Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T14:53:32.641Z Has data issue: false hasContentIssue false

Section 3 - Approach to the diagnosis of FTD

Published online by Cambridge University Press:  05 May 2016

Bradford C. Dickerson
Affiliation:
Department of Neurology, Massachusetts General Hospital
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Adams, RD (1966) Further observations on normal pressure hydrocephalus. Proc R Soc Med 59:11351140.Google ScholarPubMed
American Psychiatric Association (2013a) Neurocognitive disorders. In: Diagnostic and Statistical Manual of Mental Disorders, 5th edn. Arlington VA: American Psychiatric Association.Google Scholar
American Psychiatric Association (2013b)Diagnostic and Statistical Manual of Mental Disorders, 5th edn. Arlington, VA: American Psychiatric Association.Google Scholar
Ames, D, Cummings, J, Wirshing, W, Quinn, B, Mahler, M (1994) Repetitive and compulsive behavior in frontal lobe degenerations. J Neuropsychiatry Clin Neurosci 6:100113.Google Scholar
Amodio, DM, Frith, CD (2006) Meeting of minds: the medial frontal cortex and social cognition. Nat Rev Neurosci 7:268277.CrossRefGoogle ScholarPubMed
Baborie, A, Griffiths, TD, Jaros, E et al. (2012) Frontotemporal dementia in elderly individuals. Arch Neurol 69:10521060.Google Scholar
Berrios, GE, Girling, DM (1994) Introduction: Pick's disease and the ‘frontal lobe’ dementias. Hist Psychiatry 5:539547.Google Scholar
Bickart, KC, Brickhouse, M, Negreira, A et al. (2014) Atrophy in distinct corticolimbic networks in frontotemporal dementia relates to social impairments measured using the Social Impairment Rating Scale. J Neurol Neurosurg Psychiatry 85:438448.Google Scholar
Borroni, B, Alberici, A, Grassi, M et al. (2010) Is frontotemporal lobar degeneration a rare disorder? Evidence from a preliminary study in Brescia county, Italy. J Alzheimers Dis 19:111116.CrossRefGoogle ScholarPubMed
Bozeat, S, Gregory, CA, Ralph, MA, Hodges, JR (2000) Which neuropsychiatric and behavioural features distinguish frontal and temporal variants of frontotemporal dementia from Alzheimer's disease? J Neurol Neurosurg Psychiatry 69:178186.Google Scholar
Brodtmann, A, Cowie, T, McLean, C, Darby, D (2013) Phenocopy or variant: a longitudinal study of very slowly progressive frontotemporal dementia. BMJ Case Rep 2013.Google Scholar
Brun, A, Englund, E, Gustafson, L et al. (1994) Clinical and neuropathological criteria for frontotemporal dementia. The Lund and Manchester Groups. J Neurol Neurosurg Psychiatry 57:416418.Google Scholar
Cerami, C, Marcone, A, Galimberti, D et al. (2011) From genotype to phenotype: two cases of genetic frontotemporal lobar degeneration with premorbid bipolar disorder. J Alzheimers Dis 27:791797.Google Scholar
Chien, DT, Bahri, S, Szardenings, AK et al. (2013) Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. J Alzheimers Dis 34:457468.CrossRefGoogle ScholarPubMed
Constantinidis, J, Richard, J, Tissot, R (1974) Pick's disease. Histological and clinical correlations. Eur Neurol 11(4):208217.Google Scholar
Cummings, JL (1997) The Neuropsychiatric Inventory: assessing psychopathology in dementia patients. Neurology 48:S1016.Google Scholar
Davies, RR, Kipps, CM, Mitchell, J et al. (2006) Progression in frontotemporal dementia: identifying a benign behavioral variant by magnetic resonance imaging. Arch Neurol 63:16271631.Google Scholar
Dobson-Stone, C, Hallupp, M, Bartley, L et al. (2012) C9ORF72 repeat expansion in clinical and neuropathologic frontotemporal dementia cohorts. Neurology 79:9951001.Google Scholar
Dubois, B, Slachevsky, A, Litvan, I, Pillon, B (2000) The FAB: a Frontal Assessment Battery at bedside. Neurology 55:16211626.CrossRefGoogle ScholarPubMed
Floris, G, Borghero, G, Cannas, A et al. (2013) Bipolar affective disorder preceding frontotemporal dementia in a patient with C9ORF72 mutation: is there a genetic link between these two disorders? J Neurol 260:11551157.Google Scholar
Fodero-Tavoletti, MT, Okamura, N, Furumoto, S et al. (2011) 18F-THK523: a novel in vivo tau imaging ligand for Alzheimer's disease. Brain 134:10891100.Google Scholar
Funkiewiez, A, Bertoux, M, de Souza, LC, Levy, R, Dubois, B (2012) The SEA (Social cognition and Emotional Assessment): a clinical neuropsychological tool for early diagnosis of frontal variant of frontotemporal lobar degeneration. Neuropsychology 26:8190.Google Scholar
Garcin, B, Lillo, P, Hornberger, M et al. (2009) Determinants of survival in behavioral variant frontotemporal dementia. Neurology 73:16561661.Google Scholar
Gislason, TB, Sjogren, M, Larsson, L, Skoog, I (2003) The prevalence of frontal variant frontotemporal dementia and the frontal lobe syndrome in a population based sample of 85 year olds. J Neurol Neurosurg Psychiatry 74:867871.Google Scholar
Gorno-Tempini, ML, Hillis, AE, Weintraub, S et al. (2011) Classification of primary progressive aphasia and its variants. Neurology 76:10061014.Google Scholar
Grasbeck, A, Englund, E, Horstmann, V, Passant, U, Gustafson, L (2003) Predictors of mortality in frontotemporal dementia: a retrospective study of the prognostic influence of pre-diagnostic features. Int J Geriatr Psychiatry 18:594601.Google Scholar
Gregory, CA, Serra-Mestres, J, Hodges, JR (1999) Early diagnosis of the frontal variant of frontotemporal dementia: how sensitive are standard neuroimaging and neuropsychologic tests? Neuropsychiatry Neuropsychol Behav Neurol 12:128135.Google Scholar
Gustafson, L (1987) Frontal lobe degeneration of non-Alzheimer type. II. Clinical picture and differential diagnosis. Arch Gerontol Geriatr 6:209223.Google Scholar
Hodges, JR, Mitchell, J, Dawson, K et al. (2010) Semantic dementia: demography, familial factors and survival in a consecutive series of 100 cases. Brain 133:300306.Google Scholar
Hornberger, M, Piguet, O, Kipps, C, Hodges, JR (2008) Executive function in progressive and nonprogressive behavioral variant frontotemporal dementia. Neurology 71:14811488.Google Scholar
Hornberger, M, Shelley, BP, Kipps, CM, Piguet, O, Hodges, JR (2009) Can progressive and non-progressive behavioural variant frontotemporal dementia be distinguished at presentation? J Neurol Neurosurg Psychiatry 80:591593.Google Scholar
Hornberger, M, Piguet, O, Graham, AJ, Nestor, PJ, Hodges, JR (2010) How preserved is episodic memory in behavioral variant frontotemporal dementia? Neurology 74:472479.Google Scholar
Hornberger, M, Wong, S, Tan, R et al. (2012) In vivo and post-mortem memory circuit integrity in frontotemporal dementia and Alzheimer's disease. Brain 135:30153025.Google Scholar
Hu, WT, Seelaar, H, Josephs, KA et al. (2009) Survival profiles of patients with frontotemporal dementia and motor neuron disease. Arch Neurol 66:13591364.Google Scholar
Hu, WT, Chen-Plotkin, A, Grossman, M et al. (2011) Novel CSF biomarkers for frontotemporal lobar degenerations. Neurology 75:20792086.Google Scholar
Ibach, B, Koch, H, Koller, M, Wolfersdorf, M; Workgroup for Geriatric Psychiatry of the Psychiatric State Hospitals of Germany, Workgroup for Clinical Research of the Psychiatric State Hospitals of Germany (2003) Hospital admission circumstances and prevalence of frontotemporal lobar degeneration: a multicenter psychiatric state hospital study in Germany. Dement Geriatr Cogn Disord 16:253264.Google Scholar
Kertesz, A, Davidson, W, Fox, H (1997) Frontal behavioral inventory: diagnostic criteria for frontal lobe dementia. Can J Neurol Sci 24:2936.Google Scholar
Kertesz, A, McMonagle, P, Blair, M, Davidson, W, Munoz, DG (2005) The evolution and pathology of frontotemporal dementia. Brain 128(Pt 9):19962005.Google Scholar
Kertesz, A, Blair, M, McMonagle, P, Munoz, DG (2007) The diagnosis and course of frontotemporal dementia. Alzheimer Dis Assoc Disord 21(2):155163.Google Scholar
Kertesz, A, Ang, LC, Jesso, S et al. (2013) Psychosis and hallucinations in frontotemporal dementia with the C9ORF72 mutation: a detailed clinical cohort. Cogn Behav Neurol 26:146154.Google Scholar
Khan, BK, Yokoyama, JS, Takada, LT et al. (2012) Atypical, slowly progressive behavioural variant frontotemporal dementia associated with C9ORF72 hexanucleotide expansion. J Neurol Neurosurg Psychiatry 83:358364.Google Scholar
Kipps, CM, Davies, RR, Mitchell, J et al. (2007) Clinical significance of lobar atrophy in frontotemporal dementia: application of an MRI visual rating scale. Dement Geriatr Cogn Disord 23:334342.Google Scholar
Klunk, WE, Engler, H, Nordberg, A et al. (2004) Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann Neurol 55:306319.Google Scholar
Knopman, DS, Petersen, RC, Edland, SD, Cha, RH, Rocca, WA (2004) The incidence of frontotemporal lobar degeneration in Rochester, Minnesota, 1990 through 1994. Neurology 62:506508.Google Scholar
Knopman, DS, Kramer, JH, Boeve, BF et al. (2008) Development of methodology for conducting clinical trials in frontotemporal lobar degeneration. Brain 131:29572968.Google Scholar
Le Ber, I, Camuzat, A, Hannequin, D et al. (2008) Phenotype variability in progranulin mutation carriers: a clinical, neuropsychological, imaging and genetic study. Brain 131:732746.Google Scholar
Lewandowski, K, Cohen, B, Öngur, D (2011) Evolution of neuropsychological dysfunction during the course of schizophrenia and bipolar disorder. Psychol Med 41:225.Google Scholar
Mann-Wrobel, MC, Carreno, JT, Dickinson, D (2011) Meta-analysis of neuropsychological functioning in euthymic bipolar disorder: an update and investigation of moderator variables. Bipolar Disord 13:334342.Google Scholar
