Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-05T17:01:42.675Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  09 March 2019

Jeremy J. Burdon
Affiliation:
Commonwealth Scientific and Industrial Research Organisation, Canberra
Anna-Liisa Laine
Affiliation:
University of Helsinki
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abang, M., Baum, M., Ceccarelli, S., Grando, S., Linde, C. C., Yahyaoui, A., Zhan, J. & McDonald, B. A. (2006). Differential selection on Rhynchosporium secalis during parasitic and saprophytic phases in the barley scald disease cycle. Phytopathology, 96, 1214–22.CrossRefGoogle ScholarPubMed
Abbott, D. C., Brown, A. H. D. & Burdon, J. J. (1992). Genes for scald resistance from wild barley (Hordeum vulgare ssp. spontaneum) and their linkage to isozyme markers. Euphytica, 61, 225–31.Google Scholar
Adams, K. L. & Wendel, J. F. (2005). Novel patterns of gene expression in polyploidy plants. Trends in Genetics, 21, 539–43.CrossRefGoogle Scholar
Agrawal, A. F. & Lively, C. M. (2001). Parasites and the evolution of self-fertilization. Evolution, 55, 869–79.CrossRefGoogle ScholarPubMed
Agrawal, A. F. & Lively, C. M. (2002). Infection genetics: gene-for-gene versus matching-alleles models and all points in between. Evolutionary Ecology Research, 4, 7990.Google Scholar
Agrawal, A. F. & Lively, C. M. (2003). Modelling infection as a two-step process combining gene-for-gene and matching-allele genetics. Proceedings of the Royal Society of London, B, 270, 323–34.CrossRefGoogle ScholarPubMed
Agrawal, A. & Stephenson, S. L. (1995). Recent successional changes in a former chestnut-dominated forest in southwestern Virginia. Castanea, 60, 107–13.Google Scholar
Agrios, G. N. (1980). Insect involvement in the transmission of fungal pathogens. In Harris, F. K. and Maramorosch, K., eds., Vectors of Plant Pathogens. New York: Academic Press, pp. 293324.CrossRefGoogle Scholar
Agrios, G. N. (2005). Plant Pathology. San Diego, CA: Academic Press, 5th edition.Google Scholar
Aguayo, J., Elegbede, F., Husson, C., Saintonge, F.-X. & Marçais, B. (2014). Modeling climate impact on an emerging disease, the Phytopthora alni-induced alder decline. Global Change Biology, 20, 3209–21.CrossRefGoogle Scholar
Ahmed, S., Tourvieille de Labrouhe, D. & Delmotte, F. (2012). Emerging virulence arising from hybridisation facilitated by multiple introductions of the sunflower downy mildew pathogen Plasmopara halstedii. Fungal Genetics & Biology, 49, 847–55.CrossRefGoogle ScholarPubMed
Ahn, J.-H. & Walton, J. D. (1996). Chromosomal organization of TOX2, a complex locus controlling host-selective toxin biosynthesis in Cochiliobolus carbonum. The Plant Cell, 8, 887–97.Google ScholarPubMed
Alexander, H. M. (1989). An experimental field study of anther-smut disease of Silene alba caused by Ustilago violacea: genotypic variation and disease incidence. Evolution, 43, 835–47.Google ScholarPubMed
Alexander, H. M. (1990). Dynamics of plant-pathogen interaction in natural plant communities. In Burdon, J. J. and Leather, S. R., eds., Pests, Pathogens and Plant Communities. Oxford, UK: Blackwell Scientific Publications, pp. 233–47.Google Scholar
Alexander, H. M. & Antonovics, J. (1988). Disease spread and population dynamics of anther smut infection of Silene alba caused by the fungus Ustilago violacea. Journal of Ecology, 76, 91104.CrossRefGoogle Scholar
Alexander, H. M., Groth, J. V. & Roelfs, A. P. (1985). Virulence changes in Uromyces appendiculatus after five asexual generations on a partially resistant cultivar of Phaseolus vulgaris. Phytopathology, 75, 449–53.CrossRefGoogle Scholar
Alexander, H. M., Mauck, K. E., Whitfield, A. E., Garrett, K. A. & Malmstrom, C. M. (2013). Plant-virus interactions and the agro-ecological interface. European Journal of Plant Pathology, 138, 529–47.Google Scholar
Alexander, H. M., Thrall, P. H., Antonovics, J., Jarosz, A. M. & Oudemans, P. V. (1996). Population dynamics and genetics of plant diseases: a case study of anther-smut disease. Ecology, 77, 990–6.CrossRefGoogle Scholar
Alfano, J. R., Charkowski, A. O., Deng, W.-L., Badel, J. L., Petnicki-Ocwieja, T., van Dijk, K. & Collmer, A. (2000). The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants. Proceedings of the National Academy of Sciences, USA, 97, 4856–61.CrossRefGoogle Scholar
Alizon, S. (2009). The Price equation framework to study disease within-host evolution. Journal of Evolutionary Biology, 22, 1123–32.CrossRefGoogle ScholarPubMed
Alizon, S., de Roode, J. C. & Michalakis, Y. (2013). Multiple infections and the evolution of virulence. Ecology Letters, 16, 556–67.CrossRefGoogle ScholarPubMed
Allan, B. F., Keesing, F. & Ostfeld, R. S. (2003). Effect of forest fragmentation on Lyme disease risk. Conservation Biology, 17, 267–72.CrossRefGoogle Scholar
Allan, E., van Ruijven, J. & Crawley, M. J. (2010). Foliar fungal pathogens and grassland biodiversity. Ecology, 91, 2572–82.CrossRefGoogle ScholarPubMed
Allard, R. W. (1990). The genetics of host-pathogen coevolution: implications for genetic resource conservation. Journal of Heredity, 81, 16.CrossRefGoogle ScholarPubMed
