Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-05T11:36:08.004Z Has data issue: false hasContentIssue false

18 - The Elusive Origin of Mercury

Published online by Cambridge University Press:  10 December 2018

Sean C. Solomon
Affiliation:
Lamont-Doherty Earth Observatory, Columbia University, New York
Larry R. Nittler
Affiliation:
Carnegie Institution of Washington, Washington DC
Brian J. Anderson
Affiliation:
The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland
Get access

Summary

An objective of the MESSENGER mission was to learn the physical processes that determined Mercury’s high bulk ratio of metal to silicate. In the course of addressing that objective, the mission discovered multiple anomalous characteristics about the innermost planet. The lack of FeO and the reduced oxidation state of Mercury’s silicate crust and mantle are more extreme than nearly all other known materials in the solar system. In contrast, moderately volatile elements are present in abundances comparable to or greater than those of the other terrestrial planets. No single process during Mercury’s formation is able to account for all of these observations. Here, we review the current ideas for the origin of Mercury’s distinctive characteristics. Gaps in understanding the innermost regions of the early solar nebula limit the testing of different hypotheses. Even so, all proposed models are incomplete and need further development in order to unravel Mercury’s remaining secrets. 
Type
Chapter
Information
Mercury
The View after MESSENGER
, pp. 497 - 515
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agnor, C. and Asphaug, E. (2004). Accretion efficiency during planetary collisions. Astrophys. J. Lett., 613, L157L160.Google Scholar
Albarède, F. (2009). Volatile accretion history of the terrestrial planets and dynamic implications. Nature, 461, 12271233.CrossRefGoogle ScholarPubMed
Alexander, C. M. O’D., Boss, A. P. and Carlson, R. W. (2001). The early evolution of the inner solar system: A meteoritic perspective. Science, 293, 6468.CrossRefGoogle Scholar
Alexander, C. M. O’D., Boss, A. P., Keller, L. P., Nuth, J. A. and Weinberger, A. (2007). Astronomical and meteoritic evidence for thermal processing of interstellar dust in protoplanetary disks. In Protostars and Planets V, ed. Reipurth, B., Jewitt, D. and Keil, K.. Tucson, AZ: University of Arizona Press, pp. 801813.Google Scholar
Armitage, P. J. (2011). Dynamics of protoplanetary disks. Annu. Rev. Astron. Astrophys., 49, 195236.Google Scholar
Asphaug, E. (2010). Similar-sized collisions and the diversity of planets. Chemie der Erde-Geochemistry, 70, 199219.Google Scholar
Asphaug, E. (2014). Impact origin of the Moon? Annu. Rev. Earth Planet. Sci., 42, 551578.Google Scholar
Asphaug, E. and Reufer, A. (2014). Mercury and other iron-rich planetary bodies as relics of inefficient accretion. Nature Geosci., 7, 564568. doi:10.1038/ngeo2189.Google Scholar
Asphaug, E., Agnor, C. B. and Williams, Q. (2006). Hit-and-run planetary collisions. Nature, 439, 155160.Google Scholar
Badro, J., Brodholt, J. P., Siebert, J. and Ryerson, F. J. (2015). Core formation and core composition from coupled geochemical and geophysical constraints. Proc. Natl. Acad. Sci., 112, 12,310–12,314.Google Scholar
Barclay, T., Rowe, J. F., Lissauer, J. J., Huber, D., Fressin, F., Howell, S. B., Bryson, S. T., Chaplin, W. J., Désert, J.-M., Lopez, E. D., Marcy, G. W., Mullaly, F., Ragozzine, D., Torres, G., Adams, E. R., Agol, E., Barrado, D., Basu, S., Bedding, T. R., Buchhave, L. A., Charbonneau, D., Christiansen, J. L., Christensen-Dalsgaard, J., Ciardi, D., Cochran, W. D., Dupree, A. K., Elsworth, Y., Everett, M., Fischer, D. A., Ford, E. B., Fortney, J. J., Geary, J. C., Haas, M. R., Handberg, R., Hekker, S., Henze, C. E., Horch, E., Howard, A. W., Hunter, R. C., Isaacson, H., Jenkins, J. M., Karoff, C., Kawaler, S. D., Kjeldsen, H., Klaus, T. C., Latham, D. W., Li, J., Lillo-Box, J., Lund, M. N., Lundkvist, M., Metcalfe, T. S., Miglio, A., Morris, R. L., Quintana, E. V., Stello, D., Smith, J. C., Still, M. and Thompson, S. E. (2013). A sub-Mercury-sized exoplanet. Nature, 494, 452454.Google Scholar
Barnes, R., Gozdziewski, K. and Raymond, S. N. (2008). The successful prediction of the extrasolar planet HD 74156d. Astrophys. J., 680, L57L60.Google Scholar
Batalha, N. M., Borucki, W. J., Bryson, S. T., Buchhave, L. A., Caldwell, D. A., Christensen-Dalsgaard, J., Ciardi, D., Dunham, E. W., Fressin, F., Gautier, T. N. III, Gilliland, R. L., Haas, M. R., Howell, S. B., Jenkins, J. M., Kjeldsen, H., Koch, D. G., Latham, D. W., Lissauer, J. J., Marcy, G. W., Rowe, J. F., Sasselov, D. D., Seager, S., Steffen, J. H., Torres, G., Basri, G. S., Brown, T. M., Charbonneau, D., Christiansen, J., Clarke, B., Cochran, W. D., Dupree, A., Fabrycky, D. C., Fischer, D., Ford, E. B., Fortney, J., Girouard, F. R., Holman, M. J., Johnson, J., Isaacson, H., Klaus, T. C., Machalek, P., Moorehead, A. V., Morehead, R. C., Ragozzine, D., Tenenbaum, P., Twicken, J., Quinn, S., VanCleve, J., Walkowicz, L. M., Welsh, W. F., Devore, E. and Gould, A. (2011). Kepler’s first rocky planet: Kepler-10b. Astrophys. J., 729, 2748, doi:10.1088/0004-637X/729/1/27.CrossRefGoogle Scholar
Batygin, K. and Brown, M. E. (2010). Early dynamical evolution of the solar system: Pinning down the initial conditions of the Nice model. Astrophys. J., 716, 13231331.CrossRefGoogle Scholar
Beckett, J. R. (1986). The origin of calcium-, aluminum-rich inclusions from carbonaceous chondrites: An experimental study. Ph.D. thesis, University of Chicago, Chicago, IL.Google Scholar
Benz, W., Slattery, W. L. and Cameron, A. G. W. (1988). Collisional stripping of Mercury’s mantle. Icarus, 74, 516528.Google Scholar
Benz, W., Anic, A., Horner, J. and Whitby, J. A. (2007). The origin of Mercury. Space Sci. Rev., 132, 189202.Google Scholar