Maruyama, M, Shimada, H, Suhara, T et al. (2013) Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron 79:10941108.Google Scholar
Masellis, M, Momeni, P, Meschino, W et al. (2006) Novel splicing mutation in the progranulin gene causing familial corticobasal syndrome. Brain 129:31153123.Google Scholar
Mathuranath, PS, Nestor, PJ, Berrios, GE, Rakowicz, W, Hodges, JR (2000) A brief cognitive test battery to differentiate Alzheimer's disease and frontotemporal dementia. Neurology 55:16131620.Google Scholar
McGirr, A, Mohammed, S, Kurlan, R, Cusimano, MD (2013) Clinical equipoise in idiopathic normal pressure hydrocephalus: a survey of physicians on the need for randomized controlled trials assessing the efficacy of cerebrospinal fluid diversion. J Neurol Sci 333:1318.Google Scholar
McKhann, GM, Albert, MS, Grossman, M et al. (2001) Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick's Disease. Arch Neurol 58:18031809.Google Scholar
Meisler, MH, Grant, AE, Jones, JM et al. (2013) C9ORF72 expansion in a family with bipolar disorder. Bipolar Disord 15:326332.Google Scholar
Mendez, MF, Shapira, JS (2008) The spectrum of recurrent thoughts and behaviors in frontotemporal dementia. CNS Spectr 13:202208.Google Scholar
Mendez, M, Perryman, K, Miller, B, Swartz, J, Cummings, J (1997) Compulsive behaviors as presenting symptoms of frontotemporal dementia J Geriatr Psychiatry Neurol 10:154157.Google Scholar
Mendez, MF, Shapira, JS, Miller, BL (2005) Stereotypical movements and frontotemporal dementia. Mov Disord 20:742745.Google Scholar
Mendez, MF, Shapira, JS, Woods, RJ, Licht, EA, Saul, RE (2008) Psychotic symptoms in frontotemporal dementia: prevalence and review. Dement Geriatr Cogn Disord 25:206211.Google Scholar
Mesulam, MM (1982) Slowly progressive aphasia without generalized dementia. Ann Neurol 11:592598.Google Scholar
Midorikawa, A, Kawamura, M (2012) The relationship between subclinical Asperger's syndrome and frontotemporal lobar degeneration. Dement Geriatr Cogn Dis Extra 2:180186.Google Scholar
Mioshi, E, Hsieh, S, Savage, S, Hornberger, M, Hodges, JR (2010) Clinical staging and disease progression in frontotemporal dementia. Neurology 74:15911597.Google Scholar
Modirrousta, M, Price, BH, Dickerson, BC (2013) Neuropsychiatric symptoms in primary progressive aphasia: phenomenology, pathophysiology, and approach to assessment and treatment. Neurodegener Dis Manag 3:133146.CrossRefGoogle ScholarPubMed
Nakaaki, S, Murata, Y, Sato, J et al. (2007a) Impairment of decision-making cognition in a case of frontotemporal lobar degeneration (FTLD) presenting with pathologic gambling and hoarding as the initial symptoms. Cogn Behav Neurol 20:121125.Google Scholar
Nakaaki, S, Murata, Y, Shinagawa, Y et al. (2007b) A case of late-onset obsessive compulsive disorder developing frontotemporal lobar degeneration. J Neuropsychiatry Clin Neurosci 19(4):487488.Google Scholar
Neary, D, Snowden, JS, Northen, B, Goulding, P (1988) Dementia of frontal lobe type. J Neurol Neurosurg Psychiatry 51:353361.Google Scholar
Neary, D, Snowden, JS, Gustafson, L et al. (1998) Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51:15461554.CrossRefGoogle ScholarPubMed
Onyike, CU, Sloane, KL, Smyth, SF et al. (2011) Estimating severity of illness and disability in frontotemporal dementia: preliminary analysis of the Dementia Disability Rating (DDR). Acta Neuropsychol 9:141153.Google Scholar
Onyike, CU, Pletnikova, O, Sloane, KL et al. (2013) Hippocampal sclerosis dementia: an amnesic variant of frontotemporal degeneration. Dement Neuropsychol 7:8387.Google Scholar
Perry, RJ, Miller, BL (2001) Behavior and treatment in frontotemporal dementia. Neurology 56:S46S51.Google Scholar
Pompanin, S, Perini, G, Toffanin, T et al. (2012) Late-onset OCD as presenting manifestation of semantic dementia. Gen Hosp Psychiatry 34:102.e101–102.e104.Google Scholar
Pose, M, Cetkovich, M, Gleichgerrcht, E et al. (2013) The overlap of symptomatic dimensions between frontotemporal dementia and several psychiatric disorders that appear in late adulthood. Int Rev Psychiatry 25:159167.Google Scholar
Rankin, KP, Santos-Modesitt, W, Kramer, JH et al. (2008) Spontaneous social behaviors discriminate behavioral dementias from psychiatric disorders and other dementias. J Clin Psychiatry 69:6073.Google Scholar
Rascovsky, K, Hodges, JR, Knopman, D et al. (2011) Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134:24562477.Google Scholar
Robert, P, Onyike, C, Leentjens, A et al. (2009) Proposed diagnostic criteria for apathy in Alzheimer's disease and other neuropsychiatric disorders. Eur Psychiatry 24:98104.Google Scholar
Rohrer, JD, Geser, F, Zhou, J et al. (2010) TDP-43 subtypes are associated with distinct atrophy patterns in frontotemporal dementia. Neurology 75:22042211.CrossRefGoogle ScholarPubMed
Sapolsky, D, Bakkour, A, Negreira, A et al. (2010) Cortical neuroanatomic correlates of symptom severity in primary progressive aphasia. Neurology 75:358366.Google Scholar
Seeley, WW, Bauer, AM, Miller, BL et al. (2005) The natural history of temporal variant frontotemporal dementia. Neurology 64:13841390.Google Scholar
Small, GW, Kepe, V, Ercoli, LM et al. (2006) PET of brain amyloid and tau in mild cognitive impairment. N Engl J Med 355:26522663.Google Scholar
Snowden, JS, Goulding, PJ, Neary, D (1989) Semantic dementia: a form of circumscribed cerebral atrophy. Behav Neurol 2:167182.Google Scholar
Snowden, JS, Bathgate, D, Varma, A et al. (2001) Distinct behavioural profiles in frontotemporal dementia and semantic dementia. J Neurol Neurosurg Psychiatry 70:323332.Google Scholar
Snowden, JS, Neary, D, Mann, DM (2004) Autopsy proven sporadic frontotemporal dementia due to microvacuolar-type histology, with onset at 21 years of age. J Neurol Neurosurg Psychiatry 75:13371339.CrossRefGoogle Scholar
Snowden, JS, Rollinson, S, Thompson, JC et al. (2012) Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations. Brain 135:693708.Google Scholar
Torralva, T, Roca, M, Gleichgerrcht, E, Bekinschtein, T, Manes, F (2009) A neuropsychological battery to detect specific executive and social cognitive impairments in early frontotemporal dementia. Brain 132:12991309.Google Scholar
Velakoulis, D, Walterfang, M, Mocellin, R, Pantelis, C, McLean, C (2009) Frontotemporal dementia presenting as schizophrenia-like psychosis in young people: clinicopathological series and review of cases. Br J Psychiatry 194:298305.Google Scholar
Warrington, EK (1975) Selective impairment of semantic memory. Q J Exp Psychol 27:635657.Google Scholar
Whitwell, JL, Jack CR, Jr., Baker, M et al. (2007) Voxel-based morphometry in frontotemporal lobar degeneration with ubiquitin-positive inclusions with and without progranulin mutations. Arch Neurol 64:371376.Google Scholar
Whitwell, JL, Dickson, DW, Murray, ME et al. (2012a) Neuroimaging correlates of pathologically defined subtypes of Alzheimer's disease: a case-control study. Lancet Neurol 11:868877.Google Scholar
Whitwell, JL, Weigand, SD, Boeve, BF et al. (2012b) Neuroimaging signatures of frontotemporal dementia genetics: C9ORF72, tau, progranulin and sporadics. Brain 135:794806.Google Scholar
Wicklund, MR, Mokri, B, Drubach, DA et al. (2011) Frontotemporal brain sagging syndrome: an SIH-like presentation mimicking FTD. Neurology 76:13771382.Google Scholar
Woolley, J, Wilson, M, Hung, E et al. (2007) Frontotemporal dementia and mania. Am J Psychiatry 164:18111816.Google Scholar
Woolley, JD, Khan, BK, Murthy, NK, Miller, BL, Rankin, KP (2011) The diagnostic challenge of psychiatric symptoms in neurodegenerative disease: rates of and risk factors for prior psychiatric diagnosis in patients with early neurodegenerative disease. J Clin Psychiatry 72:126133.Google Scholar
Xie, SX, Forman, MS, Farmer, J et al. (2008) Factors associated with survival probability in autopsy-proven frontotemporal lobar degeneration. J Neurol Neurosurg Psychiatry 79:126129.Google Scholar

References

Folstein, MF, Folstein, SE, McHugh, PR. “Mini-mental.” A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975;12:189–98.Google Scholar
Mathuranath, PS, Nestor, PJ, Berrios, GE, et al. A brief cognitive test battery to differentiate Alzheimer's disease and frontotemporal dementia. Neurology 2000;55(11):1613–20.Google Scholar
Mioshi, E, Dawson, K, Mitchell, J, et al. The Addenbrookes's Cognitive Examination Revised (ACE-R): a brief cognitive test battery for dementia screening. Int J Geriatr Psychiatry 2006;21:1078–85.Google Scholar
Hsieh, S, Irish, M, Daveson, N, Hodges, JR, Piguet, O. When one loses empathy: its effect on carers of patients with dementia. J Geriatr Psychiatry Neurol 2013;26(3):174–84.Google Scholar
Wechsler, D. Wechsler Adult Intelligent Scale III [Manual], 3rd edn. San Antonio, TX: The Psychological Corporation, 1997.Google Scholar
Golden, CJ. Stroop, Test de Colores y Palabras. Manual de Aplicación Madrid: TEA Ediciones, 1999.Google Scholar
Partington, JE, Leiter, RG. Partington's pathway test. Psychol Serv Bull 1949;1:920.Google Scholar
Conners, CK. Conners’ Continuous Performance Test II: Computer Program for Windows Technical Guide and Software Manual New York: Mutli-Health Systems, 2000.Google Scholar
Torralva, T, Roca, M, Gleichgerrcht, E, et al. A neuropsychological battery of detect specific executive and social cognitive impairments in early frontotemporal dementia. Brain 2009;132:1299–309.Google Scholar
Florance, HV, Stopford, AP, Kalapothakis, JM, et al. Evidence for α-helices in the gas phase: a case study using Melittin from honey bee venom. Analyst 2011;136(17):3446–52.Google Scholar
