Published online by Cambridge University Press: 05 July 2011
Abstract
We present an efficient algorithm for the inversion of a given birational map. The problem is reduced to finding the unique solution of a maximal ideal defined over an algebraic function field.
Introduction
The problem of inverting a birational maps arises in several contexts in algorithmic algebraic geometry, and an efficient solution is useful in many situations.
For instance, consider the parameterization problem, which is useful for numerous applications in CAD/CAM (see section 3). A closer look to the existing parameterization algorithms reveals that a parameterization is often obtained via inversion of some birational map.
In this paper, we present a new efficient algorithm for the inversion of birational maps, based on the method of Gröbner bases (Buchberger 1965, Buchberger 1979, Buchberger 1983, Beckers and Weispfenning 1993).
For a special case, the inversion problem has also been investigated in (Essen 1990, Audoly et al. 1991) (see also (Ollivier 1989) for related work), in the context of the Jacobian conjecture (Keller 1939). The general problem was solved in (Sweedler 1993) (see also Shannon and Sweedler 1988). However, Sweedler's method depends on computing the components of the inverse map one by one, i.e. it requires the computation of a Gröbner basis with lexicographical termorder. It is known (see Faugère et al. 1993) that such a Gröbner basis is much harder to compute than Gröbner bases with respect to other term orders (e.g. the reverse lexicographical termorder).
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.