Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-09T14:00:15.214Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 August 2012

Loïc Chaumont
Affiliation:
Université d'Angers, France
Marc Yor
Affiliation:
Université de Paris VI (Pierre et Marie Curie)
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Exercises in Probability
A Guided Tour from Measure Theory to Random Processes, via Conditioning
, pp. 270 - 277
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] G.E., Andrews, R., Askey and R., Roy: Special Functions. Encyclopedia of Mathematics and its Applications, 71. Cambridge University Press, Cambridge, 1999.Google Scholar
[2] P., Baldi, L., Mazliak and P., Priouret: Martingales et Chaînes de Markov. Collection Méthodes, Hermann, 1998. English version: Chapman & Hall/CRC, Oxford, 2002.Google Scholar
[3] Ph., Barbe and M., Ledoux: Probabilité. De la Licence à l'Agrégation. Éditions Espaces 34, Belin, 1998.Google Scholar
[4] O.E., Barndorff-Nielsen and A., Shiryaev: Change of Time and Change of Measure. Advanced Series on Statistical Science & Applied Probability, 13. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2010.Google Scholar
[5] J., Bertoin: Lévy Processes. Cambridge University Press, Cambridge, 1996.Google Scholar
[6] P., Billingsley: Convergence of Probability Measures. Second edition. John Wiley & Sons, Inc., New York, 1999.Google Scholar
[7] P., Billingsley: Probability and Measure. Third edition. John Wiley & Sons, Inc., New York, 1995.Google Scholar
[8] P., Billingsley: Ergodic Theory and Information. Reprint of the 1965 original. Robert E. Krieger Publishing Co., Huntington, NY, 1978.Google Scholar
[9] N.H., Bingham, C.M., Goldie and J.L., Teugels: Regular Variation. Cambridge University Press, Cambridge, 1989.Google Scholar
[10] A.N., Borodin and P., Salminen: Handbook of Brownian Motion – Facts and Formulae. Second edition. Probability and its Applications. Birkhäuser Verlag, Basel, 2002. Third edition in preparation (September 2011).Google Scholar
[11] M., Brancovan and Th., Jeulin: Probabilités – Niveau M1, Vol. 2, Ellipses, in preparation (September 2011).Google Scholar
[12] M., Brancovan and Th., Jeulin: Probabilités – Niveau M1, Ellipses, 2006.Google Scholar
[13] L., Breiman: Probability. Addison-Wesley Publishing Company, Reading, Mass.-London-Don Mills, Ont., 1968.Google Scholar
[14] P., Brémaud: An Introduction to Probabilistic Modeling. Corrected reprint of the 1988 original. Springer-Verlag, New York, 1994.Google Scholar
[15] L., Chaumont: An Introduction to Self-similar Processes. In preparation (March 2012).Google Scholar
[16] Y.S., Chow and H., Teicher: Probability Theory. Independence, Interchangeability, Martingales. Third edition. Springer-Verlag, New York, 1997.Google Scholar
[17] K.L., Chung: A Course in Probability Theory. Third edition. Academic Press, Inc., San Diego, CA, 2001.Google Scholar
[18] E., Çinlar: Probability and Stochastics. Graduate Texts in Mathematics, 261. Springer, New York, 2011.Google Scholar
[19] D., Dacunha-Castelle, M., Duflo and V., Genon-Catalot: Exercices de Probabilités et Statistiques. Tome 2. Problèmes à temps mobile. Masson, 1984.Google Scholar
[20] D., Dacunha-Castelle and M., Duflo: Probabilités et Statistiques. Tome 2. Problèmes à temps mobile. Masson, Paris, 1983.Google Scholar
[21] D., Dacunha-Castelle and M., Duflo: Probabilités et Statistiques. Tome 1. Problèmes à temps fixe. Masson, Paris, 1982.Google Scholar
[22] D., Dacunha-Castelle, D., Revuz and M., Schreiber: Recueil de Problèmes de Calcul des Probabilités. Deuxième édition. Masson, Paris, 1970.Google Scholar
[23] C., Dellacherie and P.A., Meyer: Probabilités et Potentiel. Chapitres I à IV. Hermann, Paris, 1975.Google Scholar
[24] J.L., Doob: Stochastic Processes. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1990.Google Scholar
[25] A.Y., Dorogovtsev, D.S., Silvestrov, A.V., Skorokhod and M.I., Yadrenko: Probability Theory: Collection of Problems. Translations of Mathematical Monographs, 163. American Mathematical Society, Providence, RI, 1997.Google Scholar