Collette, F, Amieva, H, Adam, S, et al. Comparison of inhibitory functioning in mild Alzheimer's disease and frontotemporal dementia. Cortex 2007;43(7):866–74.Google Scholar
Hutchinson, AD, Mathias, JL. Neuropsychological deficits in frontotemporal dementia and Alzheimer's disease: a meta-analytic review. J Neurol Neurosurg Psychiatry 2007;78(9):917–28.Google Scholar
Hodges, JR, Davies, R, Xuereb, J, et al. Clinicopathological correlates in frontotemporal dementia. Ann Neurol 2004;56:399406.Google Scholar
Hornberger, M, Savage, S, Hsieh, S, et al. Orbitofrontal dysfunction discriminates behavioral variant frontotemporal dementia from Alzheimer's disease. Dement Geriatr Cogn Disord 2010;30(6):547–52.Google Scholar
Glosser, G, Gallo, JL, Clark, CM, Grossman, M. Memory encoding and retrieval in frontotemporal dementia and Alzheimer's disease. Neuropsychology 2002;16(2):190–6.Google Scholar
Kramer, J, Jurik, J, Sha, SJ, et al. Distinctive neuropsychological patterns in frontotemporal dementia, semantic dementia, and Alzheimer's disease. Cogn Behav Neurol 2003;16:211–18.Google Scholar
Rogers, TT, Hocking, J, Noppeney, U, et al. Anterior temporal cortex and semantic memory: reconciling findings from neuropsychology and functional imaging. Cogn Affect Behav Neurosci 2006;6(3):201–13.Google Scholar
Rascovsky, K, Salmon, DP, Hansen, LA, et al. Disparate letter and semantic category fluency deficits in autopsy-confirmed frontotemporal dementia and Alzheimer's disease. Neuropsychology 2007;21(1):2030.Google Scholar
Hou, CE, Miller, BL, Kramer, JH. Patterns of autobiographical memory loss in dementia. Int J Geriatr Psychiatry 2005;20(9):809–15.Google Scholar
Rey, A. L'examen physiologique dans le cas d'encephalopathie traumatique. Arch Psychol (Geneve) 1941;28:286340.Google Scholar
Blackwell, AD, Sahakian, BJ, Vesey, R, et al. Detecting dementia: novel neuropsychological markers of preclinical Alzheimer's disease. Dement Geriatr Cogn Disord 2004;17(1–2):42–8.Google Scholar
Grober, E, Buschke, H, Crystal, H, et al. Screening for dementia by memory testing. Neurology 1988;38:900–3.Google Scholar
Kopelman, MD, Wilson, BA, Baddeley, AD. The autobiographical memory interview: a new assessment of autobiographical and personal semantic memory in amnesic patients. J Clin Exp Neuropsychol 1989;11(5):724–44.Google Scholar
Groot, YC, Wilson, BA, Evans, J, Watson, P. Prospective memory functioning in people with and without brain injury. J Int Neuropsychol Soc 2002;8(5):645–54.Google Scholar
Perri, R, Fadda, L, Caltagirone, C, Carlesimo, GA.Word list and story recall elicit different patterns of memory deficit in patients with Alzheimer's disease, frontotemporal dementia, subcortical ischemic vascular disease, and Lewy body dementia. J Alzheimers Dis 2013;37(1):99107.Google Scholar
Lee, AC, Rahman, S, Hodges, JR, et al. Associative and recognition memory for novel objects in dementia: implications for diagnosis. Eur J Neurosci 2003;18(6):1660–70.Google Scholar
Sarazin, M, Chauviré, V, Gerardin, E, et al. The amnestic syndrome of hippocampal type in Alzheimer's disease: an MRI study. J Alzheimers Dis 2010; 22(1): 285–94.Google Scholar
Greene, JD, Hodges, JR, Baddeley, AD. Autobiographical memory and executive function in early dementia of Alzheimer type. Neuropsychologia 1995;33(12):1647–70.Google Scholar
Thomas-Antérion, C, Jacquin, K, Laurent, B. Differential mechanisms of impairment of remote memory in Alzheimer's and frontotemporal dementia. Dement Geriatr Cogn Disord 2000;11(2):100–6.CrossRefGoogle ScholarPubMed
Kamminga, J, O'Callaghan, C, Hodges, JR, Irish, M. Differential prospective memory profiles in frontotemporal dementia syndromes. J Alzheimers Dis 2014;38(3):669–79.Google Scholar
Gasparini, MA. Descriptive study on constructional impairment in frontotemporal dementia and Alzheimer´s disease. Eur J Neurol 2008;15:589–97.Google Scholar
Possin, KL, Laluz, VR, Alcantar, OZ, et al. Distinct neuroanatomical substrates and cognitive mechanisms of figure copy performance in Alzheimer's disease and behavioral variant frontotemporal dementia. Neuropsychologia 2011;49:43–8.Google Scholar
Osterrieth, PA.File test de copie d' une figure complex: Contribution al'etude de la perception et de la memoire [The test of copying a complex figure: a contribution to the study of perception and memory].” Arch Psychol (Geneve) 1944;30:286356.Google Scholar
Warrington, EK, James, M. The Visual Object and Space Perception Battery Bury St Edmunds, England: Thames Valley Test Company, 1991.Google Scholar
Clague, F, Dudas, RB, Thompson, SA, et al. Multidimensional measures of person knowledge and spatial associative learning: can these be applied to the differentiation of Alzheimer's disease from frontotemporal and vascular dementia? Neuropsychologia 2005;43(9):1338–50.Google Scholar
Possin, KL, Feigenbaum, D, Rankin, KP, et al. Dissociable executive functions in behavioral variant frontotemporal and Alzheimer dementias. Neurology 2013;80(24):2180–5.Google Scholar
Pose, M, Cetkovich, M, Gleichgerrcht, E, et al. The overlap of symptomatic dimensions between frontotemporal dementia and several psychiatric disorders that appear in late adulthood. Int Rev Psychiatry 2013;25(2):159–67.Google Scholar
Dubois, B, Slachevsky, A, Litvan, I, Pillon, B. The FAB: a Frontal Assessment Battery at bedside. Neurology 2000;55(11):1621–6.Google Scholar
Torralva, T, Roca, M, Gleichgerrcht, E, et al. INECO Frontal Screening (IFS): a brief, sensitive, and specific tool to assess executive functions in dementia. J Int Neuropsychol Soc 2009;15(5):777–86.Google Scholar
Kleinhans, N, Akshoomoff, N, Delis, DC. Executive functions in autism and Asperger's disorder: flexibility, fluency, and inhibition. Dev Neuropsychol 2005;27(3):379401.Google Scholar
Nelson, H. A modified card sorting response sensitive to frontal lobe defects. Cortex 1976;12:313–24.Google Scholar
Cullbertson, WC, Zillmer, EA. Tower of London. Technical Manual, 2nd edn. Toronto, Drexel University: Multi-Health System Inc., 2005.Google Scholar
Burgess, PW, Shallice, T. The Hayling Test and Brixton Tests Thurston, Suffolk: Thames Valley Test Company, 1997.Google Scholar
Delis, DC, Kaplan, E, Kramer, JH. The Delis-Kaplan Executive Function System San Antonio, TX: The Psychological Corporation, 2001.Google Scholar
Harciarek, M, Cosentino, S. Language, executive function and social cognition in the diagnosis of frontotemporal dementia syndromes. Int Rev Psychiatry 2013;25(2):178–96.Google Scholar
Ringman, JM, Kwon, E, Flores, DL, et al. The use of profanity during letter fluency tasks in frontotemporal dementia and Alzheimer disease. Cogn Behav Neurol 2010;23(3):159–64.Google Scholar
Davis, C, Heidler-Gary, J, Gottesman, RF, et al. Action versus animal naming fluency in subcortical dementia, frontal dementias, and Alzheimer's disease. Neurocase 2010;16(3):259–66.Google Scholar
Libon, DJ, Xie, SX, Moore, P, et al. Patterns of neuropsychological impairment in frontotemporal dementia. Neurology 2007;68(5):369–75.Google Scholar
Hornberger, M, Piguet, O, Kipps, C, Hodges, JR. Executive function in progressive and nonprogressive behavioral variant frontotemporal dementia. Neurology 2008;71:1481–8.Google Scholar
Shallice, T. Specific impairments of planning. Philos Trans R Soc Lond B Biol Sci 1982;298(1089):199209.Google Scholar
Possin, KL, Chester, SK, Laluz, V, et al. The frontal-anatomic specificity of design fluency repetitions and their diagnostic relevance for behavioral variant frontotemporal dementia. J Int Neuropsychol Soc 2012;18(5):834–44.Google Scholar
Torralva, T, Kipp, CM, Hodges, JR, et al. The relationship between affective decision-making and theory of mind in the frontal variant of frontotemporal dementia. Neuropsychologia 2007;45:342–9.Google Scholar
Gregory, C, Lough, S, Stone, VE, et al. Theory of mind in frontotemporal dementia and Alzheimer's disease: theoretical and practical implications. Brain 2002;125:752–64.Google Scholar
Stone, VE, Baron-Cohen, S, Knight, RT. Frontal lobe contributions to theory of mind. J Cogn Neurosci 1998;10:640–56.Google Scholar
Baron-Cohen, S, Jolliffe, T, Mortimore, C, Robertson, M. A further advanced test of theory of mind: evidence from very high functioning adults with autism or Asperger syndrome. J Child Psychol Psychiatry 1997;38:813–22.Google Scholar
Golan, O, Baron-Cohen, S, Hill, J. The Cambridge Mindreading (CAM) face-voice battery: testing complex emotion recognition in adults with and without Asperger syndrome. J Autism Dev Disord 2006;36(2):169–83.Google Scholar
Baron-Cohen, S, Jolliffe, T, Mortimore, C, Robertson, M. Another advanced test of theory of mind: evidence from very high functioning adults with autism or Asperger Syndrome. J Child Psychol Psychiatry 1997;38:813–22.Google Scholar
Perner, J, Wimmer, H. ‘‘John thinks that Mary thinks that’’ attribution of second-order false beliefs by 5- to 10-year-old children. J Exp Child Psychol 1985;39:437–71.Google Scholar
Freedman, M, Binns, MA, Black, SE, et al. Theory of mind and recognition of facial emotion in dementia: challenge to current concepts. Alzheimer Dis Assoc Disord 2013;27(1):5661.Google Scholar
Fernandez-Duque, D, Baird, JA, Black, SE. False-belief understanding in frontotemporal dementia and Alzheimer's disease. J Clin Exp Neuropsychol 2009;31(4):489–97.Google Scholar
Lough, S, Kipps, CM, Treise, C et al. Social reasoning, emotion and empathy in frontotemporal dementia. Neuropsychologia 2006;44(6):950–8.Google Scholar