Bonsor, A., Leinhardt, Z. M., Carter, P. J., Elliott, T., Walter, M. J. and Stewart, S. T. (2015). A collisional origin to Earth’s non-chondritic composition? Icarus, 247, 291300.Google Scholar
Borucki, W. J. (2016). KEPLER mission: Development and overview. Rep. Prog. Phys., 79, 036901.Google Scholar
Bouvier, A. and Boyet, M. (2016). Primitive Solar System materials and Earth share a common initial 142Nd abundance. Nature, 537, 399402.CrossRefGoogle Scholar
Boyet, M. and Carlson, R. W. (2005). 142Nd evidence for early (>4.53 Ga) global differentiation of the silicate Earth. Science, 309, 576581.Google Scholar
Boynton, W. V., Sprague, A. L., Solomon, S. C., Starr, R. D., Evans, L. G., Feldman, W. C., Trombka, J. I. and Rhodes, E. A. (2007). MESSENGER and the chemistry of Mercury’s surface. Space Sci. Rev., 131, 85104.CrossRefGoogle Scholar
Braden, S. E. and Robinson, M. S. (2013). Relative rates of optical maturation of regolith on Mercury and the Moon. J. Geophys. Res. Planets, 118, 19031914, doi:10.1002/jgre.20143Google Scholar
Bradley, J. P. (2014). Early solar nebula grains – interplanetary dust particles. In Meteorites and Cosmochemical Processes, ed. Davis, A. M., Treatise on Geochemistry, 2nd edn, Vol. 1, ed. Holland, H. D. and Turekian, K.. Amsterdam, Oxford: Elsevier, pp. 287308.Google Scholar
Brett, R. and Sato, M. (1984). Intrinsic oxygen fugacity measurements on seven chondrites, a pallasite, and a tektite and the redox state of meteorite parent bodies. Geochim. Cosmochim. Acta, 48, 111120.Google Scholar
Brownlee, D. (2014). The Stardust mission: Analyzing samples from the edge of the solar system. Annu. Rev. Earth Planet. Sci., 42, 179205.Google Scholar
Buchwald, V. F. (1975). Handbook of Iron Meteorites, Their History, Distribution, Composition and Structure. Berkeley, CA: University of California Press, 1426 pp.Google Scholar
Burbine, T. H., Meibom, A. and Binzel, R. P. (1996). Mantle material in the main belt: Battered to bits? Meteorit. Planet. Sci., 31, 607620.Google Scholar
Burkhardt, C. (2014). Isotopic composition of the Moon and the lunar isotopic crisis. In Encyclopedia of Lunar Science. Springer (online), doi:10.1007/SpringerReference_440362.Google Scholar
Burkhardt, C., Kleine, T., Bourdon, B., Palme, H., Zipfel, J., Friedrich, J. and Ebel, D. S. (2008). Hf-W systematics of Ca-Al-rich inclusions from carbonaceous chondrites: Dating the age of the solar system and core formation in asteroids. Geochim. Cosmochim. Acta, 72, 61776197.Google Scholar
Burkhardt, C., Borg, L. E., Brennecka, G. A., Shollenberger, Q. R., Dauphas, N. and Kleine, T. (2016). A nucleosynthetic origin for the Earth’s anomalous 142Nd composition. Nature, 537, 394398.Google Scholar
Busemann, H., Nguyen, A. N., Cody, G. D., Hoppe, P., Kilcoyne, A. L. D., Stroud, R. M., Zega, T. J. and Nittler, L. R. (2009). Ultra-primitive interplanetary dust particles from the comet 26P/Grigg-Skjellerup dust stream collection. Earth Planet. Sci. Lett., 288, 4457.Google Scholar
Cameron, A. G. W. (1985). The partial volatilization of Mercury. Icarus, 64, 285294.Google Scholar
Cameron, A. G. W., Fegley, B., Benz, W. and Slattery, W. L. (1988). The strange density of Mercury: Theoretical considerations. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 692708.Google Scholar
Canup, R. M. (2004). Dynamics of lunar formation. Annu. Rev. Astron. Astrophys., 42, 441475.Google Scholar
Canup, R. M. (2008). Accretion of the Earth. Phil. Trans. Roy. Soc. London A, 366, 40614075.Google Scholar
Canup, R. M. (2012). Forming a Moon with an Earth-like composition via a giant impact. Science, 338, 10521055.Google Scholar
Canup, R. M. and Asphaug, E. (2001). Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature, 412, 708712.Google Scholar
Canup, R. M., Visscher, C., Salmon, J. and Fegley, B. Jr. (2015). Lunar volatile depletion due to incomplete accretion within an impact-generated disk. Nature Geosci., 8, 918921, doi:10.1038/ngeo2574.Google Scholar
Carry, B. (2012). Density of asteroids. Planet. Space Sci., 73, 98118.Google Scholar
Carter, P. J., Leinhardt, Z. M., Elliott, T., Walter, M. J. and Stewart, S. T. (2015). Compositional evolution during rocky protoplanet accretion. Astrophys. J., 813, 7291.Google Scholar
Chambers, J. E. (2004). Planetary accretion in the inner Solar System. Earth Planet. Sci. Lett., 223, 241252.Google Scholar
Chambers, J. E. (2009a). Planetary migration: What does it mean for planet formation? Annu. Rev. Earth Planet. Sci., 37, 321344.Google Scholar
Chambers, J. E. (2009b). An analytical model for the evolution of a viscous, irradiated disk. Astrophys. J., 705, 12061214.Google Scholar
Chambers, J. E. (2013). Late-stage planetary accretion including hit-and-run collisions and fragmentation. Icarus, 224, 4356.Google Scholar
Chambers, J. E. (2014). Giant planet formation with pebble accretion. Icarus, 233, 83100.Google Scholar
Chapman, C. R. (1988). Mercury: Introduction to an end-member planet. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 123.Google Scholar
Chen, J. and Kipping, D. (2016). Probabilistic forecasting of the masses and radii of other worlds. Astrophys. J., 834, 1730.Google Scholar
Clayton, R. N. and Mayeda, T. K. (1996). Oxygen isotope studies of achondrites. Geochim. Cosmochim. Acta, 60, 1999–2017.Google Scholar
Consolmagno, G. J. and Britt, D. T. (2004). Meteoritical evidence and constraints on asteroid impacts and disruption. Planet. Space Sci., 52, 11191128.Google Scholar
Cottrell, E. and Kelley, K. A. (2011). The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle. Earth Planet. Sci. Lett., 305, 270282.Google Scholar
Ćuk, M. and Stewart, S. T. (2012). Making the Moon from a fast-spinning Earth: A giant impact followed by resonant despinning. Science, 338, 10471052, doi:10.1126/science.1225542.Google Scholar