[26] R., Durrett: Probability: Theory and Examples. Fourth edition. Cambridge University Press, Cambridge, 2010.Google Scholar
[27] P., Embrechts and M., Maejima: Selfsimilar Processes. Princeton University Press, Princeton, NJ, 2002.Google Scholar
[28] W., Feller: An Introduction to Probability Theory and its Applications. Vol. II. Second edition. John Wiley & Sons, Inc., New York–London–Sydney, 1971.Google Scholar
[29] X., Fernique: Fonctions Aléatoires Gaussiennes, Vecteurs Aléatoires Gaussiens. Université de Montréal, Centre de Recherches Mathématiques, Montréal, QC, 1997.Google Scholar
[30] D., Foata and A., Fuchs: Processus Stochastiques, Processus de Poisson, Chaînes de Markov et Martingales. Cours et exercices corrigés. Dunod, Paris, 2002.Google Scholar
[31] D., Foata and A., Fuchs: Calcul des Probabilités. Second edition. Dunod, 1998.Google Scholar
[32] D., Freedman: Brownian Motion and Diffusion. Second edition. Springer-Verlag, New York–Berlin, 1983.Google Scholar
[33] B., Fristedt and L., Gray: A Modern Approach to Probability Theory. Probability and its applications. Birkhäuser Boston, Inc., Boston, MA, 1997.Google Scholar
[34] L., Gallardo: Mouvement Brownien et Calcul d'Itô – Cours et Exercices Corrigés. Hermann, 2008.Google Scholar
[35] H.-O., Georgii: Gibbs Measures and Phase Transitions. Second edition. de Gruyter Studies in Mathematics, 9. Walter de Gruyter & Co., Berlin, 2011.Google Scholar
[36] G.R., Grimmett: Probability on Graphs. Random Processes on Graphs and Lattices. Cambridge University Press, Cambridge, 2010.Google Scholar
[37] G.R., Grimmett and D.R. S, tirzaker: One Thousand Exercises in Probability. The Clarendon Press, Oxford University Press, New York, 2001.Google Scholar
[38] G.R., Grimmett and D.R., Stirzaker: Probability and Random Processes. Second edition. The Clarendon Press, Oxford University Press, New York, 1992.Google Scholar
[39] T., Hida and M., Hitsuda: Gaussian processes. Translations of Mathematical Monographs, 120. American Mathematical Society, Providence, RI, 1993.Google Scholar
[40] J., Jacod and Ph., Protter: Probability Essentials. Second edition. Universitext. Springer-Verlag, Berlin, 2002.Google Scholar
[41] S., Janson: Gaussian Hilbert Spaces. Cambridge Tracts in Mathematics, 129. Cambridge University Press, Cambridge, 1997.Google Scholar
[42] N.L., Johnson, S., Kotz and N., Balakrishnan: Continuous Univariate Distributions. Vol. 2. Second edition. John Wiley & Sons, Inc., New York, 1995.Google Scholar
[43] M., Kac: Statistical Independence in Probability, Analysis and Number Theory. The Carus Mathematical Monographs, No. 12. Distributed by John Wiley and Sons, Inc., New York 1959.Google Scholar
[44] O., Kallenberg: Foundations of Modern Probability. Second edition. Probability and its Applications. Springer-Verlag, New York, 2002.Google Scholar
[45] G., Kallianpur: Stochastic Filtering Theory. Applications of Mathematics, 13. Springer-Verlag, New York-Berlin, 1980.Google Scholar
[46] I., Karatzas and S.N., Shreve: Brownian Motion and Stochastic Calculus. Second edition. Springer-Verlag, New York, 1991.Google Scholar
[47] D., Khoshnevisan: Probability. Graduate Studies in Mathematics, 80. American Mathematical Society, Providence, RI, 2007.Google Scholar
[48] A., Klenke: Probability Theory. A Comprehensive Course. Springer-Verlag, London, Ltd., London, 2008.Google Scholar
[49] A.N., Kolmogorov: Foundations of the Theory of Probability. Chelsea Publishing Company, New York, 1950.Google Scholar
[50] M., Ledoux and M., Talagrand: Probability in Banach Spaces. Isoperimetry and Processes. Results in Mathematics and Related Areas (3), 23. Springer-Verlag, Berlin, 1991.Google Scholar
[51] N.N., Lebedev: Special Functions and their Applications. Unabridged and corrected republication. Dover Publications, Inc., New York, 1972.Google Scholar
[52] G., Letac: Exercises and Solutions Manual for Integration and Probability. Springer-Verlag, New York, 1995. French edition: Masson, Second edition, 1997.Google Scholar
[53] M.A., Lifschits: Gaussian Random Functions. Kluwer Academic Publishers, 1995.Google Scholar
