemistry. International Geophysics Series, Vol. 36. Orlando, FL: Academic Press.Google Scholar
Christou, A. A., Killen, R. M. and Burger, M. H. (2015). The meteoroid stream of comet Encke at Mercury: Implications for MErcury Surface, Space ENvironment, GEochemistry, and Ranging observations of the exosphere. Geophys. Res. Lett., 42, 73117318, doi:10.1002/2015GL065361.Google Scholar
DiBraccio, G. A., Slavin, J. A., Boardsen, S. A., Anderson, B. J., Korth, H., Zurbuchen, T. H., Raines, J. M., Baker, D. N., McNutt, R. L. Jr. and Solomon, S. C. (2013). MESSENGER observations of magnetopause structure and dynamics at Mercury. J. Geophys. Res. Space Physics, 118, 9971008, doi:10.1002/jgra.50123.CrossRefGoogle Scholar
Domingue, D. L., Koehn, P. L., Killen, R. M., Sprague, A. L., Sarantos, M., Cheng, A. F., Bradley, E. T. and McClintock, W. E. (2007). Mercury’s atmosphere: A surface-bounded exosphere. Space Sci. Rev., 131, 161186, doi:10.1007/s11214-007–9260-9.Google Scholar
Doressoundiram, A., Leblanc, F., Foellmi, C. and Erard, S. (2009). Metallic species in Mercury’s exosphere: EMMI/New Technology Telescope observations. Astron. J., 137, 38593863, doi:10.1088/0004–6256/137/4/3859.Google Scholar
Doressoundiram, A., Leblanc, F., Foellmi, C., Gicquel, A., Cremonese, G., Donati, J.-F. and Veillet, C. (2010). Spatial variations of the sodium/potassium ratio in Mercury’s exosphere uncovered by high-resolution spectroscopy. Icarus, 207, 18, doi:10.1016/j.icarus.2009.11.020.Google Scholar
Evans, L. G., Peplowski, P. N., Rhodes, E. A., Lawrence, D. J., McCoy, T. J., Nittler, L. R., Solomon, S. C., Sprague, A. L., Stockstill-Cahill, K. R., Starr, R. D., Weider, S. Z., Boynton, W. V., Hamara, D. K. and Goldsten, J. O. (2012). Major-element abundances on the surface of Mercury: Results from the MESSENGER Gamma-Ray Spectrometer. J. Geophys. Res., 117, E00L07, doi:10.1029/2012JE004178.Google Scholar
Fink, U., Larson, H. P. and Poppen, R. F. (1974). A new upper limit for an atmosphere of CO2, CO on Mercury. Astrophys. J., 187, 407416, doi:10.1086/152647.CrossRefGoogle Scholar
Gershman, D. J., Slavin, J. A., Raines, J. M., Zurbuchen, T. H., Anderson, B. J., Korth, H., Baker, D. N. and Solomon, S. C. (2014). Ion kinetic properties in Mercury’s pre-midnight plasma sheet. Geophys. Res. Lett., 41, 57405747, doi:10.1002/2014GL060468.Google Scholar
Huebner, W. F. and Mukherjee, J. (2015). Photoionization and photodissociation rates in solar and blackbody radiation fields. Planet. Space Sci., 106, 1145, doi:10.1016/j.pss.2014.11.022.CrossRefGoogle Scholar
Hunten, D. M., Roach, F. E. and Chamberlain, J. W. (1956). A photometric unit for the airglow and aurora. J. Atmos. Terr. Phys., 8, 345346.CrossRefGoogle Scholar
Hunten, D. M., Shemansky, D. E. and Morgan, T. H. (1988). The Mercury atmosphere. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 562612.Google Scholar
Ip, W. H. (1986). The sodium exosphere and magnetosphere of Mercury. Geophys. Res. Lett., 13, 423426, doi:10.1029/GL013i005p00423.Google Scholar