Almouti, S. M., Wang, V., DiGuistini, S., Six, D. L., Bohlmann, J., Hamelin, R. C., Feau, N. & Breuil, C. (2011). Gene genealogies reveal cryptic species and host preferences for the pine fungal pathogen Grosmannia clavigera. Molecular Ecology, 20, 2581–602.Google Scholar
Altizer, S., Dobson, A. P., Hosseini, P., Hudson, P., Pascual, M. & Rohani, P. (2006). Seasonality and the dynamics of infectious diseases. Ecology Letters, 9, 467–84.CrossRefGoogle ScholarPubMed
Altizer, S., Harwell, D. & Friedle, E. (2003). Rapid evolutionary dynamics and disease threats to biodiversity. Trends in Ecology & Evolution, 18, 589–96.CrossRefGoogle Scholar
Altizer, S., Ostfeld, R. S., Johnson, P. T. J., Kutz, S. & Harvell, D. (2013). Climate change and infectious diseases: from evidence to a predictive framework. Science, 341, 514–19.CrossRefGoogle ScholarPubMed
Alvarez-Loayza, P. & Terborgh, J. (2011). Fates of seedling carpets in an Amazonian floodplain forest: intra-cohort competition or attack by enemies? Journal of Ecology, 99, 1045–54.CrossRefGoogle Scholar
Anderson, M. G. (1982). Interpreting residual effects of “defeated” resistance genes. Phytopathology, 72, 1383–4.CrossRefGoogle Scholar
Anderson, R. M. & May, R. M. (1979). Population biology of infectious diseases. I. Nature, 280, 361–7.Google ScholarPubMed
Anderson, R. M. & May, R. M. (1991). Infectious Diseases of Humans: Dynamics and Control. New York: Oxford University Press.CrossRefGoogle Scholar
Andersson, D. I. (2006). The biological cost of mutational antibiotic resistance: any practical conclusions? Current Opinion in Microbiology, 9, 461–5.CrossRefGoogle ScholarPubMed
Andersson, D. I. & Levin, B. R. (1999). The biological cost of antibiotic resistance. Current Opinion in Microbiology, 2, 489–93.CrossRefGoogle ScholarPubMed
Andrivon, D. (1994). Race structure and dynamics in populations of Phytophthora infestans. Canadian Journal of Botany, 72, 1681–7.CrossRefGoogle Scholar
Anikster, Y. (1984). The formae speciales. In Bushnell, W. R. and Roelfs, A. P., eds., The Cereal Rusts. Volume 1: Origins, Specificity, Structure, and Physiology. New York: Academic Press, pp. 115–30.Google Scholar
Antonovics, J. (2004). Long-term study of a plant-pathogen metapopulation. In Hanski, I. and Gaggiotti, O. E., eds., Ecology, Genetics, and Evolution of Metapopulations. San Diego, CA: Elsevier Academic Press, pp. 471–88.Google Scholar
Arraiano, L. S., Balaam, N., Fenwick, P. M., Chapman, C., Feuerhelm, D., Howell, P., Smith, S. J., Widdowson, J. P. & Brown, J. K. M. (2009). Contributions of disease resistance and escape to the control of septoria tritici blotch of wheat. Plant Pathology, 58, 910–22.CrossRefGoogle Scholar
Asalf, B., Gadoury, D. M., Tronsmo, A. M., Seem, R. C., Cadle-Davidson, L., Brewer, M. T. & Stensvand, A. (2013). Temperature regulates the initiation of chasmothecia in powdery mildew of strawberry. Phytopathology, 103, 717–24.CrossRefGoogle ScholarPubMed
Asalmol, M. N., Kale, V. P. & Ingle, S. T. (2001). Seedborne fungi of chilli – incidence and effect on seed germination. Seed Research, 29, 76–9.Google Scholar
Auger, S. & Payette, S. (2010). Four millennia of woodland structure and dynamics at the arctic treeline of eastern Canada. Ecology, 91, 1367–79.CrossRefGoogle ScholarPubMed
Augspurger, C. K. (1983a). Seed dispersal of the tropical tree, Platypodium elegans, and the escape of its seedlings from fungal pathogens. Journal of Ecology, 71, 759–71.CrossRefGoogle Scholar
Augspurger, C. K. (1983b). Offspring recruitment around tropical trees – changes in cohort distance with time. Oikos, 40, 189–96.CrossRefGoogle Scholar
Augspurger, C. K. (1984). Seedling survival of tropical tree species – interactions of dispersal distance, light-gaps, and pathogens. Ecology, 65, 1705–12.CrossRefGoogle Scholar
Augspurger, C. K. & Wilkinson, H. T. (2007). Host specificity of pathogenic Pythium species: implications for tree species diversity. Biotropica, 39, 702–8.CrossRefGoogle Scholar
Avila, J. M., Gallardo, A., Ibáñez, B. & Gómez-Aparicio, L. (2016). Quercus suber dieback alters soil respiration and nutrient availability in Mediterranean forests. Journal of Ecology, 104, 1441–52.CrossRefGoogle Scholar
BACC II Team (2015). Second assessment of climate change for the Baltic Sea basin. Regional climate studies. Berlin & Heidelberg: Springer Verlag.Google Scholar
Baggs, E., Dagdas, G. & Krasileva, K. V. (2017). NLR diversity, helpers and integrated domains: making sense of the NLR Identity. Current Opinion in Plant Biology, 38, 5967.CrossRefGoogle ScholarPubMed
Bagchi, R., Gallery, R. E., Gripenberg, S., Gurr, S. J., Narayan, L., Addis, C. E., Freckleton, R. P. & Lewis, O. T. (2014). Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature, 506, 85–8.CrossRefGoogle Scholar
Baghi, R., Swinfield, T., Gallery, R. E., Lewis, O. T., Gripenberg, S., Narayan, L. & Freckleton, R. P. (2010). Testing the Janzen-Connell mechanism: pathogens cause overcompensating density dependence in a tropical tree. Ecology Letters, 13, 1262–9.Google Scholar