[54] T.M., Liggett: Continuous Time Markov Processes. An Introduction. Graduate Studies in Mathematics, 113. American Mathematical Society, Providence, RI, 2010.Google Scholar
[55] E., Lukacs: Developments in Characteristic Function Theory. Macmillan Co., New York, 1983.Google Scholar
[56] H.P., Mc Kean: Stochastic Integrals. Reprint of the 1969 edition, with errata. AMS Chelsea Publishing, Providence, RI, 2005.Google Scholar
[57] P., Malliavin and H., Airault: Integration and Probability. Graduate Texts in Mathematics, 157. Springer-Verlag, New York, 1995. French edition: Masson, 1994.Google Scholar
[58] R., Mansuy and M., Yor: Aspects of Brownian Motion. Universitext. Springer-Verlag, Berlin, 2008.Google Scholar
[59] S., Méléard: Aléatoire. Introduction à la Théorie et au Calcul des Probabilités. Éditions de l'École Polytechnique, 2010.Google Scholar
[60] P.A., Meyer: Probability and Potentials. Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.–Toronto, Ont.–London, 1966. French edition: Herman (1966).Google Scholar
[61] P., Mörters and Y., Peres: Brownian Motion. With an Appendix by Oded Schramm and Wendelin Werner. Cambridge University Press, Cambridge, 2010.Google Scholar
[62] J., Neveu: Discrete-parameter Martingales. Revised edition. North-Holland Mathematical Library, Vol. 10., Amsterdam–Oxford–New York, 1975.Google Scholar
[63] J., Neveu: Mathematical Foundations of the Calculus of Probability. Holden-Day, Inc., 1965. French edition: Masson, Second edition, 1970.Google Scholar
[64] J., Neveu: Processus Aléatoires Gaussiens. Séminaire de Mathématiques Supérieures, No. 34. Les Presses de l'Université de Montréal, 1968.Google Scholar
[65] B., Øksendal: Stochastic Differential Equations. An Introduction with Applications. Sixth edition. Universitext. Springer-Verlag, Berlin, 2003.Google Scholar
[66] S.J., Patterson: An Introduction to the Theory of the Riemann Zetafunction. Cambridge Studies in Advanced Mathematics, 14. Cambridge University Press, Cambridge, 1988.Google Scholar
[67] K., Petersen: Ergodic Theory. Cambridge Studies in Advanced Mathematics 2. Cambridge University Press, Cambridge, 1983.Google Scholar
[68] V.V., Petrov: Limit Theorems of Probability Theory. Sequences of Independent Random Variables. Oxford University Press, New York, 1995.Google Scholar
[69] J., Pitman: Probability. Springer-Verlag, 1993.Google Scholar
[70] Ch., Profeta, B., Roynette and M., Yor: Option Prices as Probabilities. A New Look at Generalized Black–Scholes Formulae. Springer Finance. Springer-Verlag, Berlin, 2010.Google Scholar
[71] P.E., Protter: Stochastic Integration and Differential Equations. Second edition. Applications of Mathematics, 21. Springer-Verlag, Berlin, 2004.Google Scholar
[72] A., Rényi: Calcul des Probabilités. Collection Universitaire de Mathématiques, No. 21, Dunod, Paris, 1966.Google Scholar
[73] D., Revuz: Probabilités. Hermann, Paris, 1998.Google Scholar
[74] D., Revuz: Intégration. Hermann, Paris, 1997.Google Scholar
[75] D., Revuz and M., Yor: Continuous Martingales and Brownian Motion. Third edition. Springer-Verlag, Berlin, 1999.Google Scholar
[76] L.C.G., Rogers and D., Williams: Diffusions, Markov Processes, and Martingales. Vol. 1. Foundations. Reprint of the second (1994) edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2000.Google Scholar
[77] L.C.G., Rogers and D., Williams: Diffusions, Markov Processes, and Martingales. Vol. 2. Itô Calculus. Second edition. Cambridge University Press, Cambridge, 2000.Google Scholar
[78] J.P., Romano and A.F., Siegel: Counterexamples in Probability and Statistics. Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA, 1986.Google Scholar
[79] S.M., Ross: Stochastic Processes. Second edition. John Wiley & Sons, Inc., New York, 1996.Google Scholar
[80] G., Samorodnitsky and M.S., Taqqu: Stable Non-Gaussian Random Processes. Chapman & Hall, New York, 1994.Google Scholar
[81] K., Sato: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge, 1999.Google Scholar
[82] A.N., Shiryaev: Probability. Second edition. Graduate Texts in Mathematics, 95. Springer-Verlag, New York, 1996.Google Scholar