Cuzzi, J. N., Hogan, R. C. and Shariff, K. (2008). Toward planetesimals: Dense chondrule clumps in the protoplanetary nebula. Astrophys. J., 687, 14321447.Google Scholar
Dahl, T. W. and Stevenson, D. J. (2010). Turbulent mixing of metal and silicate during planet accretion – And interpretation of the Hf–W chronometer. Earth Planet. Sci. Lett., 295, 177186.Google Scholar
D’Alessio, P., Calvet, N., Hartmann, L., Lizano, S. and Cantó, J. (1999). Accretion disks around young objects. II. Tests of well-mixed models with ISM dust. Astrophys. J., 527, 893909.Google Scholar
Dauphas, N. and Morbidelli, A. (2014). Geochemical and planetary dynamical views on the origin of Earth’s atmosphere and oceans. In The Atmosphere – History, ed. Farquhar, J., Treatise on Geochemistry, 2nd edn, Vol. 6, ed. Holland, H. D. and Turekian, K.. Amsterdam, Oxford: Elsevier, pp. 135.Google Scholar
Davis, A. M. (2006). Volatile evolution and loss. In Meteorites and the Early Solar System II, ed. Lauretta, D. and McSween, H. Y. Jr. Tucson, AZ: University of Arizona Press, pp. 295307.Google Scholar
Domingue, D. L., Chapman, C. R., Killen, R. M., Zurbuchen, T. H., Gilbert, J. A., Sarantos, M., Benna, M., Slavin, J. A., Schriver, D., Trávníček, P. M., Orlando, T. M., Sprague, A. L., Blewett, D. T., Gillis-Davis, J. J., Feldman, W. C., Lawrence, D. J., Ho, G. C., Ebel, D. S., Nittler, L. R., Vilas, F., Pieters, C. M., Solomon, S. C., Johnson, C. L., Winslow, R. M., Helbert, J., Peplowski, P. N., Weider, S. Z., Mouawad, N., Izenberg, N. R. and McClintock, W. E. (2014). Mercury’s weather-beaten surface: Understanding Mercury in the context of lunar and asteroidal space weathering studies. Space Sci. Rev., 181, 121214, doi:10.1007/s11214-014–0039-5.Google Scholar
Dressing, C. D. and Charbonneau, D. (2015). The occurrence of potentially habitable planets orbiting M dwarfs estimated from the full Kepler dataset and an empirical measurement of the detection sensitivity. Astrophys. J., 807, 4568.Google Scholar
Dwyer, C. A., Nimmo, F. and Chambers, J. E. (2015). Bulk chemical and Hf–W isotopic consequences of incomplete accretion during planet formation. Icarus, 245, 145152.Google Scholar
Ebel, D. S. (2001). Vapor/liquid/solid equilibria when chondrites collide. Meteorit. Planet. Sci. Suppl., 36, A52A53.Google Scholar
Ebel, D. S. (2006). Condensation of rocky material in astrophysical environments. In Meteorites and the Early Solar System II, ed. Lauretta, D. and McSween, H. Y. Jr. Tucson, AZ: University of Arizona Press, pp. 253277.Google Scholar
Ebel, D. S. and Alexander, C. M. O’D. (2011). Equilibrium condensation from chondritic porous IDP enriched vapor: Implications for Mercury and enstatite chondrite origins. Planet. Space. Sci., 59, 18881894.Google Scholar
Ebel, D. S. and Grossman, L. (2000). Condensation in dust-enriched systems. Geochim. Cosmochim. Acta, 64, 339366.Google Scholar
Ebel, D. S. and Sack, R. O. (2013). Djerfisherite: Nebular source of refractory potassium. Contrib. Mineral. Petrol., 166, 923934.Google Scholar
Ebel, D. S., Brunner, C., Leftwich, K., Erb, I., Lu, M., Konrad, K., Rodriguez, H., Friedrich, J. M. and Weisberg, M. K. (2016). Abundance, composition and size of inclusions and matrix in CV and CO chondrites. Geochim. Cosmochim. Acta, 172, 322356, doi:10.1016/j.gca.2015.10.007.Google Scholar
Elkins-Tanton, L. T. (2013). Planetary science: Occam’s origin of the Moon. Nature Geosci., 6, 996998.Google Scholar
Ernst, C. M., Murchie, S. L., Barnouin, O. S., Robinson, M. L., Denevi, B. W., Blewett, D. T., Head, J. W., Izenberg, N. R., Solomon, S. C. and Roberts, J. H. (2010). Exposure of spectrally distinct material by impact craters on Mercury: Implications for global stratigraphy. Icarus, 209, 210223, doi:10.1016/j.icarus.2010.05.022.Google Scholar
Espaillat, D., Muzerolle, J., Najita, J., Andrews, S., Zhu, Z., Calvet, N., Kraus, S., Hashimoto, J., Kraus, A. and D’Alessio, P. (2014). An observational perspective of transitional disks. In Protostars and Planets VI, ed. Beuther, H., Klessen, R., Dullemond, C. and Henning, Th.. Tucson, AZ: University of Arizona Press, pp. 497520.Google Scholar
Evans, L. G., Peplowski, P. N., Rhodes, E. A., Lawrence, D. J., McCoy, T. J., Nittler, L. R., Solomon, S. C., Sprague, A. L., Stockstill-Cahill, K. R., Starr, R. D., Weider, S. Z., Boynton, W. F., Hamara, D. K. and Goldsten, J. O. (2012). Major-element abundances on the surface of Mercury: Results from the MESSENGER Gamma-Ray Spectrometer. J. Geophys. Res., 117, E00L07, doi:10.1029/2012JE004178.Google Scholar
Evans, L. G., Peplowski, P. N., McCubbin, F. M., McCoy, T. J., Nittler, L. R., Zolotov, M. Yu., Ebel, D. S., Lawrence, D. J., Starr, R. D., Weider, S. Z. and Solomon, S. C. (2015). Chlorine on the surface of Mercury: MESSENGER gamma-ray measurements and implications for the planet’s formation and evolution. Icarus, 257, 417427.Google Scholar
Fabrycky, D. C., Lissauer, J. J., Ragozzine, D., Fowe, J. F., Steffen, J. H., Agol, E., Barclay, T., Batalha, N., Borucki, W. and Ciardi, D. R. (2014). Architecture of Kepler’s multi-transiting systems. II. New investigations with twice as many candidates. Astrophys. J., 790, 146157.Google Scholar
Fang, J. and Margot, J. L. (2012). Architecture of planetary systems based on Kepler data: Number of planets and coplanarity. Astrophys. J., 761, 92105.Google Scholar
Fedkin, A. V., Grossman, L., Humayun, M., Simon, S. B. and Campbell, A. J. (2015). Condensates from vapor made by impacts between metal-, silicate-rich bodies: Comparison with metal and chondrule in CB chondrites. Geochim. Cosmochim. Acta, 164, 236261.Google Scholar
Fegley, B. Jr. and Cameron, A. G. W. (1987). A vaporization model for iron/silicate fractionation in the Mercury protoplanet. Earth Planet. Sci. Lett., 82, 207222.Google Scholar