Bakker, E. G., Toomajian, C., Kreitman, M. & Bergelson, J. (2006). A genome-wide survey of R gene polymorphisms in Arabidopsis. The Plant Cell, 18, 1803–18.CrossRefGoogle ScholarPubMed
Bally, J., Nakasugi, K., Jia, F., Jung, H., Ho, S. Y. W., Paul, C. M., Naim, F., Wood, C. C., Crowhurst, R. N., Hellens, R. P., Dale, J. L. & Waterhouse, P. M. (2015). The extremophile Nicotiana benthamiana has traded viral defence for early vigour. Nature Plants, 1, 15165. http://doi:10.1038/Nplants.2015.165.CrossRefGoogle ScholarPubMed
Barbeito, I., Brücker, R. L., Rixen, C. & Bebi, P. (2013). Snow fungi-induced mortality of Pinus cembra at the alpine treeline: evidence from plantations. Arctic, Antarctic, and Alpine Research, 45, 455–70.CrossRefGoogle Scholar
Barnes, I., Crous, P. W., Wingfield, B. D. & Wingfield, M. J. (2004). Multigene phylogenies reveal that red band needle blight of Pinus is caused by two distinct species of Dothistroma, D. septosporum and D. pini. Studies in Mycology, 50, 551–65.Google Scholar
Barnes, I., Kirists, T., Akulov, A., Chhetri, D. B., Wingfield, B. D., Bulgakov, T. S. & Wingfield, M. J. (2008). New host and country records of the Dothistroma needle blight pathogens from Europe and Asia. Forest Pathology, 38, 178–95.CrossRefGoogle Scholar
Barrett, L. G. & Heil, M. (2012). Unifying concepts and mechanisms in the specificity of plant-enemy interactions. Trends in Plant Science, 17, 282–92.CrossRefGoogle ScholarPubMed
Barrett, L. G., Thrall, P. H. & Burdon, J. J. (2007). Evolutionary diversification through hybridization in a wild plant host-pathogen interaction. Evolution, 61, 1613–21.CrossRefGoogle Scholar
Barrett, L. G., Thrall, P. H., Burdon, J. J., Linde, C. C. & Nicotra, A. B. (2008a). Population structure and diversity across sexual and asexual populations of the pathogenic fungus Melampsora lini. Molecular Ecology, 17, 3401–15.CrossRefGoogle Scholar
Barrett, L. G., Thrall, P. H., Burdon, J. J. & Linde, C. C. (2008b). Life history determines genetic structure and evolutionary potential of host-parasite interactions. Trends in Ecology & Evolution, 23, 678–85.CrossRefGoogle ScholarPubMed
Barrett, L. G., Thrall, P. H., Dodds, P. N., van der Merwe, M., Linde, C. C., Lawrence, G. J. & Burdon, J. J. (2009). Diversity and evolution of effector loci in natural populations of the plant pathogen Melampsora lini. Molecular Biology and Evolution, 26, 2499–513.CrossRefGoogle ScholarPubMed
Barrus, M. F. (1942). A disease of wheat newly recorded for this country – yellow spot disease of wheat in New York State. Plant Disease Reporter, 26, 246.Google Scholar
Bartoli, C., Frachon, L., Barret, M., Rigal, M., Huard-Chauveau, C., Mayjonade, B., Zanchetta, C., Bouchez, O., Roby, D., Carrere, S. & Roux, F. (2018). In situ relationships between microbiota and potential pathobiota in Arabidopsis thaliana. bioRχiv https://doi.org/10.1101/261602CrossRefGoogle Scholar
Barton, J., Fowler, S. V., Gianotti, A. F., Winks, C. J., de Beurs, M., Arnold, G. C. & Forrester, G. (2007). Successful biological control of mist flower (Ageratina riparia) in New Zealand: agent establishment, impact and benefits to the native flora. Biological Control, 40, 370–85.CrossRefGoogle Scholar
Bastias, D. A., Martinez-Ghersa, M. A., Ballare, C. L. & Gundel, P. E. (2017). Epichloe fungal endophytes and plant defenses: not just alkaloids. Trends in Plant Science, 22, 939–48.CrossRefGoogle Scholar
Bayandala, B., Fukasawa, Y. & Seiwa, K. (2016). Roles of pathogens on replacement of tree seedlings in heterogeneous light environments in a temperate forest: a reciprocal seed sowing experiment. Journal of Ecology, 104, 765–72.CrossRefGoogle Scholar
Bebber, D. P., Ramotowski, M. A. T. & Gurr, S. J. (2013). Crop pests and pathogens move polewards in a warming world. Nature Climate Change, 3, 985–8.CrossRefGoogle Scholar
Beckstead, J., Meyer, S. E., Ishizuka, T. S., McEvoy, K. M. & Coleman, C. E. (2016). Lack of host specialization on winter annual grasses in the fungal seed bank pathogen Pyrenophora semeniperda. PLoS ONE, 11 (3), e0151058. http://doi:10.1371/journal.pone.0151058.CrossRefGoogle ScholarPubMed
Bedimo., J. A. M., Njiayouom, I., Bieysse, D., Nkeng, M. N., Cilas, C. & Notteghem, J. L. (2008). Effect of shade on Arabica coffee berry disease development: toward an agroforestry system to reduce disease impact. Phytopathology, 98, 1320–5.CrossRefGoogle Scholar
Beenken, L., Zoller, S. & Berndt, R. (2012). Rust fungi on Annonaceae II: the genus Dasyspora Berk. and M.A. Curtis. Mycologia, 104, 659–81.CrossRefGoogle ScholarPubMed
Begley, D., McCracken, A. R., Dawson, W. M. & Watson, S. (2009). Interaction in short rotation coppice willow, Salix viminalis genotype mixtures. Biomass & Bioenergy, 33, 163–73.CrossRefGoogle Scholar
Bell, G. (1982). The Masterpiece of Nature: the Evolution and Genetics of Sexuality. Berkeley, CA: University of California Press.Google Scholar
Bell, T., Freckleton, R. P. & Lewis, O. T. (2006). Plant pathogens drive density-dependent seedling mortality in a tropical tree. Ecology Letters, 9, 569–74.CrossRefGoogle Scholar