Johnson, R. E., Leblanc, F., Yakshinskiy, B. V. and Madey, T. E. (2002). Energy distributions for desorption of sodium and potassium from ice: The Na/K ratio at Europa. Icarus, 156, 136142, doi:10.1006/icar.2001.6763.Google Scholar
Killen, R. M. (2006). Curve-of-growth model for sodium D2 emission at Mercury. Publ. Astron. Soc. Pac., 118, 13441350, doi:10.1086/508070.Google Scholar
Killen, R. M. (2016). Pathways for energization of Ca in Mercury’s exosphere. Icarus, 268, 3236, doi:10.1016/j.icarus.2015.12.035.Google Scholar
Killen, R. M. and Hahn, J. M. (2015). Impact vaporization as a possible source of Mercury’s calcium exosphere. Icarus, 250, 230237, doi:10.1016/j.icarus.2014.11.035.Google Scholar
Killen, R. M., Potter, A., Fitzsimmons, A. and Morgan, T. H. (1999). Sodium D2 line profiles: Clues to the temperature structure of Mercury’s exosphere. Planet. Space Sci., 47, 14491458, doi:10.1016/S0032-0633(99)00071–9.Google Scholar
Killen, R. M., Sarantos, M., Potter, A. E. and Reiff, P. (2004). Source rates and ion recycling rates for Na and K in Mercury’s atmosphere. Icarus, 171, 119, doi:10.1016/j.icarus.2004.04.007.Google Scholar
Killen, R. M., Bida, T. A. and Morgan, T. H. (2005). The calcium exosphere of Mercury. Icarus, 173, 300311, doi:10.1016/j.icarus.2004.08.022.Google Scholar
Killen, R., Cremonese, G., Lammer, H., Orsini, S., Potter, A. E., Sprague, A. L., Wurz, P., Khodachenko, M. L., Lichtenegger, H. I. M., Milillo, A. and Mura, A. (2007). Processes that promote and deplete the exosphere of Mercury. Space Sci. Rev., 132, 433509, doi:10.1007/s11214-007–9232-0.Google Scholar
Killen, R. M., Mouawad, N. and Shemansky, D. E. (2009). Expected emission from Mercury’s exospheric species, and their ultraviolet-visible signatures. Astrophys. J. Suppl. Ser., 181, 351359.CrossRefGoogle Scholar
Killen, R. M., Potter, A. E., Vervack, R. J., Bradley, E. T., McClintock, W. E., Anderson, C. M. and Burger, M. H. (2010). Observations of metallic species in Mercury’s exosphere. Icarus, 209, 7587, doi:10.1016/j.icarus.2010.02.018.Google Scholar
Leblanc, F. and Johnson, R. E. (2003). Mercury’s sodium exosphere. Icarus, 164, 261281, doi:10.1016/S0019-1035(03)00147–7.Google Scholar
Leblanc, F. and Johnson, R. E. (2010). Mercury exosphere I. Global circulation model of its sodium component. Icarus, 209, 280300, doi:10.1016/j.icarus.2010.04.020.CrossRefGoogle Scholar
Leblanc, F., Barbieri, C., Cremonese, G., Verani, S., Cosentino, R., Mendillo, M., Sprague, A. and Hunten, D. (2006). Observations of Mercury’s exosphere: Spatial distributions and variations of its Na component during August 8, 9 and 10, 2003. Icarus, 185, 395402, doi:10.1016/j.icarus.2006.08.006.Google Scholar
Leblanc, F., Doressoundiram, A., Schneider, N., Mangano, V., López Ariste, A., Lemen, C., Gelly, B., Barbieri, C. and Cremonese, G. (2008). High latitude peaks in Mercury’s sodium exosphere: Spectral signature using THEMIS solar telescope. Geophys. Res. Lett., 35, L18204, doi:10.1029/2008GL035322.CrossRefGoogle Scholar