Feigelson, E. D. (2010). X-ray insights into star and planet formation. Proc. Natl. Acad. Sci., 107, 71537157.Google Scholar
Friedrich, J. M., Weisberg, M. K., Ebel, D. S., Biltz, A. E., Corbett, B. M., Iotzov, I. V., Khan, W. S. and Wolman, M. D. (2015). Chondrule size and density in all meteorite groups: A compilation and evaluation of current knowledge. Chemie der Erde, 75, 419443, doi:10.1016/j.chemer.2014.08.003.Google Scholar
Frost, D. J., Mann, U., Asahara, Y. and Rubie, D. C. (2008). The redox state of the mantle during and just after core formation. Phil. Trans. Roy. Soc. London A, 366, 43154337.Google Scholar
Genda, H., Kokubo, E. and Ida, S. (2011). Merging criteria for giant impacts of protoplanets. Astrophys. J., 744, 137144.Google Scholar
Ghosal, S., Sack, R. O., Ghiorso, M. S. and Lipschutz, M. E. (1998). Evidence for a reduced, Fe-depleted martian mantle source region of shergottites. Contrib. Mineral. Petrol., 130, 346357.Google Scholar
Gladman, B. and Coffey, J. (2009). Mercurian impact ejecta: Meteorites and mantle. Meteorit. Planet. Sci., 44, 285291.Google Scholar
Goldschmidt, V. M. (1937). The principles of distribution of chemical elements in minerals and rocks. The seventh Hugo Müller Lecture, delivered before the Chemical Society on March 17th, 1937. J. Chem. Soc., 1937, 655673.Google Scholar
Grossman, J. N. (1996). Chemical fractionations of chondrites: Signatures of events before chondrule formation. In Chondrules and the Protoplanetary Disk, ed. Hewins, R. H., Jones, R. H. and Scott, E. R. D.. New York: Cambridge University Press, pp. 243253.Google Scholar
Grossman, L. and Larimer, J. W. (1974). Early chemical history of the solar system. Rev. Geophys. Space Phys., 12, 71101.Google Scholar
Haisch, K. E., Lada, E. A. and Lada, C. J. (2001). Circumstellar disks in the IC 348 cluster. Astrophys. J., 121, 20652074.Google Scholar
Halliday, A. N. (2013). The origins of volatiles in the terrestrial planets. Geochim. Cosmochim. Acta, 105, 146171.Google Scholar
Hansen, B. M. S. (2009). Formation of the terrestrial planets from a narrow annulus. Astrophys. J., 703, 11311140.CrossRefGoogle Scholar
Hartmann, L. (2009). The star-jet-disk system and angular momentum transfer. In Protostellar Jets in Context, ed. Tsinganos, K. R. and Stute, M.. Berlin: Springer, pp. 2332.CrossRefGoogle Scholar
Hauck, S. A. II, Margot, J.-L., Solomon, S. C., Phillips, R. J., Johnson, C. L., Lemoine, F. G., Mazarico, E., McCoy, T. J., Padovan, S., Peale, S. J., Perry, M. E., Smith, D. E. and Zuber, M. T. (2013). The curious case of Mercury’s internal structure. J. Geophys. Res. Planets, 118, 12041220.Google Scholar
Hewins, R. H. and Ulmer, G. C. (1984). Intrinsic oxygen fugacities of diogenites and mesosiderite clasts. Geochim. Cosmochim. Acta, 48, 15551560.Google Scholar
Hubbard, A. (2014). Explaining Mercury’s density through magnetic erosion. Icarus, 241, 329335.Google Scholar
Izenberg, N. R., Klima, R. L., Murchie, S. L., Blewett, D. T., Holsclaw, G. M., McClintock, W. E., Malaret, E., Mauceri, C., Vilas, F., Sprague, A. L., Helbert, J., Domingue, D. L., Head, J. W. II I,Goudge, T. A., Solomon, S. C., Hibbitts, C. A. and Dyar, M. D. (2014). The low-iron, reduced surface of Mercury as seen in spectral reflectance by MESSENGER. Icarus, 228, 364374.Google Scholar
Jarosewich, E. (1990). Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses. Meteoritics, 25, 323337.Google Scholar
Johansen, A., Blum, J., Tanaka, H., Ormel, C., Bizzarro, M. and Rickman, H. (2014). The multifaceted planetesimal formation process. In Protostars and Planets VI, ed. Beuther, H., Klessen, R., Dullemond, C. and Henning, Th.. Tucson, AZ: University of Arizona Press, pp. 547570.Google Scholar
Kant, I. (1755). Universal Natural History and Theory of the Heavens. In Kant’s Critical Religion (2000), translated by Palmquist, S.. Aldershot: Ashgate, 320 pp.Google Scholar
Kargel, J. S. and Lewis, J. S. (1993). The composition and early evolution of Earth. Icarus, 105, 125.Google Scholar
Keil, K. (1968). Mineralogical and chemical relationships among enstatite chondrites. J. Geophys. Res., 73, 69456976.Google Scholar
Kleine, T., Mezger, K., Palme, H. and Münker, C. (2004). The W isotope evolution of the bulk silicate Earth: Constraints on the timing and mechanisms of core formation and accretion. Earth Planet. Sci. Lett., 228, 109123.Google Scholar
Kleine, T., Touboul, M., Bourdon, B., Nimmo, F., Mezger, K., Palme, H., Jacobsen, S. B., Yin, Q.-Z. and Halliday, A. N. (2009). Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim. Cosmochim. Acta, 73, 51505188.Google Scholar
Klima, R. L., Izenberg, N. R., Murchie, S., Meyer, H. M., Stockstill-Cahill, K. R., Blewett, D. T., D’Amore, M., Denevi, B. W., Ernst, C. M., Helbert, J., McCoy, T., Sprague, A. L., Vilas, F., Weider, S. Z. and Solomon, S. C. (2013). Constraining the ferrous iron content of silicate minerals in Mercury’s crust. Lunar Planet. Sci., 44, abstract 1602.Google Scholar
Kokubo, E. and Genda, H. (2010). Formation of terrestrial planets from protoplanets under a realistic accretion condition. Astrophys. J. Lett., 714, L21L25.Google Scholar
Kokubo, E. and Ida, S. (1996). On runaway growth of planetesimals. Icarus, 123, 180191.Google Scholar
Kokubo, E. and Ida, S. (1998). Oligarchic growth of protoplanets. Icarus, 131, 171178.Google Scholar
Krauss, O. and Wurm, G. (2005). Photophoresis and the pile-up of dust in young circumstellar disks. Astrophys. J., 630, 10881092.Google Scholar
Krot, A. N., Amelin, Y., Cassen, P. and Meibom, A. (2005). Young chondrules in CB chondrites from a giant impact in the early Solar System. Nature, 436, 989992.Google Scholar
Krot, A. N., Amelin, Y., Bland, P., Ciesla, F. J., Connelly, H. J. Jr., Davis, A. M., Huss, G. R., Hutcheon, I. D., Makide, K., Nagashima, K., Nyquist, L. E., Russell, S. S., Scott, E. R. D., Thrane, K., Yurimoto, H. and Yin, Q.-Z. (2009). Origin and chronology of chondritic components: A review. Geochim. Cosmochim. Acta, 73, 49634997.Google Scholar