Bellon, M. R., Dulloo, E., Sardos, J., Thormann, I. & Burdon, J. J. (2017). In-situ conservation – harnessing natural and human derived evolutionary forces to ensure future crop adaptation. Evolutionary Applications, 10, 965–77.CrossRefGoogle ScholarPubMed
Bendel, M., Kienast, F., Rigling, D. & Bugmann, H. (2006). Impact of root-rot pathogens on forest succession in unmanaged Pinus mugo stands in the Central Alps. Canadian Journal of Forest Research, 36, 2666–74.CrossRefGoogle Scholar
Bennett, J. A. & Cahill, J. F. Jr. (2016). Fungal effects on plant-plant interactions contribute to grassland plant abundances: evidence from the field. Journal of Ecology, 104, 755–64.CrossRefGoogle Scholar
Bergelson, J. (1994). The effects of genotype and the environment on costs of resistance in lettuce. The American Naturalist, 143, 349–59.CrossRefGoogle Scholar
Bergelson, J., Kreitman, M., Stahl, E. A. & Tian, D. (2001). Evolutionary dynamics of plant R-genes. Science, 292, 2281–5.CrossRefGoogle ScholarPubMed
Bergelson, J. & Purrington, C. B. (1996). Surveying patterns in the costs of resistance in plants. The American Naturalist, 148, 536–58.CrossRefGoogle Scholar
Bernhardsson, C. & Ingvarsson, P. K. (2011). Molecular population genetics of elicitor-induced resistance genes in European aspen (Populus tremula L., Salicaceae). PLoS ONE, 6 (9), e24867. http://doi:10.1371/journal.pone.0024867CrossRefGoogle ScholarPubMed
Bert, D., Lasnier, J. B., Capdevielle, X., Dugravot, A., Desprez-Loustau, M.-L. (2016). Powdery mildew decreases the radial growth of oak trees with cumulative and delayed effects over years. PLoS ONE, 11 (5), e0155344, http://doi:10.1371/journal.pone.0155344CrossRefGoogle ScholarPubMed
Bevan, J. R., Clarke, D. D. & Crute, I. R. (1993a). Resistance to Erysiphe fischeri in two populations of Senecio vulgaris. Plant Pathology, 42, 636–46.Google Scholar
Bevan, J. R., Crute, I. R. & Clarke, D. D. (1993b). Diversity and variation in expression of resistance to Erysiphe fischeri in Senecio vulgaris. Plant Pathology, 42, 647–53.Google Scholar
Bevan, J. R., Crute, I. R. & Clarke, D. D. (1993c). Variation for virulence in Erysiphe fischeri from Senecio vulgaris. Plant Pathology, 42, 622–35.Google Scholar
Bever, J. D., Mangan, S. A. & Alexander, H. M. (2015). Maintenance of plant species diversity by pathogens. Annual Review of Ecology, Evolution & Systematics, 46, 305–25.CrossRefGoogle Scholar
Bever, J. D., Platt, T. G. & Morton, E. R. (2012). Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annual Review of Microbiology, 66, 265–83.CrossRefGoogle ScholarPubMed
Billiard, S., López-Villavicencio, M., Devier, B., Hood, M. E., Fairhead, C. & Giraud, T. (2011). Having sex, yes, but with whom? Inferences from fungi on the evolution of anisogamy and mating types. Biological Reviews, 86, 421–42.CrossRefGoogle ScholarPubMed
Bingham, I. J., Walters, D. R., Foulkes, M. J. & Paveley, N. D. (2009). Crop traits and the tolerance of wheat and barley to foliar disease. Annals of Applied Biology, 154, 159–73.CrossRefGoogle Scholar
Blanquart, F., Kaltz, O., Nuismer, S. L. & Gandon, S. (2013). A practical guide to measuring local adaptation. Ecology Letters, 16, 1195–205.CrossRefGoogle ScholarPubMed
Blumenthal, D., Mitchell, C. E., Pyšek, P. & Jarošik, V. (2009). Synergy between pathogen release and resource availability in plant invasion. Proceedings of the National Academy of Sciences, USA, 106, 7899–904.CrossRefGoogle ScholarPubMed
Bock, C. H., Thrall, P. H. & Burdon, J. J. (2005). Genetic structure of populations of Alternaria brassicicola suggests the occurrence of sexual recombination. Mycological Research, 109, 227–36.CrossRefGoogle ScholarPubMed
Boecklen, W. J. & Spellenberg, R. (1990). Structure of herbivore communities in two oak hybrid zones. Oecologia, 85, 92100.CrossRefGoogle ScholarPubMed
Bonanomi, G., Mingo, A., Incerti, G., Mazzoleni, S. & Allegrezza, M. (2012). Fairy rings caused by a killer fungus foster plant diversity in species-rich grassland. Journal of Vegetation Science, 23, 236–48.CrossRefGoogle Scholar
Boone, D. M. (1971). Genetics of Venturia inaequalis. Annual Review of Phytopathology, 9, 297318.CrossRefGoogle Scholar
Boots, M. & Mealor, M. (2007). Local interactions select for lower pathogen infectivity. Science, 315, 1284–6.CrossRefGoogle ScholarPubMed
Boots, M. & Sasaki, A. (1999). ‘Small worlds’ and the evolution of virulence: infection occurs locally and at a distance. Proceedings of the Royal Society of London, B, 266, 1933–8.CrossRefGoogle ScholarPubMed
Borer, E. T., Hosseini, P. R., Seabloom, E. W. & Dobson, A. P. (2007). Pathogen-induced reversal of native dominance in a grassland community. Proceedings of the National Academy of Sciences, USA, 104, 5473–8.CrossRefGoogle Scholar
Boyko, A. & Kovalchuk, I. (2011). Genetic and epigenetic effects of plant-pathogen interactions: an evolutionary perspective. Molecular Plant, 4, 1014–23.CrossRefGoogle ScholarPubMed
Brasier, C. M. (2001). Rapid evolution of introduced plant pathogens via interspecific hybridization. Bioscience, 51, 123–33.CrossRefGoogle Scholar
Brasier, C. M. (2008). The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathology, 57, 792808.CrossRefGoogle Scholar