Leblanc, F., Doressoundiram, A., Schneider, N. M., Massetti, S., Wedlund, M., Lopez Ariste, A., Barbieri, C., Mangano, V. and Cremonese, G. (2009). Short-term variations of Mercury’s Na exosphere observed with very high spectral resolution. Geophys. Res. Lett., 36, L07201, doi:10.1029/2009GL038089.CrossRefGoogle Scholar
Leblanc, F., Chaufray, J. Y., Doressoundiram, A., Berthelier, J. J., Mangano, V., Lopez-Ariste, A. and Borin, P. (2013). Mercury exosphere. III: Energetic characterization of its sodium component. Icarus, 223, 963974, doi:10.1016/j.icarus.2012.08.025.CrossRefGoogle Scholar
Mangano, V., Leblanc, F., Barbieri, C., Massetti, S., Milillo, A., Cremonese, G. and Grava, C. (2009). Detection of a southern peak in Mercury’s sodium exosphere with the TNG in 2005. Icarus, 201, 424431, doi:10.1016/j.icarus.2009.01.016.Google Scholar
Mangano, V., Massetti, S., Milillo, A., Mura, A., Orsini, S. and Leblanc, F. (2013). Dynamical evolution of sodium anisotropies in the exosphere of Mercury. Planet. Space Sci., 8283, 110, doi:10.1016/j.pss.2013.03.002.Google Scholar
Mangano, V., Massetti, S., Milillo, A., Plainaki, C., Orsini, S., Rispoli, R. and Leblanc, F. (2015). THEMIS Na exosphere observations of Mercury and their correlation with in-situ magnetic field measurements by MESSENGER. Planet. Space Sci., 115, 102109, doi:10.1016/j.pss.2015.04.001.Google Scholar
McClintock, W. E. and Lankton, M. R. (2007). The Mercury Atmospheric and Surface Composition Spectrometer for the MESSENGER mission. Space Sci. Rev., 131, 481521, doi:10.1007/s11214-007–9264-5.Google Scholar
McClintock, W. E., Bradley, E. T., Vervack, R. J. Jr., Killen, R. M., Sprague, A. L., Izenberg, N. R. and Solomon, S. C. (2008). Mercury’s exosphere: Observations during MESSENGER’s first Mercury flyby. Science, 321, 9294.Google Scholar
McClintock, W. E., Vervack, R. J., Bradley, E. T., Killen, R. M., Mouawad, N., Sprague, A. L., Burger, M. H., Solomon, S. C. and Izenberg, N. R. (2009). MESSENGER observations of Mercury’s exosphere: Detection of magnesium and distribution of constituents. Science, 324, 610613, doi:10.1126/science.1172525.Google Scholar
McGrath, M. A., Johnson, R. E. and Lanzerotti, L. J. (1986). Sputtering of sodium on the planet Mercury. Nature, 323, 694696, doi:10.1038/323694a0.Google Scholar
Merkel, A. W., Cassidy, T. A., Vervack, R. J., McClintock, W. E., Sarantos, M., Burger, M. H. and Killen, R. M. (2017). Seasonal variations of Mercury’s magnesium dayside exosphere from MESSENGER observations. Icarus, 281, 4654, doi:10.1016/j.icarus.2016.08.032.Google Scholar
Merkel, A. W., Vervack, R. J. Jr., Killen, R. M., Cassidy, T. A., McClintock, W. E., Nittler, L. R. and Burger, M. H. (2018). Evidence connecting Mercury’s magnesium exosphere to its magnesium-rich surface terrane. Geophys. Res. Lett., 45, 6790-6797 doi:10.1029/2018GL078407.Google Scholar
Morgan, T. H., Zook, H. A. and Potter, A. E. (1988). Impact-driven supply of sodium and potassium to the atmosphere of Mercury. Icarus, 75, 156170, doi:10.1016/0019–1035(88)90134–0.CrossRefGoogle Scholar
Mouawad, N., Burger, M. H., Killen, R. M., Potter, A. E., McClintock, W. E., Vervack, R. J. Jr., Bradley, E. T., Benna, M. and Naidu, S. (2011). Constraints on Mercury’s Na exosphere: Combined MESSENGER and ground-based data. Icarus, 211, 2136, doi:10.1016/j.icarus.2010.10.019.Google Scholar