Lambrechts, M. and Johansen, A. (2012). Rapid growth of gas-giant cores by pebble accretion. Astron. Astrophys., 544, A32A45.Google Scholar
Larimer, J. W. and Anders, E. (1967). Chemical fractionation in meteorites: II. Abundance patterns and their interpretation. Geochim. Cosmochim. Acta, 31, 12391270.Google Scholar
Leinhardt, Z. M. and Stewart, S. T. (2011). Collisions between gravity-dominated bodies. I. Outcome regimes and scaling laws. Astrophys. J., 745, 79106.Google Scholar
Leinhardt, Z. M., Dobinson, J., Carter, P. J. and Lines, S. (2015). Numerically predicted indirect signatures of terrestrial planet formation. Astrophys. J., 806, 2332.Google Scholar
Levison, H. F., Morbidelli, A., Gomes, R. and Backman, D. (2007). Planet migration in planetesimal disks. In Protostars and Planets V, ed. Reipurth, B., Jewitt, D. and Keil, K.. Tucson, AZ: University of Arizona Press, pp. 669684.Google Scholar
Levison, H. F., Kretke, K. A. and Duncan, M. J. (2015a). Growing the gas-giant planets by the gradual accumulation of pebbles. Nature, 524, 322324.Google Scholar
Levison, H. F., Kretke, K. A., Walsh, K. J. and Bottke, W. F. (2015b). Growing the terrrestrial planets from the gradual accumulation of submeter-sized objects. Proc. Natl. Acad. Sci., 112, 14,18014,185.Google Scholar
Lewis, J. S. (1972). Metal/silicate fractionation in the solar system. Earth Planet. Sci. Lett., 15, 286290.Google Scholar
Lewis, J. S. (1973). Chemistry of the planets. Annu. Rev. Phys. Chem., 24, 339352.Google Scholar
Lewis, J. S. (1988). Origin and composition of Mercury. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 651666.Google Scholar
Lissauer, J. J., Fabrycky, D. C., Ford, E. B., Borucki, W. J., Fressin, F., Marcy, G. W., Rorosz, J. A., Rowe, J. F., Torres, G., Welsh, W. F., Batalha, N. M., Bryson, S. T., Buchhave, L. A., Caldwell, D. A., Cartre, J. A., Charbonneau, D., Christiansen, J. L., Cochran, W. D., Desert, J.-M., Dunham, E. W., Fanelli, M. N., Fortney, J. J., Gautier, T. N. III, Geary, J. C., Gilliland, R. L., Haas, M. R., Hall, J. R., Holman, M. J., Coch, D. G., Latham, D. W., Lopez, E., McCauliff, S., Miller, N., Morehead, R. C., Quintana, E. V., Ragozzine, D., Sasselov, D., Short, D. R. and Stefffen, J. H. (2011). A closely packed system of low-mass, low-density planets transiting Kepler-11. Nature, 470, 5358.Google Scholar
Lock, S. J., Stewart, S. T., Petaev, M. I., Leinhardt, Z. M., Mace, M., Jacobsen, S. B. and Ćuk, M. (2016). A new model for lunar origin: Equilibration with Earth beyond the hot spin stability limit. Lunar Planet. Sci., 47, abstract 2881.Google Scholar
Lodders, K. (2003). Solar system abundances and condensation temperatures of the elements. Astrophys. J., 591, 12201247.Google Scholar
Lodders, K. and Fegley, B Jr. (1997). An oxygen isotope model for the composition of Mars. Icarus, 126, 373394.Google Scholar
Lodders, K. and Fegley, B Jr. (1998). The Planetary Scientist’s Companion. New York: Oxford University Press.Google Scholar
Lodders, K., Palme, H. and Gail, H. P. (2009). Abundances of the elements in the solar system. In Landolt-Börnstein, New Series, Vol. VI/4B, ed. Trümper, J. E.. Berlin, Heidelberg, New York: Springer-Verlag, pp. 560630.Google Scholar
Loesche, C., Wurm, G., Kelling, T., Teiser, J. and Ebel, D. S. (2016). The motion of chondrules and other particles in a protoplanetary disk with temperature fluctuations. Mon. Not. Roy. Astron. Soc., 463, 41674174.Google Scholar
Macke, R. J. (2012). Survey of meteorite physical properties: Density, porosity and magnetic susceptibility. Ph.D. thesis, University of Central Florida, Orlando, FL.Google Scholar
Mahoney, T. J. (2014). Mercury, A Compendium of the Astronomical Lexicon, Part A: Gazetteer and Atlas of Astronomy, Vol. I: The Terrestrial Planets, Part 1. New York: Springer, doi:10.1007/978–1-4614–7951-2.Google Scholar
Malavergne, V., Toplis, M. J., Berthet, S. and Jones, J. (2010). Highly reducing conditions during core formation on Mercury: Implications for internal structure and the origin of a magnetic field. Icarus, 206, 199209, doi:10.1016/j.icarus.2009.09.001.Google Scholar
Marcus, R. A., Stewart, S. T., Sasselov, D. and Hernquist, L. (2009). Collisional stripping and disruption of super-Earths. Astrophys. J. Lett., 700, L118L122.Google Scholar
Marcus, R. A., Sasselov, D., Hernquist, L. and Stewart, S. T. (2010a). Minimum radii of super-Earths: Constraints from giant impacts. Astrophys. J. Lett., 712, L73L76.Google Scholar
Marcus, R. A., Sasselov, D., Stewart, S. T. and Hernquist, L. (2010b). Water/icy super-Earths: Giant impacts and maximum water content. Astrophys. J. Lett., 719, L45L49.Google Scholar
McClure, M. K., D’Alessio, P., Calvet, N., Espaillat, C., Hartmann, L., Sargent, B., Watson, D. M., Ingleby, L. and Hernández, J. (2013). Curved walls: Grain growth, settling, and composition patterns in T Tauri disk dust sublimation fronts. Astrophys. J., 775, 114124.Google Scholar
McCubbin, F. M., Riner, M. A., Vander Kaaden, K. E. and Burkemper, L. K. (2012). Is Mercury a volatile-rich planet? Geophys. Res. Lett., 39, L09202, doi:10.1029/2012GL051711.Google Scholar
McDonough, W. F. (2014). Compositional model for the Earth’s core. In The Mantle and Core, ed. Carlson, R. W., Treatise on Geochemistry, 2nd edn, Vol. 3, ed. Holland, H. D. and Turekian, K.. Amsterdam, Oxford: Elsevier, pp. 559577.Google Scholar
McNally, C. P. and McClure, M. K. (2017). Photophoretic levitation and trapping of dust in the inner regions of protoplanetary disks. Astrophys. J., 834, 4860.Google Scholar
McNally, C. P., Hubbard, A., Mac Low, M.-M., Ebel, D. S. and D’Alessio, P. (2013). Mineral processing by short circuits in protoplanetary disks. Astrophys. J., 767, L2L7.Google Scholar