[83] Y.G., Sinaï: Probability Theory. An Introductory Course. Springer-Verlag, Berlin, 1992.Google Scholar
[84] A.V., Skorokhod: Basic Principles and Applications of Probability Theory. Springer-Verlag, Berlin, 2005.Google Scholar
[85] F.W., Steutel and K., van Harn: Infinite Divisibility of Probability Distributions on the Real Line. Monographs and Textbooks in Pure and Applied Mathematics, 259. Marcel Dekker, Inc., New York, 2004.Google Scholar
[86] J.M., Stoyanov: Counterexamples in Probability. Second edition. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, Ltd., Chichester, 1997.Google Scholar
[87] D.W., Stroock: Probability Theory, an Analytic View. Second edition. Cambridge University Press, Cambridge, 2011.Google Scholar
[88] D.W., Stroock: Partial Differential Equations for Probabilists. Cambridge Studies in Advanced Mathematics, 112. Cambridge University Press, Cambridge, 2008.Google Scholar
[89] D.W., Stroock: Markov Processes from K. Itô's Perspective. Annals of Mathematics Studies, 155, Princeton University Press, Princeton, NJ, 2003.Google Scholar
[90] G.J, Székely: Paradoxes in Probability Theory and Mathematical Statistics. Mathematics and its Applications (East European Series), 15. D. Reidel Publishing Co., Dordrecht, 1986.Google Scholar
[91] M., Talagrand: Mean Field Models For Spin Glasses. Volume I. Basic examples. 54. Springer-Verlag, Berlin, 2011.Google Scholar
[92] M., Talagrand: Spin Glasses: a Challenge for Mathematicians. Cavity and Mean Field Models. Results in Mathematics and Related Areas. 3rd Series, 46. Springer-Verlag, Berlin, 2003.Google Scholar
[93] P.S., Toulouse: Thèmes de Probabilités et Statistiques. Agrégation de Mathématiques. Dunod, 1999.Google Scholar
[94] V.V., Uchaikin and V.M., Zolotarev: Chance and Stability. Stable Distributions and their Applications. Modern Probability and Statistics. VSP, Utrecht, 1999.Google Scholar
[95] P., Whittle: Probability via Expectation. Fourth edition. Springer Texts in Statistics. Springer-Verlag, New York, 2000.Google Scholar
[96] D.V., Widder: The Laplace Transform. Princeton Mathematical Series, v. 6. Princeton University Press, Princeton, NJ, 1941.Google Scholar
[97] D., Williams: Weighing the Odds. A Course in Probability and Statistics. Cambridge University Press, Cambridge, 2001.Google Scholar
[98] D., Williams: Probability with Martingales. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 1991.Google Scholar
[99] D., Williams: Diffusions, Markov Processes, and Martingales. Vol. 1. Foundations. Probability and Mathematical Statistics. John Wiley & Sons, Ltd., Chichester, 1979.Google Scholar
[100] M., Yor: Small and Big Probability Worlds. Banach Center Publications, Vol. 95, Institute of Mathematics Polish Academy of Sciences Warszawa, 2011, pp. 261–271.Google Scholar
[101] M., Yor: Some Aspects of Brownian Motion, Part I. Some special functionals. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 1992.Google Scholar
[102] M., Yor, M.E., Vares and T., Mikosch: A tribute to Professor Kiyosi Itô. Stochastic Process. Appl., 120 (2010), no. 1, 1.Google Scholar
[103] V.M., Zolotarev: One-dimensional Stable Distributions. Translations of Mathematical Monographs, 65. American Mathematical Society, Providence, RI, 1986.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Loïc Chaumont, Université d'Angers, France, Marc Yor, Université de Paris VI (Pierre et Marie Curie)
  • Book: Exercises in Probability
  • Online publication: 05 August 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139135351.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Loïc Chaumont, Université d'Angers, France, Marc Yor, Université de Paris VI (Pierre et Marie Curie)
  • Book: Exercises in Probability
  • Online publication: 05 August 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139135351.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Loïc Chaumont, Université d'Angers, France, Marc Yor, Université de Paris VI (Pierre et Marie Curie)
  • Book: Exercises in Probability
  • Online publication: 05 August 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139135351.017
Available formats
×