Mura, A., Wurz, P., Lichtenegger, H. I. M., Schleicher, H., Lammer, H., Delcourt, D., Milillo, A., Orsini, S., Massetti, S. and Khodachenko, M. L. (2009). The sodium exosphere of Mercury: Comparison between observations during Mercury’s transit and model results. Icarus, 200, 111, doi:10.1016/j.icarus.2008.11.014.Google Scholar
Nittler, L. R., Starr, R. D., Weider, S. Z., McCoy, T. J., Boynton, W. V., Ebel, D. S., Ernst, C. M., Evans, L. G., Goldsten, J. O., Hamara, D. K., Lawrence, D. J., McNutt, R. L., Schlemm, C. E., Solomon, S. C. and Sprague, A. L. (2011). The major-element composition of Mercury’s surface from MESSENGER X-ray spectrometry. Science, 333, 18471850, doi:10.1126/science.1211567.CrossRefGoogle ScholarPubMed
Peplowski, P. N., Evans, L. G., Stockstill-Cahill, K. R., Lawrence, D. J., Goldsten, J. O., McCoy, T. J., Nittler, L. R., Solomon, S. C., Sprague, A. L., Starr, R. D. and Weider, S. Z. (2014). Enhanced sodium abundance in Mercury’s north polar region revealed by the MESSENGER Gamma-Ray Spectrometer. Icarus, 228, 8695.CrossRefGoogle Scholar
Pierce, A. K. (1965). Construction of a Bowen image slicer. Publ. Astron. Soc. Pac., 77, 216217, doi:10.1086/128199.Google Scholar
Potter, A. E. (1995). Chemical sputtering could produce sodium vapor and ice on Mercury. Geophys. Res. Lett., 22, 32893292, doi:10.1029/95GL03181.Google Scholar
Potter, A. E. and Killen, R. M. (2008). Observations of the sodium tail of Mercury. Icarus, 194, 112, doi:10.1016/j.icarus.2007.09.023.Google Scholar
Potter, A. E. and Morgan, T. H. (1985). Discovery of sodium in the atmosphere of Mercury. Science, 229, 651653, doi:10.1126/science.229.4714.651.Google Scholar
Potter, A. E. and Morgan, T. H. (1986). Potassium in the atmosphere of Mercury. Icarus, 67, 336340, doi:10.1016/0019–1035(86)90113–2.Google Scholar
Potter, A. E. and Morgan, T. H. (1990). Evidence for magnetospheric effects on the sodium atmosphere of Mercury. Science, 248, 835838, doi:10.1126/science.248.4957.835.Google Scholar
Potter, A. E., Killen, R. M. and Morgan, T. H. (1999). Rapid changes in the sodium exosphere of Mercury. Planet. Space Sci., 47, 14411448, doi:10.1016/S0032-0633(99)00070–7.Google Scholar
Potter, A. E., Killen, R. M. and Morgan, T. H. (2002a). The sodium tail of Mercury. Meteorit. Planet. Sci., 37, 11651172, doi:10.1111/j.1945–5100.2002.tb00886.x.Google Scholar
Potter, A. E., Anderson, C. M., Killen, R. M. and Morgan, T. H. (2002b). Ratio of sodium to potassium in the Mercury exosphere. J. Geophys. Res., 107, 5040, doi:10.1029/2000JE001493.Google Scholar
Potter, A. E., Killen, R. M. and Sarantos, M. (2006). Spatial distribution of sodium on Mercury. Icarus, 181, 112, doi:10.1016/j.icarus.2005.10.026.Google Scholar
Potter, A. E., Morgan, T. H. and Killen, R. M. (2009). Sodium winds on Mercury. Icarus, 204, 355367, doi:10.1016/j.icarus.2009.06.028.Google Scholar