Happe, FG. An advanced test of theory of mind: Understanding of story characters’ thoughts and feelings by able autistic, mentally handicapped, and normal children and adults. J Autism Dev Disord 1994;24:129–54.Google Scholar
McDonald, S, Bornhofen, C, Shum, D, et al. Reliability and validity of The Awareness of Social Inference Test (TASIT): a clinical test of social perception. Disabil Rehabil 2006;28:1529–42.Google Scholar
Ekman, P, Friesen, E. Pictures of Facial Affects Palo Alto, CA: Consulting Psychologists Press, 1976Google Scholar
Young, AW, Rowland, D, Calder, AJ, et al. Facial expression megamix: tests of dimensional and category accounts of emotion recognition. Cognition 1997;63:271313.Google Scholar
Davis, MH. Measuring individual differences in empathy. Evidence for multidimensional approach. J Pers Soc Psychol 1993;44:113–26.Google Scholar
Savage, SA, Lillo, P, Kumfor, F, et al. Emotion processing deficits distinguish pure amyotrophic lateral sclerosis from frontotemporal dementia. Amyotroph Lateral Scler Frontotemporal Degener 2014;15(1–2):3946.Google Scholar
Rankin, KP, Gorno-Tempini, ML, Allison, SC, et al. Structural anatomy of empathy in neurodegenerative disease. Brain 2006;129:2945–56.Google Scholar
Kipps, CM, Nestor, PJ, Acosta-Cabronero, J, et al. Understanding social dysfunction in the behavioural variant of frontotemporal dementia: the role of emotion and sarcasm processing. Brain 2009;132:592603.Google Scholar
Kumfor, F, Piguet, O. Disturbance of emotion processing in frontotemporal dementia: a synthesis of cognitive and neuroimaging findings. Neuropsychol Rev 2012;22(3):280–97.Google Scholar
Diehl-Schmid, J, Pohl, C, Ruprecht, C, et al. The Ekman 60 Faces Test as a diagnostic instrument in frontotemporal dementia. Arch Clin Neuropsychol 2007;22(4):459–64.Google Scholar
Perry, RJ, Rosen, HR, Kramer, JH, et al. Hemispheric dominance for emotions, empathy and social behaviours: evidence from right and left handers with frontotemporal dementia. Neurocase 2001;7:145–60.Google Scholar
Gleichgerrcht, E, Torralva, T, Roca, M, et al. The role of social cognition in moral judgment in frontotemporal dementia. Soc Neurosci 2010;6(2):113–22.Google Scholar
Burgess, P. Development of a simplified version of the multiple errands test for use in hospital settings. Neuropsychol Rehabil 2002;12:231–55.Google Scholar
Manly, T, Hawkins, K, Evans, J, et al. Rehabilitation of executive function: facilitation of effective goal management on complex tasks using periodic auditory alerts. Neuropsychologia 2002;40(3):271–81.Google Scholar
Bechara, A, Damasio, AR, Damasio, H, Anderson, SW. Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 1994;50(1–3):715.Google Scholar
Funkiewiez, A, Bertoux, M, de Souza, LC, et al. The SEA (Social cognition and Emotional Assessment): a clinical neuropsychological tool for early diagnosis of frontal variant of frontotemporal lobar degeneration. Neuropsychology 2012;26(1):8190.Google Scholar
Bertoux, M, Delavest, M, de Souza, LC, et al. Social Cognition and Emotional Assessment differentiates frontotemporal dementia from depression. J Neurol Neurosurg Psychiatry 2012;83(4):411–16.Google Scholar
Gorno-Tempini, ML, Hillis, AE, Weintraub, S, et al. Classification of primary progressive aphasia and its variants. Neurology 2011;76(11):1006–14.Google Scholar
Bonner, MF, Ash, S, Grossman, M. The new classification of primary progressive aphasia into semantic, logopenic, or nonfluent/agrammatic variants. Curr Neurol Neurosci Rep 2010;10(6):484–90.Google Scholar
Patterson, K, Hodges, JR. Disorders of semantic memory. In Baddleley, A., Wilson, B., Watts, F. eds. Handbook of Memory Disorders Chichester: John Wiley. 1995;167–86.Google Scholar
Howard, D, Patterson, K. Pyramids and Palm Trees: A Test of Semantic Access from Words and Pictures Bury St Edmunds, Suffolk: Thames Valley Test Company, 1992.Google Scholar
Adlam, AL, Patterson, K, Bozeat, S, Hodges, JR. The Cambridge Semantic Memory Test Battery: detection of semantic deficits in semantic dementia and Alzheimer's disease. Neurocase 2010;16(3):193207.Google Scholar
Hodges, JR, Martinos, M, Woollams, AM, et al. Repeat and Point: differentiating semantic dementia from progressive non-fluent aphasia. Cortex 2008;44(9):1265–70.Google Scholar
Bak, TH, Hodges, JR. Kissing and dancing – a test to distinguish the lexical and conceptual contributions to noun/verb and action/object dissociation. Preliminary results in patients with frontotemporal dementia. J Neurolinguist 2003;16(2–3):169–81.Google Scholar
Kay, J, Lesser, R, Coltheart, M. PALPA – Psycholinguistic Assessments of Language Processing in Aphasia Hove (East Sussex): Psychology Press (Taylor & Francis Group), 1992.Google Scholar
Rogers, TT, Patterson, K, Graham, K. Colour knowledge in semantic dementia: it is not all black and white. Neuropsychologia 2007;45:3285–98.Google Scholar
Peelle, JE, Cooke, A, Moore, P, Vesely, L, Grossman, M. Syntactic and thematic components of sentence processing in progressive nonfluent aphasia and nonaphasic frontotemporal dementia. J Neurolinguist 2007;20:482–94.Google Scholar
Lezak, MD, Howieson, DB, Loring, DW. Neuropsychological Assessment New York: Oxford University Press, 2004.Google Scholar
Hodges, JR, Graham, N, Patterson, K. Charting the progression in semantic dementia: implications for the organization of semantic memory. Memory 1995;3(3–4):463–95.Google Scholar
Breedin, S, Saffran, E, Coslett, H. Reversal of the concreteness effect in a patient with semantic dementia. Cogn Neuropsychol 1994;11:617–60.Google Scholar
Hoffman, P, Jones, RW, Lambon Ralph, MA. Be concrete to be comprehended: consistent imageability effects in semantic dementia for nouns, verbs, synonyms and associates. Cortex 2013;49:1206–18.Google Scholar
Kaplan, E, Googlass, H, Weintraub, S. Boston Naming Test Philadelphia: Lea & Febiger, 1983.Google Scholar
Harciarek, M, Kertesz, A. Primary progressive aphasias and their contribution to the contemporary knowledge about the brain-language relationship. Neuropsychol Rev 2011;21(3):271–87.Google Scholar
Jefferies, E, Lambon Ralph, MA, Jones, R, Bateman, D, Patterson, K. Surface dyslexia in semantic dementia: a comparison of the influence of consistency and regularity. Neurocase 2004;20(4):290–9.Google Scholar
Patterson, K, Lambon Ralph, MA, Jefferies, E, et al. ‘Pre-semantic’ cognition in semantic dementia: six deficits in search of an explanation. J Cogn Neurosci 2006;16:169–83.Google Scholar
Woollams, AM, Lambon Ralph, MA, Plaut, DC, Patterson, K. SD-squared: on the association between semantic dementia and surface dyslexia. Psychol Rev 2007;114(2):316–39.Google Scholar
Goodglass, H, Kaplan, E. Assessment of Aphasia and Related Disorders Philadelphia: Lea & Febiger, 1976.Google Scholar
Meteyard, L, Quinn, E, Patterson, K. Ever decreasing circles: speech production in semantic dementia. Cortex 2014;55:1729.Google Scholar
Gorno-Tempini, ML, Brambati, SM, Ginex, V, et al. The logopenic/phonological variant of primary progressive aphasia. Neurology 2008;71:1227–34.Google Scholar

References

Knopman, DS, Christensen, KJ, Schut, LJ, Harbaugh, RE, Reeder, T, Ngo, T, Frey, W 2nd. The spectrum of imaging and neuropsychological findings in Pick's disease. Neurology 1989;39(3):362–8.Google Scholar
Frisoni, GB, Beltramello, A, Geroldi, C, Weiss, C, Bianchetti, A, Trabucchi, M. Brain atrophy in frontotemporal dementia. J Neurol Neurosurg Psychiatry 1996;61(2):157–65.Google Scholar
Miller, BL, Gearhart, R. Neuroimaging in the diagnosis of frontotemporal dementia. Dement Geriatr Cogn Disord 1999;10 (Suppl 1):71–4.Google Scholar
Schroeter, ML, Raczka, K, Neumann, J, Yves von Cramon, D. Towards a nosology for frontotemporal lobar degenerations-a meta-analysis involving 267 subjects. Neuroimage 2007;36(3):497510.Google Scholar
Schroeter, ML, Raczka, K, Neumann, J, von Cramon, DY. Neural networks in frontotemporal dementia – a meta-analysis. Neurobiol Aging 2008;29(3):418–26.Google Scholar
Seeley, WW, Crawford, R, Rascovsky, K, Kramer, JH, Weiner, M, Miller, BL, Gorno-Tempini, ML. Frontal paralimbic network atrophy in very mild behavioral variant frontotemporal dementia. Arch Neurol 2008;65(2):249–55.Google Scholar
Whitwell, JL, Jack, CR Jr, Senjem, ML, Parisi, JE, Boeve, BF, Knopman, DS, Dickson, DW, Petersen, RC, Josephs, KA. MRI correlates of protein deposition and disease severity in postmortem frontotemporal lobar degeneration. Neurodegener Dis 2009;6(3):106–17.Google Scholar
Seeley, WW, Crawford, RK, Zhou, J, Miller, BL, Greicius, MD. Neurodegenerative diseases target large-scale human brain networks. Neuron 2009;62(1):4252.Google Scholar
Whitwell, JL, Przybelski, SA, Weigand, SD, Ivnik, RJ, Vemuri, P, Gunter, JL, Senjem, ML, Shiung, MM, Boeve, BF, Knopman, DS, Parisi, JE, Dickson, DW, Petersen, RC, Jack, CR Jr, Josephs, KA. Distinct anatomical subtypes of the behavioural variant of frontotemporal dementia: a cluster analysis study. Brain 2009;132(Pt 11):2932–46.Google Scholar
Knopman, DS, Jack, CR Jr, Kramer, JH, Boeve, BF, Caselli, RJ, Graff-Radford, NR, Mendez, MF, Miller, BL, Mercaldo, ND. Brain and ventricular volumetric changes in frontotemporal lobar degeneration over 1 year. Neurology 2009;72(21):1843–9.Google Scholar
Gordon, E, Rohrer, JD, Kim, LG, Omar, R, Rossor, MN, Fox, NC, Warren, JD. Measuring disease progression in frontotemporal lobar degeneration: a clinical and MRI study. Neurology 2010;74(8):666–73.Google Scholar