Brasier, C. M., Buck, K. W., Paoletti, M., Crawford, L. & Kirk, S. A. (2004a). Molecular analysis of evolutionary changes in populations of Ophiostoma novo-ulmi. Investigación Agraria: Sistemas y Recursos Forestales, 13, 93103.Google Scholar
Brasier, C. M., Cooke, D. E. L. & Duncan, J. M. (1999). Origin of a new Phytophthora pathogen through interspecific hybridization. Proceedings of the National Academy of Sciences, USA, 96, 5878–83.CrossRefGoogle ScholarPubMed
Brasier, C. M. & Kirk, S. A. (2010). Rapid emergence of hybrids between the two subspecies of Ophiostoma novo-ulmi with a high level of pathogenic fitness. Plant Pathology, 59, 186–99.CrossRefGoogle Scholar
Brasier, C. M., Kirk, S. A., Delcan, J., Jung, T. & Man In’t Veld, W. A. (2004b). Phytophthora alni sp. nov. and its variants: designation of emerging heteroploid hybrid pathogens spreading on Alnus trees. Mycological Research, 108, 1172–84.CrossRefGoogle ScholarPubMed
Brasier, C. M., Robredo, F. & Ferraz, J. F. P. (1993). Evidence for Phytophthora cinnamomi involvement in Iberian oak decline. Plant Pathology, 42, 140–5.CrossRefGoogle Scholar
Brewer, M. T., Frenkel, O. & Milgroom, M. G. (2012). Linkage disequilibrium and spatial aggregation of genotypes of sexually reproducing populations of Erysiphe necator. Phytopathology, 102, 9971005.CrossRefGoogle ScholarPubMed
Bronson, C. R. & Ellingboe, A. H. (1985). The influence of four unnecessary genes for virulence on the fitness of Erysiphe graminis f.sp. tritici. Phytopathology, 76, 154–8.Google Scholar
Brophy, L. S. & Mundt, C. C. (1991). Influence of plant spatial patterns on disease dynamics, plant competition and grain-yield in genetically diverse wheat populations. Agriculture, Ecosystems & Environment, 35, 112.CrossRefGoogle Scholar
Brown, D. J. F., Robertson, W. M. & Trudgill, D. L. (1995). Transmission of viruses by plant nematodes. Annual Review of Phytopathology, 33, 223–49.CrossRefGoogle ScholarPubMed
Brown, J. K. M. (2000). Estimation of rates of recombination and migration in populations of plant pathogens. Phytopathology, 90, 320–3.CrossRefGoogle ScholarPubMed
Brown, J. K. M. (2002). Yield penalties of disease resistance in crops. Current Opinion in Plant Biology, 5, 339–44.CrossRefGoogle ScholarPubMed
Brown, J. K. M. (2003). A cost of disease resistance: paradigm or peculiarity? Trends in Genetics, 19, 667–71.CrossRefGoogle ScholarPubMed
Brown, J. K. M. & Hovmøller, M. S. (2002). Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science, 297, 537–41.CrossRefGoogle ScholarPubMed
Brown, J. K. M., O’Dell, M., Simpson, C. G. & Wolfe, M. S. (1990). The use of DNA polymorphisms to test hypotheses about a population of Erysiphe graminis f.sp. hordei. Plant Pathology, 39, 391401.CrossRefGoogle Scholar
Brown, J. K. M. & Rant, J. C. (2013). Fitness costs and trade-offs of disease resistance and their consequences for breeding arable crops. Plant Pathology, 62 (Suppl. 1), 8395.CrossRefGoogle Scholar
Brown, J. K. M. & Tellier, A. (2011). Plant-parasite coevolution: bridging the gap between genetics and ecology. Annual Review of Phytopathology, 49, 345–67.CrossRefGoogle ScholarPubMed
Brown, J. K. M. & Wolfe, M. S. (1990). Structure and evolution of a population of Erysiphe graminis f.sp. hordei. Plant Pathology, 39, 376–90.Google Scholar
Brunet, J. & Mundt, C. C. (2000). Effects of competition on resistance gene polymorphism in a plant/pathogen system. Heredity, 85, 393400.CrossRefGoogle Scholar
Bruns, E., Carson, M. & May, G. (2012). Pathogen and host genotype differently affect pathogen fitness through their effects on different life-history stages. BMC Evolutionary Biology, 12, 135. http://www.biomedcentral.com/1471-2148/12/135CrossRefGoogle ScholarPubMed
Bruns, E., Carson, M. & May, G. (2014). The jack of all trades is master of none: a broader genotype range in a plant pathogen comes at a cost of delayed reproduction and smaller infections. Evolution, 68, 2453–66.CrossRefGoogle Scholar
Bruns, E. L., Antonovics, J., Carasso, V. & Hood, M. (2017). Transmission and temporal dynamics of anther-smut disease (Microbotryum) on alpine carnation (Dianthus pavonius). Journal of Ecology, 105, 1413–24.CrossRefGoogle Scholar
Bryner, S. F. & Rigling, D. (2011). Temperature-dependent genotype-by-genotype interaction between a pathogenic fungus and its hyperparasitic virus. The American Naturalist, 177, 6574.CrossRefGoogle ScholarPubMed
Bucheli, E., Gautschi, B. & Shykoff, J. A. (2000). Host-specific differentiation in the anther smut fungus Microbotryum violaceum as revealed by microsatellites. Journal of Evolutionary Biology, 13, 188–98.CrossRefGoogle Scholar
Buckley, J., Kilbride, E., Cevik, V., Vicente, J. G., Holub, E. B. & Mable, B. K. (2016). R-gene variation across Arabidopsis lyrata subspecies: effects of population structure, selection and mating system. BMC Evolution Biology, 16, 93. http://doi:10.1186/s12862–016–0665–5CrossRefGoogle ScholarPubMed
Bugbee, W. M., Line, R. F. & Kernkamp, M. F. (1968). Pathogenicity of progenies from selfing race 15 B and somatic and sexual crosses of races 15 B and 56 of Puccinia graminis f. sp. tritici. Phytopathology, 58, 1291–3.Google Scholar