Potter, A. E., Killen, R. M., Reardon, K. P. and Bida, T. A. (2013). Observation of neutral sodium above Mercury during the transit of November 8, 2006. Icarus, 226, 172185, doi:10.1016/j.icarus.2013.05.029.Google Scholar
Raines, J. M., Gershman, D. J., Zurbuchen, T. H., Sarantos, M., Slavin, J. A., Gilbert, J. A., Korth, H., Anderson, B. J., Gloeckler, G., Krimigis, S. M., Baker, D. N., McNutt, R. L. and Solomon, S. C. (2013). Distribution and compositional variations of plasma ions in Mercury’s space environment: The first three Mercury years of MESSENGER observations. J. Geophys. Res. Space Physics, 118, 16041619, doi:10.1029/2012JA018073.CrossRefGoogle Scholar
Sarantos, M., Killen, R. M., Sharma, A. S. and Slavin, J. A. (2008). Influence of plasma ions on source rates for the lunar exosphere during passage through the Earth’s magnetosphere. Geophys. Res. Lett., 35, L04105, doi:10.1029/2007GL032310.Google Scholar
Sarantos, M., Killen, R. M., McClintock, W. E., Todd Bradley, E., Vervack, R. J., Benna, M. and Slavin, J. A. (2011). Limits to Mercury’s magnesium exosphere from MESSENGER second flyby observations. Planet. Space Sci., 59, 19922003, doi:10.1016/j.pss.2011.05.002.Google Scholar
Schleicher, H., Wiedemann, G., Wohl, H., Berkefeld, T. and Soltau, D. (2004). Detection of neutral sodium above Mercury during the transit on 2003 May 7. Astron. Astrophys., 425, 11191124, doi:10.1051/0004–6361:20040477.Google Scholar
Schmidt, C. A. (2013). Monte Carlo modeling of north–south asymmetries in Mercury’s sodium exosphere. J. Geophys. Res. Space Physics, 118, 45644571, doi:10.1002/jgra.50396.CrossRefGoogle Scholar
Schmidt, C. A., Wilson, J. K., Baumgardner, J. and Mendillo, M. (2010). Orbital effects on Mercury’s escaping sodium exosphere. Icarus, 207, 916, doi:10.1016/j.icarus.2009.10.017.Google Scholar
Schmidt, C. A., Baumgardner, J., Mendillo, M. and Wilson, J. K. (2012). Escape rates and variability constraints for high-energy sodium sources at Mercury. J. Geophys. Res., 117, A03301, doi:10.1029/2011JA017217.Google Scholar
Shemansky, D. E. and Broadfoot, A. L. (1977). Interaction of the surfaces of the moon and Mercury with their exospheric atmospheres. Rev. Geophys. Space Phys., 15, 491499, doi:10.1029/RG015i004p00491.Google Scholar
Slavin, J. A., DiBraccio, G. A., Gershman, D. J., Imber, S. M., Poh, G. K., Raines, J. M., Zurbuchen, T. H., Jia, X., Baker, D. N., Glassmeier, K.-H., Livi, S. A., Boardsen, S. A., Cassidy, T. A., Sarantos, M., Sundberg, T., Masters, A., Johnson, C. L., Winslow, R. M., Anderson, B. J., Korth, H., McNutt, R. L. and Solomon, S. C. (2014). MESSENGER observations of Mercury’s dayside magnetosphere under extreme solar wind conditions. J. Geophys. Res. Space Physics, 119, 80878116, doi:10.1002/2014JA020319.Google Scholar
Smith, G. R., Shemansky, D. E., Broadfoot, A. L. and Wallace, L. (1978). Monte Carlo modeling of exospheric bodies: Mercury. J. Geophys. Res., 83, 37833790, doi:10.1029/JA083iA08p03783.Google Scholar
Smyth, W. H. (1986). Nature and variability of Mercury’s sodium atmosphere. Nature, 323, 696699, doi:10.1038/323696a0.Google Scholar