Borroni, B, Brambati, SM, Agosti, C, Gipponi, S, Bellelli, G, Gasparotti, R, Garibotto, V, Di Luca, M, Scifo, P, Perani, D, Padovani, A. Evidence of white matter changes on diffusion tensor imaging in frontotemporal dementia. Arch Neurol 2007;64(2):246–51.Google Scholar
Zhang, Y, Schuff, N, Du, AT, Rosen, HJ, Kramer, JH, Gorno-Tempini, ML, Miller, BL, Weiner, MW. White matter damage in frontotemporal dementia and Alzheimer's disease measured by diffusion MRI. Brain 2009;132(Pt 9):2579–92.Google Scholar
Whitwell, JL, Avula, R, Senjem, ML, Kantarci, K, Weigand, SD, Samikoglu, A, Edmonson, HA, Vemuri, P, Knopman, DS, Boeve, BF, Petersen, RC, Josephs, KA, Jack, CR Jr. Gray and white matter water diffusion in the syndromic variants of frontotemporal dementia. Neurology 2010;74(16):1279–87.Google Scholar
Mahoney, CJ, Ridgway, GR, Malone, IB, Downey, LE, Beck, J, Kinnunen, KM, Schmitz, N, Golden, HL, Rohrer, JD, Schott, JM, Rossor, MN, Ourselin, S, Mead, S, Fox, NC, Warren, JD. Profiles of white matter tract pathology in frontotemporal dementia. Hum Brain Mapp 2014;35(8):163–79.Google Scholar
Zhou, J, Greicius, MD, Gennatas, ED, Growdon, ME, Jang, JY, Rabinovici, GD, Kramer, JH, Weiner, M, Miller, BL, Seeley, WW. Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer's disease. Brain 2010;133(Pt 5):1352–67.Google Scholar
Farb, NA, Grady, CL, Strother, S, Tang-Wai, DF, Masellis, M, Black, S, Freedman, M, Pollock, BG, Campbell, KL, Hasher, L, Chow, TW. Abnormal network connectivity in frontotemporal dementia: evidence for prefrontal isolation. Cortex 2013;49(7):1856–73.Google Scholar
Whitwell, JL, Josephs, KA, Avula, R, Tosakulwong, N, Weigand, SD, Senjem, ML, Vemuri, P, Jones, DT, Gunter, JL, Baker, M, Wszolek, ZK, Knopman, DS, Rademakers, R, Petersen, RC, Boeve, BF, Jack, CR Jr. Altered functional connectivity in asymptomatic MAPT subjects: a comparison to bvFTD. Neurology 2011;77(9):866–74.Google Scholar
Filippi, M, Agosta, F, Scola, E, Canu, E, Magnani, G, Marcone, A, Valsasina, P, Caso, F, Copetti, M, Comi, G, Cappa, SF, Falini, A. Functional network connectivity in the behavioral variant of frontotemporal dementia. Cortex 2013;49(9):2389–401.Google Scholar
Du, AT, Jahng, GH, Hayasaka, S, Kramer, JH, Rosen, HJ, Gorno-Tempini, ML, Rankin, KP, Miller, BL, Weiner, MW, Schuff, N. Hypoperfusion in frontotemporal dementia and Alzheimer disease by arterial spin labeling MRI. Neurology 2006;67(7):1215–20.Google Scholar
Hu, WT, Wang, Z, Lee, VM, Trojanowski, JQ, Detre, JA, Grossman, M. Distinct cerebral perfusion patterns in FTLD and AD. Neurology 2010;75(10):881–8.Google Scholar
McMurtray, AM, Chen, AK, Shapira, JS, Chow, TW, Mishkin, F, Miller, BL, Mendez, MF. Variations in regional SPECT hypoperfusion and clinical features in frontotemporal dementia. Neurology 2006;66(4):517–22.Google Scholar
McNeill, R, Sare, GM, Manoharan, M, Testa, HJ, Mann, DM, Neary, D, Snowden, JS, Varma, AR. Accuracy of single-photon emission computed tomography in differentiating frontotemporal dementia from Alzheimer's disease. J Neurol Neurosurg Psychiatry 2007;78(4):350–5.Google Scholar
Foster, NL, Heidebrink, JL, Clark, CM, Jagust, WJ, Arnold, SE, Barbas, NR, DeCarli, CS, Turner, RS, Koeppe, RA, Higdon, R, Minoshima, S. FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer's disease. Brain 2007;130(Pt 10):2616–35.Google Scholar
Rollin-Sillaire, A, Bombois, S, Deramecourt, V, Steinert-Emptaz, A, Salleron, J, Morvan, J, Maurage, CA, Steinling, M, Pasquier, F. Contribution of single photon emission computed tomography to the differential diagnosis of dementia in a memory clinic. J Alzheimers Dis 2012;30(4):833–45.Google Scholar
Dukart, J, Mueller, K, Horstmann, A, Barthel, H, Möller, HE, Villringer, A, Sabri, O, Schroeter, ML. Combined evaluation of FDG-PET and MRI improves detection and differentiation of dementia. PLoS One 2011;6(3):e18111.Google Scholar
Diehl-Schmid, J, Grimmer, T, Drzezga, A, Bornschein, S, Riemenschneider, M, Förstl, H, Schwaiger, M, Kurz, A. Decline of cerebral glucose metabolism in frontotemporal dementia: a longitudinal 18F-FDG-PET-study. Neurobiol Aging 2007;28(1):4250.Google Scholar
Rabinovici, GD, Furst, AJ, O'Neil, JP, Racine, CA, Mormino, EC, Baker, SL, Chetty, S, Patel, P, Pagliaro, TA, Klunk, WE, Mathis, CA, Rosen, HJ, Miller, BL, Jagust, WJ. 11C-PIB PET imaging in Alzheimer disease and frontotemporal lobar degeneration. Neurology 2007;68(15):1205–12.Google Scholar
Chien, DT, Bahri, S, Szardenings, AK, Walsh, JC, Mu, F, Su, MY, Shankle, WR, Elizarov, A, Kolb, HC. Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. J Alzheimers Dis 2013;34(2):457–68.Google Scholar
Cagnin, A, Rossor, M, Sampson, EL, Mackinnon, T, Banati, RB. In vivo detection of microglial activation in frontotemporal dementia. Ann Neurol 2004;56(6):894–7.Google Scholar
Kipps, CM, Hodges, JR, Fryer, TD, Nestor, PJ. Combined magnetic resonance imaging and positron emission tomography brain imaging in behavioural variant frontotemporal degeneration: refining the clinical phenotype. Brain 2009;132(Pt 9):2566–78.Google Scholar
Lillo, P, Mioshi, E, Burrell, JR, Kiernan, MC, Hodges, JR, Hornberger, M. Grey and white matter changes across the amyotrophic lateral sclerosis-frontotemporal dementia continuum. PLoS One 2012;7(8):e43993.Google Scholar
Chan, D, Fox, NC, Scahill, RI, Crum, WR, Whitwell, JL, Leschziner, G, Rossor, AM, Stevens, JM, Cipolotti, L, Rossor, MN. Patterns of temporal lobe atrophy in semantic dementia and Alzheimer's disease. Ann Neurol 2001;49(4):433–42.Google Scholar
Halabi, C, Halabi, A, Dean, DL, Wang, PN, Boxer, AL, Trojanowski, JQ, Dearmond, SJ, Miller, BL, Kramer, JH, Seeley, WW. Patterns of striatal degeneration in frontotemporal dementia. Alzheimer Dis Assoc Disord 2013;27(1):7483.Google Scholar
Pereira, JM, Williams, GB, Acosta-Cabronero, J, Pengas, G, Spillantini, MG, Xuereb, JH, Hodges, JR, Nestor, PJ. Atrophy patterns in histologic vs clinical groupings of frontotemporal lobar degeneration. Neurology 2009;72(19):1653–60.Google Scholar
Rohrer, JD, Geser, F, Zhou, J, Gennatas, ED, Sidhu, M, Trojanowski, JQ, Dearmond, SJ, Miller, BL, Seeley, WW. TDP-43 subtypes are associated with distinct atrophy patterns in frontotemporal dementia. Neurology 2010;75(24):2204–11.CrossRefGoogle ScholarPubMed
Josephs, KA, Whitwell, JL, Knopman, DS, Boeve, BF, Vemuri, P, Senjem, ML, Parisi, JE, Ivnik, RJ, Dickson, DW, Petersen, RC, Jack, CR Jr. Two distinct subtypes of right temporal variant frontotemporal dementia. Neurology 2009;73(18):1443–50.Google Scholar
Rohrer, JD, Warren, JD, Modat, M, Ridgway, GR, Douiri, A, Rossor, MN, Ourselin, S, Fox, NC. Patterns of cortical thinning in the language variants of frontotemporal lobar degeneration. Neurology 2009;72(18):1562–9.Google Scholar
Rohrer, JD, Clarkson, MJ, Kittus, R, Rossor, MN, Ourselin, S, Warren, JD, Fox, NC. Rates of hemispheric and lobar atrophy in the language variants of frontotemporal lobar degeneration. J Alzheimers Dis 2012;30(2):407–11.Google Scholar
Agosta, F, Henry, RG, Migliaccio, R, Neuhaus, J, Miller, BL, Dronkers, NF, Brambati, SM, Filippi, M, Ogar, JM, Wilson, SM, Gorno-Tempini, ML. Language networks in semantic dementia. Brain 2010;133(Pt 1):286–99.Google Scholar
Gorno-Tempini, ML, Dronkers, NF, Rankin, KP, Ogar, JM, Phengrasamy, L, Rosen, HJ, Johnson, JK, Weiner, MW, Miller, BL. Cognition and anatomy in three variants of primary progressive aphasia. Ann Neurol 2004;55(3):335–46.Google Scholar
Josephs, KA, Duffy, JR, Strand, EA, Machulda, MM, Senjem, ML, Master, AV, Lowe, VJ, Jack, CR Jr, Whitwell, JL. Characterizing a neurodegenerative syndrome: primary progressive apraxia of speech. Brain 2012;135(Pt 5):1522–36.Google Scholar
Madhavan, A, Whitwell, JL, Weigand, SD, Duffy, JR, Strand, EA, Machulda, MM, Tosakulwong, N, Senjem, ML, Gunter, JL, Lowe, VJ, Petersen, RC, Jack, CR Jr, Josephs, KA. FDG PET and MRI in logopenic primary progressive aphasia versus dementia of the Alzheimer's type. PLoS One 2013;8(4):e62471.Google Scholar
Rohrer, JD, Caso, F, Mahoney, C, Henry, M, Rosen, HJ, Rabinovici, G, Rossor, MN, Miller, B, Warren, JD, Fox, NC, Ridgway, GR, Gorno-Tempini, ML. Patterns of longitudinal brain atrophy in the logopenic variant of primary progressive aphasia. Brain Lang 2013;127(2):121–6.Google Scholar
Mahoney, CJ, Malone, IB, Ridgway, GR, Buckley, AH, Downey, LE, Golden, HL, Ryan, NS, Ourselin, S, Schott, JM, Rossor, MN, Fox, NC, Warren, JD. White matter tract signatures of the progressive aphasias. Neurobiol Aging 2013;34(6):1687–99.Google Scholar
Rohrer, JD, Ridgway, GR, Crutch, SJ, Hailstone, J, Goll, JC, Clarkson, MJ, Mead, S, Beck, J, Mummery, C, Ourselin, S, Warrington, EK, Rossor, MN, Warren, JD. Progressive logopenic/phonological aphasia: erosion of the language network. Neuroimage 2010;49(1):984–93.Google Scholar
Lindberg, O, Ostberg, P, Zandbelt, BB, Oberg, J, Zhang, Y, Andersen, C, Looi, JC, Bogdanović, N, Wahlund, LO. Cortical morphometric subclassification of frontotemporal lobar degeneration. AJNR Am J Neuroradiol 2009;30(6):1233–9.Google Scholar
Wilson, SM, Ogar, JM, Laluz, V, Growdon, M, Jang, J, Glenn, S, Miller, BL, Weiner, MW, Gorno-Tempini, ML. Automated MRI-based classification of primary progressive aphasia variants. Neuroimage 2009;47(4):1558–67.Google Scholar
Rohrer, JD, Ridgway, GR, Modat, M, Ourselin, S, Mead, S, Fox, NC, Rossor, MN, Warren, JD. Distinct profiles of brain atrophy in frontotemporal lobar degeneration caused by progranulin and tau mutations. Neuroimage 2010;53(3):1070–6.Google Scholar