Burdon, J.J. (1978). Mechanisms of disease control in heterogeneous plant populations–an ecologist’s view. In Scott, P. R. and Bainbridge, A., eds., Plant Disease Epidemiology. Oxford, UK: Blackwell Scientific Publications, pp. 193200.Google Scholar
Burdon, J. J. (1980). Variation in disease resistance within a population of Trifolium repens. Journal of Ecology, 68, 737–44.CrossRefGoogle Scholar
Burdon, J. J. (1982). The effect of fungal pathogens on plant communities. In Newman, E. I., ed., The Plant Community as a Working Mechanism. Oxford, UK: Blackwell Scientific Publications, pp. 99112.Google Scholar
Burdon, J. J. (1987a). Diseases and Plant Population Biology. Cambridge, UK: Cambridge University Press.Google Scholar
Burdon, J. J. (1987b). Phenotypic and genetic patterns of resistance to the pathogen Phakopsora pachyrhizi in populations of Glycine canescens. Oecologia, 73, 257–67.CrossRefGoogle Scholar
Burdon, J. J. (1991). Fungal pathogens as selective forces in plant populations and communities. Australian Journal of Ecology, 16, 423–32.CrossRefGoogle Scholar
Burdon, J. J. (1992). Host population subdivision and the genetic structure of natural pathogen populations. Advances in Plant Pathology, 8, 8194.Google Scholar
Burdon, J. J. (1993). The structure of pathogen populations in natural plant communities. Annual Review of Phytopathology, 31, 305–23.CrossRefGoogle Scholar
Burdon, J. J. (1994). The distribution and origin of genes for race specific resistance to Melampsora lini in Linum marginale. Evolution, 48, 1564–75.CrossRefGoogle ScholarPubMed
Burdon, J. J., Barrett, L. G., Rebetzke, G. & Thrall, P. H. (2014). Guiding deployment of resistance in cereals using evolutionary principles. Evolutionary Applications, 7, 609–24.CrossRefGoogle ScholarPubMed
Burdon, J. J. & Chilvers, G. A. (1982). Host density as a factor in plant disease ecology. Annual Review of Phytopathology, 20, 143–66.CrossRefGoogle Scholar
Burdon, J. J. & Elmqvist, T. (1996). Selective sieves in the epidemiology of Melampsora lini. Plant Pathology, 45, 933–43.CrossRefGoogle Scholar
Burdon, J. J., Ericson, L. & Müller, W. J. (1995). Temporal and spatial relationships in a metapopulation of the rust pathogen Triphragmium ulmariae and its host, Filipendula ulmaria. Journal of Ecology, 82, 979–89.Google Scholar
Burdon, J. J., Groves, R. H. & Cullen, J. M. (1981). The impact of biological control on the distribution and abundance of Chondrilla juncea in south-eastern Australia. Journal of Applied Ecology, 18, 957–66.CrossRefGoogle Scholar
Burdon, J. J. & Jarosz, A. M. (1992). Temporal variation in the racial structure of flax rust (Melampsora lini) populations growing on natural stands of wild flax (Linum marginale): Local versus metapopulation dynamics. Plant Pathology, 41, 165–79.CrossRefGoogle Scholar
Burdon, J. J., Jarosz, A. M. & Kirby, G. C. (1989). Pattern and patchiness in plant-pathogen interactions – its causes and consequences. Annual Review of Ecology and Systematics, 20, 119–36.CrossRefGoogle Scholar
Burdon, J. J. & Marshall, D. R. (1981). Biological control and the reproductive mode of weeds. Journal of Applied Ecology, 18, 649–58.CrossRefGoogle Scholar
Burdon, J. J., Marshall, D. R. & Luig, N. H. (1981). Isozyme analysis indicates that a virulent cereal rust pathogen is a somatic hybrid. Nature, 293, 565–6.CrossRefGoogle Scholar
Burdon, J. J., Marshall, D. R., Luig, N. H. & Gow, D. J. S. (1982). Isozyme studies on the origin and evolution of Puccinia graminis f.sp. tritici in Australia. Australian Journal of Biological Sciences, 35, 231–8.CrossRefGoogle Scholar
Burdon, J. J., Oates, J. D. & Marshall, D. R. (1983). Interactions between Avena and Puccinia species. I. The wild hosts: Avena barbata Pott ex Link, A. fatua L. and A. ludoviciana Durieu. Journal of Applied Ecology, 20, 571–85.CrossRefGoogle Scholar
Burdon, J. J. & Roberts, J. K. (1995). The population genetic structure of the rust fungus Melampsora lini as revealed by pathogenicity, isozyme and RFLP markers. Plant Pathology, 44, 270–8.CrossRefGoogle Scholar
Burdon, J. J. & Roelfs, A. P. (1985). The effect of sexual and asexual reproduction on the isozyme structure of wheat stem rust populations. Phytopathology, 75, 1068–73.CrossRefGoogle Scholar
Burdon, J. J. & Shattock, R. C. (1980). Disease in plant communities. Applied Biology, 5, 145220.Google Scholar
Burdon, J. J. & Thompson, J. N. (1995). Changed patterns of resistance in a population of Linum marginale attacked by the rust pathogen Melampsora lini. Journal of Ecology, 83, 199206.CrossRefGoogle Scholar
Burdon, J. J. & Thrall, P. H. (1999). Spatial and temporal patterns in coevolving plant and pathogen associations. The American Naturalist, 153, S15S33.CrossRefGoogle ScholarPubMed
Burdon, J. J. & Thrall, P. H. (2008). Pathogen evolution across the agro-ecological interface: implications for management. Evolutionary Applications, 1, 5765.CrossRefGoogle Scholar
Burdon, J. J. & Thrall, P. H. (2009). Coevolution of plants and their pathogens in natural habitats. Science, 324, 755–6.CrossRefGoogle ScholarPubMed
