Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-03T15:43:44.264Z Has data issue: false hasContentIssue false

4 - Compact Clifford–Klein Forms – Geometry, Topology and Dynamics

Published online by Cambridge University Press:  05 January 2016

David Constantine
Affiliation:
Wesleyan University, Middletown
C. S. Aravinda
Affiliation:
TIFR Centre for Applicable Mathematics, Bangalore, India
F. T. Farrell
Affiliation:
Tsinghua University, Beijing
J. -F. Lafont
Affiliation:
Ohio State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Abels, H. 2001. Properly discontinuous groups of affine transformations, a survey. Geometriae Dedicata, 87, 309–333.CrossRefGoogle Scholar
[2] Barbot, Thierry. 2013. Deformations of Fuchsian AdS representations are quasi-Fuchsian. arXiv:1301.4309.
[3] Benoist, Yves. 1994. Actions propres de groupes libres sur les espaces homogè nes réductifs. Comptes Rendus de l'Académie des Sciences. Série I. Mathématique Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, 319(9),937–940.Google Scholar
[4] Benoist, Yves. 1996. Actions propres sur les espaces homogènes réductifs. Annals of Mathematics, 144, 315–347.CrossRefGoogle Scholar
[5] Benoist, Yves, and Labourie, François. 1992. Sur les espaces homogènes modèles de variétés compactes. PublicationsMathématiques de l'I.H.É.S., 76, 99–109.Google Scholar
[6] Borel, Armand. 1963. Compact Clifford-Klein forms of symmetric spaces. Topology,2, 111–122.CrossRefGoogle Scholar
[7] Brown, Kenneth S. 1994. Cohomology of groups. Graduate Texts in Mathematics, vol. 87. New York: Springer-Verlag.Google Scholar
[8] Calabi, E., and Markus, L. 1962. Relativistic space forms. Annals of Mathematics, 75, 63–76.CrossRefGoogle Scholar
[9] Charette, Virginie, Drumm, Todd, Goldman, William, and Morrill, Maria. 2003. Complete flat affine and Lorentzian manifolds. Geometriae Dedicata, 97, 187–198.Google Scholar
[10] Constantine, David. 2011. Compact forms of homogeneous spaces and higher-rank semisimple group actions. arXiv:1209.3940.
[11] Ehresmann, C. 1950. Les connexions infinitésimales dans un espace fibré différentiable. Pages 29–55 of: Colloque de topologie (espaces fibrés). Bruxelles.Google Scholar
[12] Ghys, É. 1987. Flots d'Anosov dont les feuilletages stables sont différentiables. Annales Scientifiques de l’École Normale Supérieure, 20(2), 251–270.Google Scholar
[13] Ghys, É. 1995. Déformation des structures complexes sur les espaces homogènes de SL(2,C). Journal für die reine und angewandte Mathematik, 468, 113–138.Google Scholar
[14] Goldman, William M. 1985. Nonstandard Lorentz space forms. Journal of Differential Geometry, 21(2), 301–308.CrossRefGoogle Scholar
[15] Guéritaud, François, and Kassel, Fanny. 2013. Maximally stretched laminations on geometrically finite hyperbolic manifolds. arXiv:1307.0250.
[16] Guichard, Olivier, and Wienhard, Anna. 2012. Anosov Representations: domains of discontinuity and applications. Inventiones Mathematicae, 190(2), 357–438.CrossRefGoogle Scholar
[17] Iozzi, Alessandra, and Witte-Morris, Dave. 2004. Tessellations of homogeneous spaces of classical groups of real rank two. Geometriae Dedicata, 103, 115–191.CrossRefGoogle Scholar
[18] Kassel, Fanny. Quotients compacts d'espaces homogènes réels ou p-adiques. Ph.D.Thesis, Université Paris-Sud 11, November, 2009. (available at http://math.univlille1.fr/~kassel/These.pdf).
[19] Kassel, Fanny. 2008. Proper actions on corank-one reductive homogeneous spaces. Journal of Lie Theory, 18, 961–978.Google Scholar
[20] Kassel, Fanny. 2012. Deformation of proper actions on reductive homogeneous spaces. Mathematische Annalen, 353(2), 599–632.CrossRefGoogle Scholar
[21] Kassel, Fanny, and Kobayashi, Toshiyuki. 2011. Stable spectrum for pseudo- Riemannian locally symmetric spaces. Comptes Rendus Mathématique. Académie des Sciences. Paris, 349, 29–33.Google Scholar
[22] Kassel, Fanny, and Kobayashi, Toshiyuki. 2012. Discrete spectrum for non-Riemannian locally symmetric spaces. I. Construction and stability. arXiv:1209.4075.
[23] Klingler, Bruno. 1996. Complétude des variétés Lorentziennes à courbure constante. Mathematische Annalen, 306(2), 353–370.CrossRefGoogle Scholar
[24] Kobayashi, Toshiyuki. 1989. Proper action on a homogeneous space of reductive type. Mathematische Annalen, 285, 249–263.CrossRefGoogle Scholar
[25] Kobayashi, Toshiyuki. 1992a. Discontinuous groups acting on homogeneous spaces of reductive type. Pages 59–75 of: Kawazoe, T., Oshima, T., and Sano, S. (eds), Representation Theory of Lie Groups and Lie Algebras at Fuji-Kawaguchiko, 1990 August September. World Scientific.Google Scholar
[26] Kobayashi, Toshiyuki. 1992b. A necessary condition for the existence of compact Clifford-Klein forms of homogeneous spaces of reductive type. Duke Mathematical Journal, 67, 653–664.Google Scholar