Whitwell, JL, Weigand, SD, Boeve, BF, Senjem, ML, Gunter, JL, DeJesus-Hernandez, M, Rutherford, NJ, Baker, M, Knopman, DS, Wszolek, ZK, Parisi, JE, Dickson, DW, Petersen, RC, Rademakers, R, Jack, CR Jr, Josephs, KA. Neuroimaging signatures of frontotemporal dementia genetics: C9ORF72, tau, progranulin and sporadics. Brain 2012;135(Pt 3):794806.Google Scholar
Mahoney, CJ, Beck, J, Rohrer, JD, Lashley, T, Mok, K, Shakespeare, T, Yeatman, T, Warrington, EK, Schott, JM, Fox, NC, Rossor, MN, Hardy, J, Collinge, J, Revesz, T, Mead, S, Warren, JD. Frontotemporal dementia with the C9ORF72 hexanucleotide repeat expansion: clinical, neuroanatomical and neuropathological features. Brain 2012;135(Pt 3):736–50.Google Scholar
Mahoney, CJ, Downey, LE, Ridgway, GR, Beck, J, Clegg, S, Blair, M, Finnegan, S, Leung, KK, Yeatman, T, Golden, H, Mead, S, Rohrer, JD, Fox, NC, Warren, JD. Longitudinal neuroimaging and neuropsychological profiles of frontotemporal dementia with C9ORF72 expansions. Alzheimers Res Ther 2012;4(5):41.Google Scholar
Whitwell, JL, Weigand, SD, Gunter, JL, Boeve, BF, Rademakers, R, Baker, M, Knopman, DS, Wszolek, ZK, Petersen, RC, Jack, CR Jr, Josephs, KA. Trajectories of brain and hippocampal atrophy in FTD with mutations in MAPT or GRN. Neurology 2011;77(4):393–8.Google Scholar
Cruchaga, C, Fernández-Seara, MA, Seijo-Martínez, M, Samaranch, L, Lorenzo, E, Hinrichs, A, Irigoyen, J, Maestro, C, Prieto, E, Martí-Climent, JM, Arbizu, J, Pastor, MA, Pastor, P. Cortical atrophy and language network reorganization associated with a novel progranulin mutation. Cereb Cortex 2009;19(8):1751–60.Google Scholar
Miyoshi, M, Shinotoh, H, Wszolek, ZK, Strongosky, AJ, Shimada, H, Arakawa, R, Higuchi, M, Ikoma, Y, Yasuno, F, Fukushi, K, Irie, T, Ito, H, Suhara, T. In vivo detection of neuropathologic changes in presymptomatic MAPT mutation carriers: a PET and MRI study. Parkinsonism Relat Disord 2010;16(6):404–8.Google Scholar
Borroni, B, Alberici, A, Premi, E, Archetti, S, Garibotto, V, Agosti, C, Gasparotti, R, Di Luca, M, Perani, D, Padovani, A. Brain magnetic resonance imaging structural changes in a pedigree of asymptomatic progranulin mutation carriers. Rejuvenation Res 2008;11(3):585–95.Google Scholar
Dopper, EG, Rombouts, SA, Jiskoot, LC, Heijer, TD, de Graaf, JR, Koning, ID, Hammerschlag, AR, Seelaar, H, Seeley, WW, Veer, IM, van Buchem, MA, Rizzu, P, van Swieten, JC. Structural and functional brain connectivity in presymptomatic familial frontotemporal dementia. Neurology 2013;80(9):814–23.Google Scholar
Whitwell, JL, Jack, CR, Parisi, JE, Senjem, ML, Knopman, DS, Boeve, BF, Rademakers, R, Baker, M, Petersen, RC, Dickson, DW, Josephs, KA. Does TDP-43 type confer a distinct pattern of atrophy in frontotemporal lobar degeneration? Neurology 2010;75(24):2212–20.Google Scholar
Lee, SE, Seeley, WW, Poorzand, P, Rademakers, R, Karydas, A, Stanley, CM, Miller, BL, Rankin, KP. Clinical characterization of bvFTD due to FUS neuropathology. Neurocase 2012;18(4):305–17.Google Scholar
Rohrer, JD, Lashley, T, Schott, JM, Warren, JE, Mead, S, Isaacs, AM, Beck, J, Hardy, J, de Silva, R, Warrington, E, Troakes, C, Al-Sarraj, S, King, A, Borroni, B, Clarkson, MJ, Ourselin, S, Holton, JL, Fox, NC, Revesz, T, Rossor, MN, Warren, JD. Clinical and neuroanatomical signatures of tissue pathology in frontotemporal lobar degeneration. Brain 2011;134(Pt 9):2565–81.Google Scholar
McMillan, CT, Irwin, DJ, Avants, BB, Powers, J, Cook, PA, Toledo, JB, McCarty Wood, E, Van Deerlin, VM, Lee, VM, Trojanowski, JQ, Grossman, M. White matter imaging helps dissociate tau from TDP-43 in frontotemporal lobar degeneration. J Neurol Neurosurg Psychiatry 2013;84(9):949–55.Google Scholar
Sajjadi, SA, Acosta-Cabronero, J, Patterson, K, Diaz-de-Grenu, LZ, Williams, GB, Nestor, PJ. Diffusion tensor magnetic resonance imaging for single subject diagnosis in neurodegenerative diseases. Brain 2013;136(Pt 7):2253–61.Google Scholar
Eslinger, PJ, Moore, P, Antani, S, Anderson, C, Grossman, M. Apathy in frontotemporal dementia: behavioral and neuroimaging correlates. Behav Neurol 2012;25(2):127–36.Google Scholar
Zamboni, G, Huey, ED, Krueger, F, Nichelli, PF, Grafman, J. Apathy and disinhibition in frontotemporal dementia: insights into their neural correlates. Neurology 2008;71(10):736–42.Google Scholar
Hornberger, M, Geng, J, Hodges, JR. Convergent grey and white matter evidence of orbitofrontal cortex changes related to disinhibition in behavioural variant frontotemporal dementia. Brain 2011;134(Pt 9):2502–12.Google Scholar
Eslinger, PJ, Moore, P, Anderson, C, Grossman, M. Social cognition, executive functioning, and neuroimaging correlates of empathic deficits in frontotemporal dementia. J Neuropsychiatry Clin Neurosci 2011;23(1):7482.Google Scholar
Woolley, JD, Gorno-Tempini, ML, Seeley, WW, Rankin, K, Lee, SS, Matthews, BR, Miller, BL. Binge eating is associated with right orbitofrontal-insular-striatal atrophy in frontotemporal dementia. Neurology 2007;69(14):1424–33.Google Scholar
Whitwell, JL, Sampson, EL, Loy, CT, Warren, JE, Rossor, MN, Fox, NC, Warren, JD. VBM signatures of abnormal eating behaviours in frontotemporal lobar degeneration. Neuroimage 2007;35(1):207–13.Google Scholar
Piguet, O, Petersén, A, Yin Ka Lam, B, Gabery, S, Murphy, K, Hodges, JR, Halliday, GM. Eating and hypothalamus changes in behavioral-variant frontotemporal dementia. Ann Neurol 2011;69(2):312–19.Google Scholar
Perry, DC, Whitwell, JL, Boeve, BF, Pankratz, VS, Knopman, DS, Petersen, RC, Jack, CR, Josephs, KA. Voxel-based morphometry in patients with obsessive-compulsive behaviors in behavioral variant frontotemporal dementia. Eur J Neurol 2012;19(6):911–17.Google Scholar
Zamboni, G, Grafman, J, Krueger, F, Knutson, KM, Huey, ED. Anosognosia for behavioral disturbances in frontotemporal dementia and corticobasal syndrome: a voxel-based morphometry study. Dement Geriatr Cogn Disord 2010;29(1):8896.Google Scholar
Kipps, CM, Nestor, PJ, Acosta-Cabronero, J, Arnold, R, Hodges, JR. Understanding social dysfunction in the behavioural variant of frontotemporal dementia: the role of emotion and sarcasm processing. Brain 2009;132(Pt 3):592603.Google Scholar
Powers, JP, McMillan, CT, Brun, CC, Yushkevich, PA, Zhang, H, Gee, JC, Grossman, M. White matter disease correlates with lexical retrieval deficits in primary progressive aphasia. Front Neurol 2013;4:212.Google Scholar
Wilson, SM, Henry, ML, Besbris, M, Ogar, JM, Dronkers, NF, Jarrold, W, Miller, BL, Gorno-Tempini, ML. Connected speech production in three variants of primary progressive aphasia. Brain 2010;133(Pt 7):2069–88.Google Scholar
Rohrer, JD, Warren, JD. Phenomenology and anatomy of abnormal behaviours in primary progressive aphasia. J Neurol Sci 2010;293(1–2):35–8.Google Scholar

References

Neary, D, Snowden, JS, Gustafson, L, Passant, U, Stuss, D, Black, S, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 1998;51(6):1546–54.Google Scholar
Mackenzie, IR, Foti, D, Woulfe, J, Hurwitz, TA. Atypical frontotemporal lobar degeneration with ubiquitin-positive, TDP-43-negative neuronal inclusions. Brain 2008;131(Pt 5):1282–93.Google Scholar
McKhann, GM, Albert, MS, Grossman, M, Miller, B, Dickson, D, Trojanowski, JQ. Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick's Disease. Arch Neurol 2001;58(11):1803–9.Google Scholar
Mackenzie, IR, Munoz, DG, Kusaka, H, Yokota, O, Ishihara, K, Roeber, S, et al. Distinct pathological subtypes of FTLD-FUS. Acta Neuropathol 2011;121(2):207–18.Google Scholar
Consensus report of the Working Group on: “Molecular and Biochemical Markers of Alzheimer's Disease.” The Ronald and Nancy Reagan Research Institute of the Alzheimer's Association and the National Institute on Aging Working Group. Neurobiol Aging 1998;19(2):109–16.Google Scholar
Schoonenboom, NS, Reesink, FE, Verwey, NA, Kester, MI, Teunissen, CE, van de Ven, PM, et al. Cerebrospinal fluid markers for differential dementia diagnosis in a large memory clinic cohort. Neurology 2012;78(1):4754.Google Scholar
Riemenschneider, M, Wagenpfeil, S, Diehl, J, Lautenschlager, N, Theml, T, Heldmann, B, et al. Tau and Abeta42 protein in CSF of patients with frontotemporal degeneration. Neurology 2002;58(11):1622–8.Google Scholar
Buerger, K, Zinkowski, R, Teipel, SJ, Tapiola, T, Arai, H, Blennow, K, et al. Differential diagnosis of Alzheimer disease with cerebrospinal fluid levels of tau protein phosphorylated at threonine 231. Arch Neurol 2002;59(8):1267–72.Google Scholar
Gloeckner, SF, Meyne, F, Wagner, F, Heinemann, U, Krasnianski, A, Meissner, B, et al. Quantitative analysis of transthyretin, tau and amyloid-beta in patients with dementia. J Alzheimers Dis 2008;14(1):1725.Google Scholar
Kapaki, E, Paraskevas, GP, Papageorgiou, SG, Bonakis, A, Kalfakis, N, Zalonis, I, et al. Diagnostic value of CSF biomarker profile in frontotemporal lobar degeneration. Alzheimer Dis Assoc Disord 2008;22(1):4753.Google Scholar
Molina, L, Touchon, J, Herpe, M, Lefranc, D, Duplan, L, Cristol, JP, et al. Tau and apo E in CSF: potential aid for discriminating Alzheimer's disease from other dementias. Neuroreport 1999;10(17):3491–5.Google Scholar
Parnetti, L, Lanari, A, Saggese, E, Spaccatini, C, Gallai, V. Cerebrospinal fluid biochemical markers in early detection and in differential diagnosis of dementia disorders in routine clinical practice. Neurol Sci 2003;24(3):199200.Google Scholar
Blasko, I, Lederer, W, Oberbauer, H, Walch, T, Kemmler, G, Hinterhuber, H, et al. Measurement of thirteen biological markers in CSF of patients with Alzheimer's disease and other dementias. Dement Geriatr Cogn Disord 2006;21(1):915.Google Scholar