Burdon, J. J. & Thrall, P. H. (2014). What have we learned from studies of wild plant-pathogen associations? – the dynamic interplay of time, space and life-history. European Journal of Plant Pathology 138, 417–29.CrossRefGoogle Scholar
Burdon, J. J., Thrall, P. H. & Brown, A. H. D. (1999). Resistance and virulence structure in two Linum marginale - Melampsora lini host-pathogen metapopulations with different mating systems. Evolution, 53, 704–16.Google ScholarPubMed
Burdon, J. J., Thrall, P. H. & Ericson, L. (2013). Genes, communities & invasive species: understanding the ecological and evolutionary dynamics of host-pathogen interactions. Current Opinion in Plant Biology, 16, 400–5.CrossRefGoogle ScholarPubMed
Burdon, J. J., Thrall, P. H. & Lawrence, G. J. (2002). Coevolutionary patterns in the Linum marginale - Melampsora lini association at the continental scale. Canadian Journal of Botany, 80, 288–96.CrossRefGoogle Scholar
Burdon, J. J., Thrall, P. H. & Nemri, A. (2012). Approaches to understanding the impact of life-history features on plant-pathogen co-evolutionary dynamics. In Sniezko, R. A., Yanchuk, A. D., Kliejunas, J. T., Palmieri, K. M., Alexander, J. M. and Frankel, S. J., tech. cords., Proceedings of the 4th International Workshop on the Genetics of Host-Parasite Interactions in Forestry: Disease and Insect Resistance in Forest Trees. Gen. Tech. Rep. PSW-GTR-240. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture, pp. 104–11.Google Scholar
Burdon, J. J., Wennström, A., Elmqvist, T. & Kirby, G. C. (1996). The role of race specific resistance in natural plant populations. Oikos, 76, 411–16.CrossRefGoogle Scholar
Burdon, J. J., Wennström, A., Ericson, L., Müller, W. J. & Morton, R. (1992). Density-dependent mortality in Pinus sylvestris caused by the snow blight pathogen Phacidium infestans. Oecologia, 90, 74–9.CrossRefGoogle ScholarPubMed
Burke, K. L. (2012). Niche contraction of American chestnut in response to chestnut blight. Canadian Journal of Forest Research, 42, 614–20.CrossRefGoogle Scholar
Burrows, V. D. (1970). Yield and disease-escape potential of fall-sown oats possessing seed dormancy. Canadian Journal of Plant Science, 50, 371–7.CrossRefGoogle Scholar
Busby, P. E., Newcombe, G., Dirzo, R. & Whitham, T. G. (2014). Differentiating genetic and environmental drivers of plant-pathogen community interactions. Journal of Ecology, 102, 1300–9.CrossRefGoogle Scholar
Busby, P. E., Peay, K. G. & Newcombe, G. (2016). Common foliar fungi of Populus trichocarpa modify Melampsora rust disease severity. New Phytologist, 209, 1681–92.CrossRefGoogle ScholarPubMed
Busch, J. W., Neiman, M. & Koslow, J. M. (2004). Evidence for maintenance of sex by pathogens in plants. Evolution, 58, 2584–90.Google ScholarPubMed
Bushnell, W. R. (2002). The role of powdery mildew research in understanding host-parasite interaction: past, present and future. In Bélanger, R. R., Bushnell, W. R., Dik, A. J. & Carver, L. W., eds., The Powdery Mildews - a Comprehensive Treatise. St Paul, MN: The American Phytopathological Society, pp. 112.Google Scholar
Cahill, D. M., Rookes, J. E., Wilson, B. A. Gibson, L. & McDougall, K. L. (2008). Phytophthora cinnamomi and Australia’s biodiversity: impacts, predictions and progress towards control. Australian Journal of Botany, 56, 279310.CrossRefGoogle Scholar
Caicedo, A. L. (2008). Geographic diversity cline of R gene homologs in wild populations of Solanum pimpinellifolium. American Journal of Botany, 95, 393–8.CrossRefGoogle ScholarPubMed
Caicedo, A. L. & Schaal, B. A. (2004). Heterogeneous evolutionary processes affect R gene diversity in natural populations of Solanum pimpinellifolium. Proceedings of the National Academy of Sciences, USA, 101, 17444–9.CrossRefGoogle ScholarPubMed
Caldo, R. A., Nettleton, D., Peng, J. Q. & Wise, R .P. (2006). Stage-specific suppression of basal defense discriminates barley plants containing fast- and delayed-acting Mla powdery mildew resistance alleles. Molecular Plant-Microbe Interactions, 19, 939–47.CrossRefGoogle ScholarPubMed
Callaghan, T. V., Jonasson, C., Thierfelder, T., Yang, Z., Hedenås, Johansson, M., Molau, U., Van Bogaert, R., Michelsen, A., Olofsson, J., Gwynn-Jones, D., Bokhorst, S., Phoenix, G., Bjerke, J. W., Tømmervik, H., Christensen, T. R., Hanna, E., Koller, E. K. and Sloan, V. L. (2013). Ecosystem change and stability over multiple decades in the Swedish subarctic: complex processes and multiple drivers. Philosophical Transactions of the Royal Society of London B, 368, 20120488. http://doi:10.1098/rstb.20120488.CrossRefGoogle ScholarPubMed
Callaway, R. M., Montesinos, D., Williams, K. & Maron, J. L. (2013). Native congeners provide biotic resistance to invasive Potentilla through soil biota. Ecology, 94, 1223–9.CrossRefGoogle ScholarPubMed
Calonnec, A., Burie, J-B., Langlais, M., Guyader, S., Saint-Jean, S., Sache, L. & Tivoli, B. (2013). Impacts of plant growth and architecture on pathogen processes and their consequences for epidemic behaviour. European Journal of Plant Pathology, 135, 479–97.CrossRefGoogle Scholar