Melosh, H. J. (2014), New approaches to the Moon’s isotopic crisis. Phil. Trans. Roy. Soc. London A, 372, 20130168.Google Scholar
Messenger, S., Keller, L. P., Stadermann, F. J., Walker, R. M. and Zinner, E. (2003). Samples of stars beyond the Solar System: Silicate grains in interplanetary dust. Science, 300, 105108.Google Scholar
Mitchell, D. and de Pater, I. (1994). Microwave imaging of Mercury’s thermal emission at wavelengths from 0.3 to 20.5 cm. Icarus, 110, 232.Google Scholar
Morbidelli, A. and Raymond, S. N. (2016). Challenges in planet formation. J. Geophys. Res. Planets, 121, 1962–1980, doi:10.1002/2016JE005088.Google Scholar
Morbidelli, A., Tsiganis, K., Crida, A., Levison, H. F. and Gomes, R. (2007). Dynamics of the giant planets of the Solar System in the gaseous protoplanetary disk and their relationship to the current orbital architecture. Astron. J., 134, 17901798.Google Scholar
Morbidelli, A., Lunine, J. I., O’Brien, D. P., Raymond, S. N. and Walsh, K.J. (2012). Building terrestrial planets. Annu. Rev. Earth Planet. Sci., 40, 251275.Google Scholar
Morgan, J. W. and Anders, E. (1980). Chemical composition of Earth, Venus, and Mercury. Proc. Natl. Acad. Sci., 77, 69736977.Google Scholar
Moriarty, J., Madhusudhan, N. and Fischer, D. (2014) Chemistry in an evolving protoplanetary disk: Effects on terrestrial planet composition. Astrophys. J., 787, 8191.Google Scholar
Morishima, R., Golabek, G. J. and Samuel, H. (2013). N-body simulations of oligarchic growth of Mars: Implications for Hf–W chronology. Earth Planet. Sci. Lett., 366, 616.Google Scholar
Murchie, S. L., Klima, R. L., Denevi, B. W., Ernst, C. M., Keller, M. R., Domingue, D. L., Blewett, D. T., Chabot, N. L., Hash, C. D., Malaret, E., Izenberg, N. R., Vilas, F., Nittler, L. R., Gillis-Davis, J. J., Head, J. W. and Solomon, S. C. (2015). Orbital multispectral mapping of Mercury with the MESSENGER Mercury Dual Imaging System: Evidence for the origins of plains units and low-reflectance material. Icarus, 254, 287305.Google Scholar
Nakajima, M. and Stevenson, D. J. (2015). Melting and mixing states of the Earth’s mantle after the Moon-forming impact. Earth Planet. Sci. Lett., 427, 286295.Google Scholar
Namur, O., Charlier, B., Holtz, F., Cartier, C. and McCammon, C. (2016). Sulfur solubility in reduced mafic silicate melts: Implications for the speciation and distribution of sulfur on Mercury. Earth Planet. Sci. Lett., 448, 102114.Google Scholar
Nittler, L. R., Starr, R. D., Weider, S. Z., McCoy, T. J., Boynton, W. V., Ebel, D. S., Ernst, C. M., Evans, L. G., Goldsten, J. O., Hamara, D. K., Lawrence, D. J., McNutt, R. L. Jr., Schlemm, C. E. II, Solomon, S. C. and Sprague, A. L. (2011). The major-element composition of Mercury’s surface from MESSENGER X-ray spectrometry. Science, 333, 18471850.Google Scholar
O’Brien, D. P., Morbidelli, A. and Levison, H. F. (2006). Terrestrial planet formation with strong dynamical friction. Icarus, 184, 3958.Google Scholar
O’Neill, H. St. C. and Palme, H. (2008). Collisional erosion and the non-chondritic composition of the terrestrial planets. Phil. Trans. Roy. Soc. London A, 366, 42054238.Google Scholar
Ostro, S. J., Hudson, R. S., Nolan, M. C., Margo, J-L., Scheeres, D. J., Campbell, D. B., Magri, C., Giorgini, J. D. and Yeomans, D. K. (2000). Radar observations of asteroid 216 Kleopatra. Science, 288, 836839. doi:10.1126/science.288.5467.836.Google Scholar
Pasek, M. A., Milsom, J. A., Ciesla, F. J., Lauretta, D. S., Sharp, C. M. and Lunine, J. I. (2005). Sulfur chemistry with time-varying oxygen abundance during Solar System formation. Icarus, 175, 114.Google Scholar
Peplowski, P. N., Evans, L. G., Hauck, S. A. II, McCoy, T. J., Boynton, W. V., Gillis-Davis, J.-J., Ebel, D. S., Goldsten, J. O., Hamara, D. K., Lawrence, D. J., McNutt, R. L Jr., Nittler, L. R., Solomon, S. C., Rhodes, E. A., Sprague, A. L., Starr, R. D. and Stockstill-Cahill, K. R. (2011). Radioactive elements on Mercury’s surface from MESSENGER: Implications for the planet’s formation and evolution. Science, 333, 18501852.Google Scholar
Peplowski, P. N., Lawrence, D. J., Rhodes, E. A., Sprague, A. L., McCoy, T. J., Denevi, B. W., Evans, L. G., Head, J. W., Nittler, L. R., Solomon, S. C., Stockstill-Cahill, K. R. and Weider, S. Z. (2012). Variations in the abundances of potassium and thorium on the surface of Mercury: Results from the MESSENGER Gamma-Ray Spectrometer. J. Geophys. Res., 117, E00L04, doi:10.1029/2012JE004141.Google Scholar
Peplowski, P. N., Evans, L. G., Stockstill-Cahill, K. R., Lawrence, D. J., Goldsten, J. O., McCoy, T. J., Nittler, L. R., Solomon, S. C., Sprague, A. L., Starr, R. D. and Weider, S. Z. (2014). Enhanced sodium abundance in Mercury’s north polar region revealed by the MESSENGER Gamma-Ray Spectrometer. Icarus, 228, 8695.Google Scholar
Peplowski, P. N., Lawrence, D. J., Evans, L. G., Klima, R. L., Blewett, D. T., Goldsten, J. O., Murchie, S. L., McCoy, T. J., Nittler, L. R., Solomon, S. C., Starr, R. D. and Weider, S. Z. (2015). Constraints on the abundance of carbon in near-surface materials on Mercury: Results from the MESSENGER gamma-ray spectrometer. Planet. Space Sci., 108, 98107.Google Scholar
Peplowski, P. N., Klima, R. L., Lawrence, D. J., Ernst, C. M., Denevi, B. W., Frank, E. A., Goldsten, J. O., Murchie, S. L., Nittler, L. R. and Solomon, S. C. (2016). Remote sensing evidence for an ancient carbon-bearing crust on Mercury, Nature Geosci., 9, 273276, doi:10.1038/ngeo2669.Google Scholar
Pignatale, F. C., Liffman, K., Maddison, S. T. and Brooks, G. (2016). 2D condensation model for the inner Solar Nebula: An enstatite-rich environment. Mon. Not. Roy. Astron. Soc., 457, 13591370.Google Scholar
Quintana, E. V., Barclay, T., Borucki, W., Rowe, J. F. and Chambers, J. E. (2016). Giant impacts on Earth-like worlds. Astrophys. J., 821, 126139.Google Scholar