Green, AJ, Harvey, RJ, Thompson, EJ, Rossor, MN. Increased tau in the cerebrospinal fluid of patients with frontotemporal dementia and Alzheimer's disease. Neurosci Lett 1999;259(2):133–5.Google Scholar
Sjögren, M, Davidsson, P, Tullberg, M, Minthon, L, Wallin, A, Wikkelso, C, et al. Both total and phosphorylated tau are increased in Alzheimer's disease. J Neurol Neurosurg Psychiatry 2001;70(5):624–30.Google Scholar
Rademakers, R, Neumann, M, Mackenzie, IR. Advances in understanding the molecular basis of frontotemporal dementia. Nat Rev Neurol 2012;8(8):423–34.Google Scholar
Ghidoni, R, Paterlini, A, Benussi, L. Circulating progranulin as a biomarker for neurodegenerative diseases. Am J Neurodegener Dis 2012;1(2):180–90.Google Scholar
Van Damme, P, Van Hoecke, A, Lambrechts, D, Vanacker, P, Bogaert, E, van Switten, J, et al. Progranulin functions as a neurotrophic factor to regulate neurite outgrowth and enhance neuronal survival. J Cell Biol 2008;181(1):3741.Google Scholar
Ghidoni, R, Benussi, L, Glionna, M, Franzoni, M, Binetti, G. Low plasma progranulin levels predict progranulin mutations in frontotemporal lobar degeneration. Neurology 2008;71(16):1235–9.Google Scholar
Philips, T, De Muynck, L, Thu, HN, Weynants, B, Vanacker, P, Dhondt, J, et al. Microglial upregulation of progranulin as a marker of motor neuron degeneration. J Neuropathol Exp Neurol 2010;69(12):1191–200.Google Scholar
Sleegers, K, Brouwers, N, Van Damme, P, Engelborghs, S, Gijselinck, I, van der Zee, J, et al. Serum biomarker for progranulin-associated frontotemporal lobar degeneration. Ann Neurol 2009;65(5):603–9.Google Scholar
Finch, N, Baker, M, Crook, R, Swanson, K, Kuntz, K, Surtees, R, et al. Plasma progranulin levels predict progranulin mutation status in frontotemporal dementia patients and asymptomatic family members. Brain 2009;132(Pt 3):583–91.Google Scholar
Wild, D. The Immunoassay Handbook, 2nd edn. New York, NY: Nature Publishing Group; 2001.Google Scholar
Mackenzie, IR, Rademakers, R. The molecular genetics and neuropathology of frontotemporal lobar degeneration: recent developments. Neurogenetics 2007;8(4):237–48.Google Scholar
Foulds, P, McAuley, E, Gibbons, L, Davidson, Y, Pickering-Brown, SM, Neary, D, et al. TDP-43 protein in plasma may index TDP-43 brain pathology in Alzheimer's disease and frontotemporal lobar degeneration. Acta Neuropathol 2008;116(2):141–6.Google Scholar
Steinacker, P, Hendrich, C, Sperfeld, AD, Jesse, S, von Arnim, CA, Lehnert, S, et al. TDP-43 in cerebrospinal fluid of patients with frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Arch Neurol 2008;65(11):1481–7.Google Scholar
Kasai, T, Tokuda, T, Ishigami, N, Sasayama, H, Foulds, P, Mitchell, DJ, et al. Increased TDP-43 protein in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Acta Neuropathol 2009;117(1):5562.Google Scholar
Sergeant, N, Delacourte, A, Buee, L. Tau protein as a differential biomarker of tauopathies. Biochim Biophys Acta 2005;1739(2–3):179–97.Google Scholar
Sergeant, N, Bretteville, A, Hamdane, M, Caillet-Boudin, ML, Grognet, P, Bombois, S, et al. Biochemistry of tau in Alzheimer's disease and related neurological disorders. Expert Rev Proteomics 2008;5(2):207–24.Google Scholar
Luk, C, Compta, Y, Magdalinou, N, Marti, MJ, Hondhamuni, G, Zetterberg, H, et al. Development and assessment of sensitive immuno-PCR assays for the quantification of cerebrospinal fluid three- and four-repeat tau isoforms in tauopathies. J Neurochem 2012;123(3):396405.Google Scholar
Buee, L, Bussiere, T, Buee-Scherrer, V, Delacourte, A, Hof, PR. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 2000;33(1):95130.Google Scholar
Kester, MI, van der Vlies, AE, Blankenstein, MA, Pijnenburg, YA, Van Elk, EJ, Scheltens, P, et al. CSF biomarkers predict rate of cognitive decline in Alzheimer disease. Neurology 2009;73(17):1353–8.Google Scholar
van Rossum, IA, Vos, SJ, Burns, L, Knol, DL, Scheltens, P, Soininen, H, et al. Injury markers predict time to dementia in subjects with MCI and amyloid pathology. Neurology 2012;79(17):1809–16.Google Scholar
van Rossum, IA, Visser, PJ, Knol, DL, van der Flier, WM, Teunissen, CE, Barkhof, F, et al. Injury markers but not amyloid markers are associated with rapid progression from mild cognitive impairment to dementia in Alzheimer's disease. J Alzheimers Dis 2012;29(2):319–27.Google Scholar
Bian, H, van Swieten, JC, Leight, S, Massimo, L, Wood, E, Forman, M, et al. CSF biomarkers in frontotemporal lobar degeneration with known pathology. Neurology 2008;70(19 Pt 2):1827–35.Google Scholar
Hu, WT, Trojanowski, JQ, Shaw, LM. Biomarkers in frontotemporal lobar degenerations – progress and challenges. Prog Neurobiol 2011;95(4):636–48.Google Scholar
Clark, CM, Xie, S, Chittams, J, Ewbank, D, Peskind, E, Galasko, D, et al. Cerebrospinal fluid tau and beta-amyloid: how well do these biomarkers reflect autopsy-confirmed dementia diagnoses? Arch Neurol 2003;60(12):1696–702.Google Scholar
Grossman, M, Farmer, J, Leight, S, Work, M, Moore, P, Van Deerlin, V, et al. Cerebrospinal fluid profile in frontotemporal dementia and Alzheimer's disease. Ann Neurol 2005;57(5):721–9.Google Scholar
Toledo, JB, Arnold, SE, Raible, K, Brettschneider, J, Xie, SX, Grossman, M, et al. Contribution of cerebrovascular disease in autopsy confirmed neurodegenerative disease cases in the National Alzheimer's Coordinating Centre. Brain 2013;136(Pt 9):2697–706.Google Scholar
Koopman, K, Le Bastard, N, Martin, JJ, Nagels, G, De Deyn, PP, Engelborghs, S. Improved discrimination of autopsy-confirmed Alzheimer's disease (AD) from non-AD dementias using CSF P-tau (181P). Neurochem Int 2009;55(4):214–18.Google Scholar
Brunnstrom, H, Rawshani, N, Zetterberg, H, Blennow, K, Minthon, L, Passant, U, et al. Cerebrospinal fluid biomarker results in relation to neuropathological dementia diagnoses. Alzheimers Dement 2010;6(2):104–9.Google Scholar
Engelborghs, S, De Vreese, K, Van de Casteele, T, Vanderstichele, H, Van Everbroeck, B, Cras, P, et al. Diagnostic performance of a CSF-biomarker panel in autopsy-confirmed dementia. Neurobiol Aging 2008;29(8):1143–59.Google Scholar
Tapiola, T, Alafuzoff, I, Herukka, SK, Parkkinen, L, Hartikainen, P, Soininen, H, et al. Cerebrospinal fluid β-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain. Arch Neurol 2009;66(3):382–9.Google Scholar
Toledo, JB, Brettschneider, J, Grossman, M, Arnold, SE, Hu, WT, Xie, SX, et al. CSF biomarkers cutoffs: the importance of coincident neuropathological diseases. Acta Neuropathol 2012;124(1):2335.Google Scholar
Carecchio, M, Fenoglio, C, Cortini, F, Comi, C, Benussi, L, Ghidoni, R, et al. Cerebrospinal fluid biomarkers in progranulin mutations carriers. J Alzheimers Dis 2011;27(4):781–90.Google Scholar
Hu, WT, Watts, K, Grossman, M, Glass, J, Lah, JJ, Hales, C, et al. Reduced CSF p-Tau181 to Tau ratio is a biomarker for FTLD-TDP. Neurology 2013;81(22):1945–52.Google Scholar
Irwin, DJ, McMillan, CT, Toledo, JB, Arnold, SE, Shaw, LM, Wang, LS, et al. Comparison of cerebrospinal fluid levels of tau and Abeta 1–42 in Alzheimer disease and frontotemporal degeneration using 2 analytical platforms. Arch Neurol 2012;69(8):1018–25.Google Scholar
van Harten, AC, Kester, MI, Visser, PJ, Blankenstein, MA, Pijnenburg, YA, van der Flier, WM, et al. Tau and p-tau as CSF biomarkers in dementia: a meta-analysis. Clin Chem Lab Med 2011;49(3):353–66.Google Scholar
Hartmann, T, Bieger, SC, Bruhl, B, Tienari, PJ, Ida, N, Allsop, D, et al. Distinct sites of intracellular production for Alzheimer's disease Abeta40/42 amyloid peptides. Nat Med 1997;3(9):1016–20.Google Scholar
Blennow, K, Hampel, H. CSF markers for incipient Alzheimer's disease. Lancet Neurol 2003;2(10):605–13.Google Scholar
Mattsson, N, Zetterberg, H, Hansson, O, Andreasen, N, Parnetti, L, Jonsson, M, et al. CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA 2009;302(4):385–93.Google Scholar
Perry, DC, Lehmann, M, Yokoyama, JS, Karydas, A, Lee, JJ, Coppola, G, et al. Progranulin mutations as risk factors for Alzheimer disease. JAMA Neurol 2013;70(6):774–8.Google Scholar
Rademakers, R, Baker, M, Gass, J, Adamson, J, Huey, ED, Momeni, P, et al. Phenotypic variability associated with progranulin haploinsufficiency in patients with the common 1477C→T (Arg493X) mutation: an international initiative. Lancet Neurol 2007;6(10):857–68.Google Scholar
Josephs, KA, Ahmed, Z, Katsuse, O, Parisi, JF, Boeve, BF, Knopman, DS, et al. Neuropathologic features of frontotemporal lobar degeneration with ubiquitin-positive inclusions with progranulin gene (PGRN) mutations. J Neuropathol Exp Neurol 2007;66(2):142–51.Google Scholar
Brouwers, N, Sleegers, K, Engelborghs, S, Maurer-Stroh, S, Gijselinck, I, van der Zee, J, et al. Genetic variability in progranulin contributes to risk for clinically diagnosed Alzheimer disease. Neurology 2008;71(9):656–64.Google Scholar
Bibl, M, Mollenhauer, B, Wolf, S, Esselmann, H, Lewczuk, P, Kornhuber, J, et al. Reduced CSF carboxyterminally truncated Abeta peptides in frontotemporal lobe degenerations. J Neural Transm 2007;114(5):621–8.Google Scholar
Bibl, M, Gallus, M, Welge, V, Esselmann, H, Wolf, S, Ruther, E, et al. Cerebrospinal fluid amyloid-beta 2–42 is decreased in Alzheimer's, but not in frontotemporal dementia. J Neural Transm 2012;119(7):805–13.Google Scholar
Bibl, M, Mollenhauer, B, Lewczuk, P, Esselmann, H, Wolf, S, Otto, M, et al. Cerebrospinal fluid tau, p-tau 181 and amyloid-beta38/40/42 in frontotemporal dementias and primary progressive aphasias. Dement Geriatr Cogn Disord 2011;31(1):3744.Google Scholar
