Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-12T21:11:04.799Z Has data issue: false hasContentIssue false

Complement 3E: The laser as energy source

Published online by Cambridge University Press:  05 August 2012

Gilbert Grynberg
Affiliation:
Ecole Normale Supérieure, Paris
Alain Aspect
Affiliation:
Institut d'Optique, Palaiseau
Claude Fabre
Affiliation:
Université de Paris VI (Pierre et Marie Curie)
Get access

Summary

We have seen in the present chapter that the light emitted by a laser has properties that are radically different from those of the light emitted by classical sources. These properties have been the basis for the myriad applications found for lasers since their advent in the 1960s; they have escaped the confines of the research laboratory to become ubiquitous in industrial production and modern consumer society. Lasers now have innumerable applications in such disparate areas as medicine, metallurgy and telecommunications and are at the heart of new developments in commercial and consumer electronics (CD and DVD players, bar-code readers and printers, to name but a few examples).

The total market in the mid 2000s was estimated to be almost 6 billion dollars. It was dominated by the domains of optical storage (30% of the total amount) and communication (20%), which are mass production markets. In contrast, material processing (25%) and medical applications (8%) involve a smaller number of very expensive lasers. Research and instrumentation amount to 6% of the total sales. The significant fraction of laser sales related to research and development is a testament to the relative youth of the technology. New applications are still coming to light, some of which may have profound economic consequences for the future.

It will not be possible to provide an exhaustive account of these applications here. We shall, therefore, concentrate on a few significant examples selected from the broad categories introduced above.

Type
Chapter
Information
Introduction to Quantum Optics
From the Semi-classical Approach to Quantized Light
, pp. 261 - 270
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×