Raymond, S. N., O’Brien, D. P., Morbidelli, A. and Kaib, N. A. (2009). Building the terrestrial planets: Constrained accretion in the inner Solar System. Icarus, 203, 644662.Google Scholar
Reipurth, B. and Bally, J. (2001). Herbig-Haro flows: Probes of early stellar evolution. Annu. Rev. Astron. Astrophys., 49, 195236.Google Scholar
Reufer, A., Meier, M. M. M., Benz, W. and Weiler, R. (2012). A hit-and-run giant impact scenario. Icarus, 221, 296299.Google Scholar
Righter, K. (2003). Metal-silicate partitioning of siderophile elements and core formation in the early Earth. Annu. Rev. Earth Planet. Sci., 31, 135174.Google Scholar
Righter, K., Arculus, R. J., Delano, J. W. and Paslick, C. (1990). Electrochemical measurements and thermodynamic calculations of redox equilibria in pallasite meteorites: Implications for the eucrite parent body. Geochim. Cosmochim. Acta, 54, 18031815.Google Scholar
Righter, K., Drake, M. J. and Scott, E. (2006). Compositional relationships between meteorites and terrestrial planets. In Meteorites and the Early Solar System II, ed. Lauretta, D. and McSween, H. Y. Jr. Tucson, AZ: University of Arizona Press, pp. 803828.Google Scholar
Righter, K., Humayun, M. and Danielson, L. (2008). Partitioning of palladium at high pressures and temperatures during core formation. Nature Geosci., 1, 321323, doi:10.1038/ngeo180.Google Scholar
Righter, K., Sutton, S. R., Danielson, L., Pando, K. and Newville, M. (2016). Redox variations in the inner solar system with new constraints from vanadium XANES in spinels. Amer. Mineral., 101, 19281942.Google Scholar
Ringwood, A. E. and Kesson, S. E. (1977). Basaltic magmatism and the bulk composition of the Moon. Moon, 16, 425464.Google Scholar
Rizo, H., Walker, R. J., Carlson, R. W., Horan, M. F., Mukhopadhyay, S., Manthos, V., Francis, D. and Jackson, M. G. (2016). Preservation of Earth-forming events in the tungsten isotopic composition of modern flood basalts. Science, 352, 809812.Google Scholar
Robinson, M. S. and Taylor, G. J. (2001). Ferrous oxide in Mercury’s crust and mantle. Meteorit. Planet. Sci., 36, 841847.Google Scholar
Robinson, M. S., Murchie, S. L., Blewett, D. T., Domingue, D. L., Hawkins, S. E. III, Head, J. W., Holsclaw, G. M., McClintock, W. E., McCoy, T. J., McNutt, R. L. Jr., Prockter, L. M., Solomon, S. C. and Watters, T. R. (2008). Reflectance and color variations on Mercury: Regolith processes and compositional heterogeneity. Science, 321, 6669, doi:10.1126/science.1160080.Google Scholar
Rubie, D. C., Jacobson, S. A., Morbidelli, A., O’Brien, D. P., Young, E. D., de Vries, J., Nimmo, F., Palme, H. and Frost, D. J. (2015). Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed Solar System bodies and accretion of water. Icarus, 248, 89108.Google Scholar
Rudge, J. F., Kleine, T. and Bourdon, B. (2010). Broad bounds on Earth’s accretion and core formation constrained by geochemical models. Nature Geosci., 3, 439443.Google Scholar
Russell, S. S., Hartmann, L., Cuzzi, J. N., Krot, A. N., Gounelle, M. and Weidenschilling, S. J. (2006). Timescales of the solar protoplanetary disk. In Meteorites and the Early Solar System II, ed. Lauretta, D. and McSween, H. Y. Jr. Tucson, AZ: University of Arizona Press, pp. 233251.Google Scholar
Safronov, V. S. (1972). Evolution of the Protoplanetary Cloud and Formation of the Earth and Planets. Tech. Transl. F-677. Washington, DC: NASA.Google Scholar
Sarid, G., Stewart, S. T. and Leinhardt, Z. M. (2014). Mercury, the impactor. Lunar Planet. Sci., 46, abstract 2723.Google Scholar
Schönbächler, M., Carlson, R. W., Horan, M. F., Mock, T. D. and Hauri, E. H. (2010). Heterogeneous accretion and the moderately volatile element budget of Earth. Science, 328, 884887.Google Scholar
Simon, S. B., Sutton, S. R. and Grossman, L. (2007). Valence of titanium and vanadium in pyroxene in refractory inclusion interiors and rims. Geochim. Cosmochim. Acta, 71, 30983118.Google Scholar
Smith, J. V. (1979). Mineralogy of the planets: A voyage in space and time. Mineral. Mag., 43, 189.Google Scholar
Sneden, S., Lawler, J. E., Cowan, J. J., Ivans, I. I. and Den Hartog, E. A. (2009). Astrophys. J. Suppl. Ser., 182, 8096.Google Scholar
Solomon, S. C., McNutt, R. L. Jr., Gold, R. E., Acuña, M. H., Baker, D. N., Boynton, W. V., Chapman, C. R., Cheng, A. F., Gloeckler, G., Head, J. W. III, Krimigis, S. M., McClintock, W. E., Murchie, S. L., Peale, S. J., Phillips, R. J., Robinson, M. S., Slavin, J. A., Smith, D. E., Strom, R. G., Trombka, J. I. and Zuber, M T. (2001). The MESSENGER mission to Mercury: Scientific objectives and implementation. Planet. Space Sci., 49, 14451465.Google Scholar
Solomon, S. C., McNutt, R. L. Jr., Gold, R. E. and Domingue, D. L. (2007). MESSENGER mission overview. Space Sci. Rev., 131, 339.Google Scholar
Sprague, A. L. and Roush, T. L. (1998). Comparison of laboratory emission spectra with Mercury telescopic data. Icarus, 133, 174183.Google Scholar
Stewart, S. T. and Leinhardt, Z. M. (2012). Collisions between gravity-dominated bodies. II. The diversity of impact outcomes during the end stage of planet formation. Astrophys. J., 751, 3249.Google Scholar
Stewart, S. T., Leinhardt, Z. M. and Humayun, M. (2013). Giant impacts, volatile loss, and the K/Th ratios on the Moon, Earth, and Mercury. Lunar Planet. Sci., 44, abstract 2306.Google Scholar
Stewart, S. T., Lock, S. J., Petaev, M. I., Jacobsen, S. B., Sarid, G., Leinhardt, Z. M., Mukhopadhyay, S. and Humayun, M. (2016). Mercury impact origin hypothesis survives the volatile crisis: Implications for terrestrial planet formation. Lunar Planet. Sci., 47, abstract 2954.Google Scholar
Svetsov, V. (2011). Cratering erosion of planetary embryos. Icarus, 214, 316326.Google Scholar
Szymanski, A., Brenker, F. E., Palme, H. and El Goresy, A. (2010). High oxidation state during formation of Martian nakhlites. Meteorit. Planet. Sci., 45, 2131.Google Scholar