Engelborghs, S, Maertens, K, Vloeberghs, E, Aerts, T, Somers, N, Marien, P, et al. Neuropsychological and behavioural correlates of CSF biomarkers in dementia. Neurochem Int 2006;48(4):286–95.Google Scholar
Gabelle, A, Roche, S, Geny, C, Bennys, K, Labauge, P, Tholance, Y, et al. Decreased sAβPPβ, Aβ38, and Aβ40 cerebrospinal fluid levels in frontotemporal dementia. J Alzheimers Dis 2011;26(3):553–63.Google Scholar
Sjögren, M, Minthon, L, Davidsson, P, Granerus, A-K, Clarberg, A, Vanderstichele, H, et al. CSF levels of tau, beta-amyloid(1–42) and GAP-43 in frontotemporal dementia, other types of dementia and normal aging. J Neural Transm 2000;107(5):563–79.Google Scholar
Pijnenburg, YA, Schoonenboom, SN, Mehta, PD, Mehta, SP, Mulder, C, Veerhuis, R, et al. Decreased cerebrospinal fluid amyloid beta (1–40) levels in frontotemporal lobar degeneration. J Neurol Neurosurg Psychiatry 2007;78(7):735–7.Google Scholar
Pijnenburg, YA, Janssen, JC, Schoonenboom, NS, Petzold, A, Mulder, C, Stigbrand, T, et al. CSF neurofilaments in frontotemporal dementia compared with early onset Alzheimer's disease and controls. Dement Geriatr Cogn Disord 2007;23(4):225–30.Google Scholar
Pijnenburg, YA, Schoonenboom, NS, Rosso, SM, Mulder, C, Van Kamp, GJ, van Swieten, JC, et al. CSF tau and Abeta42 are not useful in the diagnosis of frontotemporal lobar degeneration. Neurology 2004;62(9):1649.Google Scholar
Rosso, SM, van Herpen, E, Pijnenburg, YA, Schoonenboom, NS, Scheltens, P, Heutink, P, et al. Total tau and phosphorylated tau 181 levels in the cerebrospinal fluid of patients with frontotemporal dementia due to P301L and G272V tau mutations. Arch Neurol 2003;60(9):1209–13.Google Scholar
Schoonenboom, NS, Pijnenburg, YA, Mulder, C, Rosso, SM, Van Elk, EJ, Van Kamp, GJ, et al. Amyloid beta(1–42) and phosphorylated tau in CSF as markers for early-onset Alzheimer disease. Neurology 2004;62(9):1580–4.Google Scholar
Verwey, NA, Kester, MI, van der Flier, WM, Veerhuis, R, Berkhof, H, Twaalfhoven, H, et al. Additional value of CSF amyloid-beta 40 levels in the differentiation between FTLD and control subjects. J Alzheimers Dis 2010;20(2):445–52.Google Scholar
Gabelle, A, Roche, S, Geny, C, Bennys, K, Labauge, P, Tholance, Y, et al. Correlations between soluble alpha/beta forms of amyloid precursor protein and Abeta38, 40, and 42 in human cerebrospinal fluid. Brain Res 2010;1357:175–83.Google Scholar
Bibl, M, Lewczuk, P, Esselmann, H, Mollenhauer, B, Klafki, HW, Welge, V, et al. CSF amyloid-beta 1–38 and 1–42 in FTD and AD: biomarker performance critically depends on the detergent accessible fraction. Proteomics Clin Appl 2008;2(10–11):1548–56.Google Scholar
Small, SA, Duff, K. Linking Abeta and tau in late-onset Alzheimer's disease: a dual pathway hypothesis. Neuron 2008;60(4):534–42.Google Scholar
Phiel, CJ, Wilson, CA, Lee, VM, Klein, PS. GSK-3alpha regulates production of Alzheimer's disease amyloid-beta peptides. Nature 2003;423(6938):435–9.Google Scholar
Schaffer, BA, Bertram, L, Miller, BL, Mullin, K, Weintraub, S, Johnson, N, et al. Association of GSK3B with Alzheimer disease and frontotemporal dementia. Arch Neurol 2008;65(10):1368–74.Google Scholar
Sjögren, M, Rosengren, L, Minthon, L, Davidsson, P, Blennow, K, Wallin, A. Cytoskeleton proteins in CSF distinguish frontotemporal dementia from AD. Neurology 2000;54(10):1960–4.Google Scholar
de Jong, D, Jansen, RW, Pijnenburg, YA, van Geel, WJ, Borm, GF, Kremer, HP, et al. CSF neurofilament proteins in the differential diagnosis of dementia. J Neurol Neurosurg Psychiatry 2007;78(9):936–8.Google Scholar
Landqvist Waldӧ, M, Frizell, SA, Passant, U, Zetterberg, H, Rosengren, L, Nilsson, C, et al. Cerebrospinal fluid neurofilament light chain protein levels in subtypes of frontotemporal dementia. BMC Neurol 2013;13:54.Google Scholar
Petzold, A, Keir, G, Warren, J, Fox, N, Rossor, MN. A systematic review and meta-analysis of CSF neurofilament protein levels as biomarkers in dementia. Neurodegener Dis 2007;4(2–3):185–94.Google Scholar
Hu, WT, Chen-Plotkin, A, Grossman, M, Arnold, SE, Clark, CM, Shaw, LM, et al. Novel CSF biomarkers for frontotemporal lobar degenerations. Neurology 2010;75(23):2079–86.Google Scholar
Mattsson, N, Ruetschi, U, Pijnenburg, YA, Blankenstein, MA, Podust, VN, Li, S, et al. Novel cerebrospinal fluid biomarkers of axonal degeneration in frontotemporal dementia. Mol Med Rep 2008 Sep;1(5):757–61.Google Scholar
Gozal, YM, Seyfried, NT, Gearing, M, Glass, JD, Heilman, CJ, Wuu, J, et al. Aberrant septin 11 is associated with sporadic frontotemporal lobar degeneration. Mol Neurodegener 2011;6:82.Google Scholar
Martins-de-Souza, D, Guest, PC, Mann, DM, Roeber, S, Rahmoune, H, Bauder, C, et al. Proteomic analysis identifies dysfunction in cellular transport, energy, and protein metabolism in different brain regions of atypical frontotemporal lobar degeneration. J Proteome Res 2012;11(4):2533–43.Google Scholar
Schweitzer, K, Decker, E, Zhu, L, Miller, RE, Mirra, SS, Spina, S, et al. Aberrantly regulated proteins in frontotemporal dementia. Biochem Biophys Res Commun 2006;348(2):465–72.Google Scholar
Arai, H, Morikawa, Y, Higuchi, M, Matsui, T, Clark, CM, Miura, M, et al. Cerebrospinal fluid tau levels in neurodegenerative diseases with distinct tau-related pathology. Biochem Biophys Res Commun 1997;236(2):262–4.Google Scholar
Borroni, B, Gardoni, F, Parnetti, L, Magno, L, Malinverno, M, Saggese, E, et al. Pattern of tau forms in CSF is altered in progressive supranuclear palsy. Neurobiol Aging 2009;30(1):3440.Google Scholar
Borroni, B, Malinverno, M, Gardoni, F, Alberici, A, Parnetti, L, Premi, E, et al. Tau forms in CSF as a reliable biomarker for progressive supranuclear palsy. Neurology 2008;71(22):1796–803.Google Scholar
Fabre, SF, Forsell, C, Viitanen, M, Sjögren, M, Wallin, A, Blennow, K, et al. Clinic-based cases with frontotemporal dementia show increased cerebrospinal fluid tau and high apolipoprotein E epsilon4 frequency, but no tau gene mutations. Exp Neurol 2001;168(2):413–18.Google Scholar
Matsuda, K, Tashiro, K, Hayashi, Y, Monji, A, Yoshida, I, Mitsuyama, Y. Measurement of laminins in the cerebrospinal fluid obtained from patients with Alzheimer's disease and vascular dementia using a modified enzyme-linked immunosorbent assay. Dement Geriatr Cogn Disord 2002;14(3):113–22.Google Scholar
Mecocci, P, Cherubini, A, Bregnocchi, M, Chionne, F, Cecchetti, R, Lowenthal, DT, et al. Tau protein in cerebrospinal fluid: a new diagnostic and prognostic marker in Alzheimer disease? Alzheimer Dis Assoc Disord 1998;12(3):211–14.Google Scholar
Paraskevas, GP, Kapaki, E, Liappas, I, Theotoka, I, Mamali, I, Zournas, C, et al. The diagnostic value of cerebrospinal fluid tau protein in dementing and nondementing neuropsychiatric disorders. J Geriatr Psychiatry Neurol 2005;18(3):163–73.Google Scholar
Petzold, A, Chapman, MD, Schraen, S, Verwey, NA, Pasquier, F, Bombois, S, et al. An unbiased, staged, multicentre, validation strategy for Alzheimer's disease CSF tau levels. Exp Neurol 2010;223(2):432–8.Google Scholar

References

National Society of Genetic Counselors’ Definition Task Force, Resta, R, Biesecker, BB, Bennett, RL, et al. A new definition of Genetic Counseling: National Society of Genetic Counselors’ Task Force report. J Genet Couns 2006;15(2):7783.Google Scholar
Goldman, JS, Farmer, JM, Van Deerlin, VM, et al. Frontotemporal dementia: genetics and genetic counseling dilemmas. Neurologist 2004;10(5):227–34.Google Scholar
McCarty-Wood, E. The role of genetics: a piece in the FTD puzzle. In Radin, G, Radin, L, eds. What If It's Not Alzheimer's? A Caregivers Guide to Dementia, 3rd edn. Amherst, NY: Prometheus Books. 2014; 6279.Google Scholar
Goldman, JS, Farmer, JM, Wood, EM, et al. Comparison of family histories in FTLD subtypes and related tauopathies.Neurology 2005;65(11):1817–19.Google Scholar
Rohrer, JD, Guerreiro, R, Vandrovcova, J, et al. The heritability and genetics of frontotemporal lobar degeneration. Neurology 2009;73(18):1451–6.Google Scholar
DeJesus-Hernandez, M, Mackenzie, IR, Boeve, BF, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 2011;72(2):245–56.Google Scholar
Wood, EM, Falcone, D, Suh, E, et al. Development and validation of pedigree classification criteria for frontotemporal lobar degeneration. JAMA Neurol 2013;70(11):1411–17.Google Scholar
Hahn, SE. Primer on genetic counselling. Continuum (Minneap Minn.) 2011;17(2 Neurogenetics):268–79.Google Scholar
International Huntington Association and World Federation of Neurology. International Huntington Association and the World Federation of Neurology Research Group on Huntington's Chorea. Guidelines for the molecular genetics predictive test in Huntington's disease. J Med Genet 1994;31(7):555–9.Google Scholar
Le Ber, I, Camuzat, A, Guillot-Noel, L, et al. C9ORF72 repeat expansions in the frontotemporal dementias spectrum of diseases: a flow-chart for genetic testing. J Alzheimers Dis 2013;34(2):485–99.Google Scholar
Van Langenhove, T, van der Zee, J, Gijselinck, I, et al. Distinct clinical characteristics of C9orf72 expansion carriers compared with GRN, MAPT, and nonmutation carriers in a Flanders-Belgian FTLD cohort. JAMA Neurol 2013;70(3):365–73.Google Scholar
Goldman, JS, Rademakers, R, Huey, ED, et al. An algorithm for genetic testing of frontotemporal lobar degeneration. Neurology 2011;76(5):475–8.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×