Smyth, W. H. and Marconi, M. L. (1995). Theoretical overview and modeling of the sodium and potassium atmospheres of Mercury. Astrophys. J., 441, 839864, doi:10.1086/175407.Google Scholar
Sprague, A. L., Kozlowski, R. W. H., Hunten, D. M., Schneider, N. M., Domingue, D. L., Wells, W. K., Schmitt, W. and Fink, U. (1997). Distribution and abundance of sodium in Mercury’s atmosphere, 1985–1988. Icarus, 129, 506527, doi:10.1006/icar.1997.5784.Google Scholar
Vervack, R. J. Jr., McClintock, W. E., Bradley, E. T., Killen, R. M., Sprague, A. L., Mouawad, N., Izenberg, N. R., Kochte, M. C. and Lankton, M. R. (2009). MESSENGER observations of Mercury’s exosphere: Discoveries and surprises from the first two flybys. Lunar Planet. Sci., 40, abstract 2220.Google Scholar
Vervack, R. J. Jr., McClintock, W. E., Killen, R. M., Sprague, A. L., Anderson, B. J., Burger, M. H., Bradley, E. T., Mouawad, N., Solomon, S. C. and Izenberg, N. R. (2010). Mercury’s complex exosphere: Results from MESSENGER’s third flyby. Science, 329, 672675, doi:10.1126/science.1188572.Google Scholar
Vervack, R. J. Jr., Killen, R. M., Sprague, A. L., Burger, M. H., Merkel, A. W. and Sarantos, M. (2011). Early MESSENGER results for less abundant or weakly emitting species in Mercury’s exosphere. EPSC-DPS Joint Meeting Abstracts and Program, 6, abstract EPSC-DPS2011-1131. European Planetary Science Congress – Division for Planetary Sciences Joint Meeting, Nantes, France, 2–7 October. Available at http://adsabs.harvard.edu/abs/2011epsc.conf.1131V.Google Scholar
Vervack, R. J. Jr., Killen, R. M., McClintock, W. E., Merkel, A. W., Burger, M. H., Cassidy, T. A. and Sarantos, M. (2016). New discoveries from MESSENGER and insights into Mercury’s exosphere. Geophys. Res. Lett., 43, 11,545–11,551, doi:10.1002/2016GL071284.Google Scholar
Winslow, R. M., Johnson, C. L., Anderson, B. J., Korth, H., Slavin, J. A., Purucker, M. E. and Solomon, S. C. (2012). Observations of Mercury’s northern cusp region with MESSENGER’s Magnetometer. Geophys. Res. Lett., 39, L08112, doi:10.1029/2012GL051472.CrossRefGoogle Scholar
Winslow, R. M., Johnson, C. L., Anderson, B. J., Gershman, D. J., Raines, J. M., Lillis, R. J., Korth, H., Slavin, J. A., Solomon, S. C., Zurbuchen, T. H. and Zuber, M. T. (2014). Mercury’s surface magnetic field determined from proton-reflection magnetometry. Geophys. Res. Lett., 41, 44634470, doi:10.1002/2014GL060258.Google Scholar
Yakshinskiy, B. V. and Madey, T. E. (2005). Temperature-dependent DIET of alkalis from SiO2 films: Comparison with a lunar sample. Surf. Sci., 593, 202209, doi:10.1016/j.susc.2005.06.062.CrossRefGoogle Scholar
Yan, N., Chassefire, E., Leblanc, F. and Sarkissian, A. (2006). Thermal model of Mercury’s surface and subsurface: Impact of subsurface physical heterogeneities on the surface temperature. Adv. Space Res., 38, 583588, doi:10.1016/j.asr.2005.11.010.CrossRefGoogle Scholar
YoshikawaI., Ono, J., YoshiokaK., MurakamiG., EzawaF., KamedaS. and UenoS. (2008). Observation of Mercury's sodium exosphere during the transit on November 9, 2006.Planet. Space Sci., 56, 16761680.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×