Tsiganis, K., Gomes, R., Morbidelli, A. and Levison, H. F. (2005). Origin of the orbital architecture of the giant planets of the Solar System. Nature435, 459461.Google Scholar
Tuff, J., Wade, J. and Wood, B. J. (2013). Volcanism on Mars controlled by early oxidation of the upper mantle. Nature, 498, 342345.Google Scholar
Urey, H. (1950). The origin and development of the Earth and other terrestrial planets. Geochim. Cosmochim. Acta, 1, 209277.CrossRefGoogle Scholar
Vander Kaaden, K. E. and McCubbin, F. M. (2015). Exotic crust formation on Mercury: Consequences of a shallow, FeO-poor mantle. J. Geophys. Res. Planets, 120, 195209, doi:10.1002/2014je004733.Google Scholar
Vilas, F. (1988). Surface composition of Mercury from reflectance spectrophotometry. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 5976.Google Scholar
Vityazev, A. V., Pechernikova, G. V. and Safronov, V. S. (1988). Formation of Mercury and removal of its silicate shell. In Mercury, ed. Vilas, F., Chapman, C. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 667669.Google Scholar
Wadhwa, M. (2001). Redox state of Mars’ upper mantle and crust from Eu anomalies in shergottite pyroxenes. Science, 291, 15271530.Google Scholar
Wadhwa, M. (2008). Redox conditions on small bodies, the Moon and Mars. Rev. Mineral. Geochem., 68, 493510.Google Scholar
Wagner, F. W., Sohl, F., Hussmann, H., Grott, M. and Rauer, H. (2011). Interior structure models of solid exoplanets using material laws in the infinite pressure limit. Icarus, 214, 366376.Google Scholar
Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P. and Mandell, A. M. (2011). A low mass for Mars from Jupiter’s early gas-driven migration. Nature, 475, 206209, doi:10.1038/nature10201.Google Scholar
Wänke, H. (1981) Constitution of terrestrial planets. Phil. Trans. Roy. Soc. London A, 303, 287302.Google Scholar
Warell, J. and Blewett, D. T. (2004). Properties of the Hermean regolith: V. New optical reflectance spectra, comparison with lunar anorthosites, and mineralogical modelling. Icarus, 168, 257276.Google Scholar
Wasson, J. T. and Kallemeyn, G. W. (1988). Composition of chondrites. Phil. Trans. Roy. Soc. London A, 325, 535544.Google Scholar
Wasson, J. T. and Wai, C. M. (1970). Composition of the metal, schreibersite and perryite of enstatite achondrites and the origin of enstatite chondrites and achondrites. Geochim. Cosmochim. Acta, 34, 169184.Google Scholar
Weidenschilling, S. J. (1978). Iron/silicate fractionation and the origin of Mercury. Icarus, 35, 99111.Google Scholar
Weider, S. Z., Nittler, L. R., Starr, R. D., McCoy, T. J., Stockstill-Cahill, K. R., Byrne, P. K., Denevi, B. W., Head, J. W. and Solomon, S. C. (2012). Chemical heterogeneity on Mercury’s surface revealed by the MESSENGER X-Ray Spectrometer. J. Geophys. Res., 117, E00L05, doi:10.1029/2012JE004153.Google Scholar
Weider, S. Z., Nittler, L. R., Starr, R. D., McCoy, T. J. and Solomon, S. C. (2014). Variations in the abundance of iron on Mercury’s surface from MESSENGER X-Ray Spectrometer observations. Icarus, 235, 170186.Google Scholar
Weider, S. Z., Nittler, L. R., Starr, R. D., Crapster-Pregont, E. J., Peplowski, P. N., Denevi, B. W., Head, J. W., Byrne, P. K., Hauck, S. A. II , Ebel, D. S. and Solomon, S. C. (2015). Evidence for geochemical terranes on Mercury: Global mapping of major elements with MESSENGER’s X-Ray Spectrometer. Earth Planet. Sci. Lett., 416, 109120.Google Scholar
Weisberg, M. K. and Kimura, M. (2012). The unequilibrated enstatite chondrites. Chemie der Erde, 72, 101115.Google Scholar
Weisberg, M. K., Prinz, M. and Nehru, C. E. (1988). Petrology of ALH85085: A chondrite with unique characteristics. Earth Planet. Sci. Lett., 91, 1932.Google Scholar
Weisberg, M. K., Prinz, M., Clayton, R. N., Mayeda, T. K., Sugiura, N., Zashu, S. and Ebihara, M. (2001). A new metal-rich chondrite grouplet. Meteorit. Planet. Sci., 36, 34013418.Google Scholar
Weisberg, M. K., Ebel, D. S., Nakashima, D., Kita, N. T. and Humayun, M. (2015). Petrology and geochemistry of chondrules and metal in NWA 5492 and GRO 95551: A new type of metal-rich chondrite. Geochim. Cosmochim. Acta, 167, 269285.Google Scholar
Weisberg, M. K., Bigolski, J., Ebel, D. S. and Walker, D. (2016). Calcium-aluminum-rich (CAI) and sodium-aluminum-rich (NAI) inclusions in the PAT 91546 CH chondrite. Lunar Planet. Sci., 47, abstract 2152.Google Scholar
Wetherill, G. W. (1994). Provenance of the terrestrial planets. Geochim. Cosmochim. Acta, 58, 45134520.Google Scholar
Williams, J. P. and Cieza, L. A. (2011). Protoplanetary disks and their evolution. Annu. Rev. Astron. Astrophys., 49, 67118.Google Scholar
Wood, B. J., Walter, M. J. and Wade, J. (2006). Accretion of the Earth and segregation of its core. Nature, 441, 825833.Google Scholar
Wood, B. J., Wade, J. and Kilburn, M. (2009). Core formation and the oxidation state of the Earth: Additional constraints from Nb, V and Cr partitioning. Geochim. Cosmochim. Acta, 72, 14151426.Google Scholar
Wurm, G., Trieloff, M. and Rauer, H. (2013). Photophoretic separation of metals and silicates: The formation of Mercury like planets and metal depletion in chondrites. Astrophys. J., 769, 7885.Google Scholar
Yang, J., Goldstein, J. I. and Scott, E. R. D. (2007). Iron meteorite evidence for early formation and catastrophic disruption of protoplanets. Nature, 446, 888891.Google Scholar
Zeng, L., Sasselov, D. and Jacobsen, S. (2016). Mass–radius relation for rocky planets based on PREM. Astrophys. J., 819, 127131.Google Scholar
Zolotov, M. Yu., Sprague, A. L., Hauck, S. A. II, Nittler, L. R., Solomon, S. C. and Weider, S. Z. (2013). The redox state, FeO content, and origin of sulfur-rich magmas on Mercury. J. Geophys. Res. Planets, 118, 138146, doi:10.1029/2012JE004274.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×