[27] Kobayashi, Toshiyuki. 1996a. Criterion for proper action on homogeneous spaces of reductive groups. Journal of Lie Theory, 6(2), 147–163.Google Scholar
[28] Kobayashi, Toshiyuki. 1996b. Discontinuous groups and Clifford-Klein forms of pseudo-Riemannian homogeneous manifolds. Pages 99–165 of: Schlichtkrull, H., and Ørsted, B.(eds), Algebraic and Analytic Methods in Representation Theory. Perspectives in Mathematics, vol. 17. Academic Press.
[29] Kobayashi, Toshiyuki. 1998. Deformation of compact Clifford-Klein forms of indefinite-Riemannian homogeneous manifolds. Mathematische Annalen, 310, 395–409.CrossRefGoogle Scholar
[30] Kobayashi, Toshiyuki. 2001. Discontinuous groups for non-Riemannian homogeneous spaces. Pages 723–747 of: Engquist, B., and Schmid, W. (eds), Mathematics Unlimited – 2001 and Beyond. Springer.
[31] Kobayashi, Toshiyuki, and Yoshino, Taro. 2005. Compact Clifford-Klein forms of symmetric spaces – revisited. Pure and Applied Mathematics Quarterly, 1(3), 591–663.CrossRefGoogle Scholar
[32] Kulkarni, R. 1981. Proper actions and pseudo-Riemannian space forms. Advances in Mathematics, 40, 10–51.CrossRefGoogle Scholar
[33] Kulkarni, R., and Raymond, F. 1985. 3-dimensional Lorentz space-forms and Seifert fiber spaces. Journal of Differential Geometry, 21, 231–268.CrossRefGoogle Scholar
[34] Labourie, F., Mozes, S., and Zimmer, R.J. 1995. On Manifolds Locally Modelled on Non-Riemannian Homogeneous Spaces. Geometric and Functional Analysis, 5(6), 955–965.CrossRefGoogle Scholar
[35] Labourie, François. 1996. Quelques résultats récents sur les espaces localement homogènes compacts. Pages 267–283 of: Manifolds and Geometry (Pisa 1993). Sympos. Math., no. XXXVI. Cambridge: Cambridge University Press.Google Scholar
[36] Labourie, François. 2006. Anosov flows, surface groups and curves in projective space. Inventiones Mathematicae, 165(1), 51–114.CrossRefGoogle Scholar
[37] Labourie, François, and Zimmer, Robert J. 1995. On the Existence of Cocompact Lattices for SL(n)/SL(m). Mathematical Research Letters, 2, 75–77.CrossRefGoogle Scholar
[38] Margulis, Gregory. 1997. Existence of compact quotients of homogeneous spaces, measurably proper actions, and decay of matrix coefficients. Bulletin de la Société Mathématique de France, 125, 447–456.CrossRefGoogle Scholar
[39] Oh, Hee. 1998. Tempered subgroups and representations with minimal decay of matrix coefficients. Bulletin de la Société Mathématique de France, 126, 355–380.CrossRefGoogle Scholar
[40] Oh, Hee, and Witte, Dave. 2000. New examples of compact Clifford-Klein forms of homogeneous spaces ofSO(2, n). International Mathematics Research Notices, 235–251.Google Scholar
[41] Oh, Hee, and Witte, Dave. 2002. Compact Clifford-Klein forms of homogeneous spaces of SO(2, n). Geometriae Dedicata, 89, 25–57.CrossRefGoogle Scholar
[42] Oniščik, A. L. 1969. Decompositions of reductive Lie groups. Mathematics of the USSR-Sbornik, 9(4), 515–554.
[43] Ratner, Marina. 1991. On Ragunathan's measure conjecture. Annals of Mathematics, 134(3), 545–607.CrossRefGoogle Scholar
[44] Salein, François. 1997. Variétés anti-de Sitter de dimension 3 possédant un champ de Killing non trivial. Comptes Rendus Mathématique. Académie des Sciences. Paris, 324, 525–530.Google Scholar
[45] Salein, François. 2000. Variétés anti-de Sitter de dimension 3 exotiques. Annales de l'institut Fourier, 50(1), 257–284.CrossRefGoogle Scholar
[46] Serre, J.-P. 1971. Cohomologie des groupes discrets. Pages 337–350 of: Séminaire Bourbaki, 23`eme année (1970/1971), Exp. No. 399. Lecture Notes in Math, vol. 244. Springer.Google Scholar
[47] Shalom, Yehuda. 2000. Rigidity, unitary representations of semisimple groups, and fundamental groups of manifolds with rank one transformation group. Annals of Mathematics, 152, 113–182.CrossRefGoogle Scholar
[48] Thurston, W. P. 1980. Geometry and topology of three-manifolds. (unpublished; available from library.msri.org/books/gt3m/).
[49] Weil, André. 1964. Remarks on the cohomology of groups. Annals of Mathematics, 80, 149–157.CrossRefGoogle Scholar
[50] Wolf, Joseph A. 1962. The Clifford-Klein space forms of indefinite metric. Annals of Mathematics, 75, 77–80.CrossRefGoogle Scholar
[51] Wolf, Joseph A. 2011. Spaces of constant curvature. 6th edn. Providence, RI: AMS Chelsea Publishing.Google Scholar
[52] Zimmer, Robert J. 1984. Ergodic theory and semisimple groups. Monographs in Mathematics, vol. 81. Basel: Birkhäuser.CrossRefGoogle Scholar
[53] Zimmer, Robert J. 1994. Discrete Groups and Non-Riemannian Homogeneous Spaces. Journal of the American Mathematical Society, 7(1), 159–168.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×