Calonnec, A., Goyeau, H. & de Vallavieille-Pope, C. (1996). Effects of induced resistance on infection efficiency and sporulation of Puccinia striiformis on seedlings in varietal mixtures and on field epidemics in pure stands. European Journal of Plant Pathology, 102, 733–41.CrossRefGoogle Scholar
Campbell, C. L. & Madden, L. V. (1990). Introduction to Plant Disesae Epidemiology. New York: John Wiley & Sons.Google Scholar
Capelle, J. & Neema, C. (2005). Local adaptation and population structure at a micro-geographical scale of a fungal parasite on its host plant. Journal of Evolutionary Biology, 18, 1445–54.CrossRefGoogle Scholar
Carlsson, U. & Elmqvist, T. (1992). Epidemiology of the anther smut disease (Microbotryum violaceum) and numeric regulation of populations of Silene dioica. Oecologia, 90, 509–17.CrossRefGoogle Scholar
Carlsson, U., Elmqvist, T., Wennstrom, A. & Ericson, L. (1990). Infection by pathogens and population age of host plants. Journal of Ecology, 78, 1094–105.CrossRefGoogle Scholar
Carlsson-Granér, U. (1997). Anther-smut disease in Silene dioica: variation in susceptibility among genotypes and populations and patterns of disease within populations. Evolution, 51, 1416–26.Google ScholarPubMed
Carlsson-Granér, U., Burdon, J. J. & Thrall, P. H. (1999). Host resistance and pathogen virulence across a hybrid zone. Oecologia, 121, 339–47.Google ScholarPubMed
Carlsson-Granér, U., Elmqvist, T., Ågren, J., Gardfjell, H. & Ingvarsson, P. (1998). Floral sex ratios, disease and seed set in dioecious Silene dioica. Journal of Ecology, 86, 7991.CrossRefGoogle Scholar
Carnegie, A. J. & Ades, P. K. (2005). Variation in Eucalyptus globulus Labill. and E. nitens Dean and Maiden in susceptibility of adult foliage to disease caused by Mycosphaerella cryptica (Cooke) Hansf. Silvae Genetica, 54, 174–84.CrossRefGoogle Scholar
Carnegie, A. J., Kathuria, A., Pegg, G. S., Entwistle, P., Nagel, M. & Giblin, F. R. (2016). Impact of the invasive rust Puccinia psidii (myrtle rust) on native Myrtaceae in natural ecosystems in Australia. Biological Invasions, 18, 127–44.CrossRefGoogle Scholar
Carnegie, A. J. & Lidbetter, J. R. (2012). Rapidly expanding host range for Puccinia psidii sensu lato in Australia. Australasian Plant Pathology, 41, 1329.CrossRefGoogle Scholar
Carr, D. E. & Banas, L. E. (2000). Dogwood anthracnose (Discula destructiva): Effects of and consequences of host (Cornus florida) demography. American Midland Naturalist, 143, 169–77.CrossRefGoogle Scholar
Carson, M. L. (1995). Inheritance of latent period length in maize infected with Exserohilum turcicum. Plant Disease, 79, 581–5.CrossRefGoogle Scholar
Castello, J. D., Leopold, D. J. & Smallidge, P. J. (1995). Pathogens, patterns, and processes in forest ecosystems. Bioscience, 45, 1624.CrossRefGoogle Scholar
Castlebury, L. A., Rossman, A. Y. & Hyten, A. S. (2006). Phylogenetic relationships of Neonectria/Cylindrocarpon on Fagus in North America. Canadian Journal of Botany, 84, 1417–33.Google Scholar
Catanzariti, A-M., Dodds, P. N., Lawrence, G. J., Ayliffe, M. A. & Ellis, J. G. (2006). Haustorially expressed secreted proteins from flax rust are highly enriched for avirulence elicitors. The Plant Cell, 18, 243–56.Google ScholarPubMed
Cerny, K., Gregorova, B., Strnadova, V., Holub, V., Tomsovsky, M & Cervenka, M. (2008). Phytophthora alni causing decline of black and grey alders in the Czech Republic. Plant Pathology, 57, 370.CrossRefGoogle Scholar
Chaboudez, P. & Burdon, J. J. (1995). Gene-for-gene selection in a wild plant-pathogen system. Oecologia, 102, 490–3.CrossRefGoogle Scholar
Chakraborty, S. (2013). Migrate or evolve: options for plant pathogens under climate change. Global Change Biology, 19, 19852000.CrossRefGoogle ScholarPubMed
Chakraborty, S. & Datta, S. (2003). How will plant pathogens adapt to host plant resistance at elevated CO2 under a changing climate? New Phytologist, 159, 733–42.CrossRefGoogle Scholar
Chanthorn, W., Caughlin, T., Dechkla, S. & Brockelman, W. Y. (2013). The relative importance of fungal infection, conspecific density and environmental heterogeneity for seedling survival in a dominant tropical tree. Biotropica, 45, 587–93.CrossRefGoogle Scholar
Chappell, T. M. & Rausher, M. D. (2011). Genetics of resistance to the rust fungus Coleosporium ipomoeae in three species of morning glory (Ipomoea). PLoS ONE, 6, e28875. http://doi:10.1371/journal.pone0028875.CrossRefGoogle Scholar
Chare, E. R. & Holmes, E. C. (2006). A phylogenetic survey of recombination frequency in plant RNA viruses. Archives of Virology, 151, 933–46.CrossRefGoogle ScholarPubMed
Chen, Q. H., Han, Z. X., Jiang, H. Y., Tian, D. C. & Yang, S. H. (2010). Strong positive selection drives rapid diversification of R-genes in Arabidopsis relatives. Journal of Molecular Evolution, 70, 137–48.CrossRefGoogle ScholarPubMed
Chen, W. Q., Wu, L. R., Liu, T. G., Xu, S. C., Jin, S. L., Peng, Y. L. & Wang, B. T. (2009). Race dynamics, diversity, and virulence evolution in Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust in China from 2003 to 2007. Plant Disease, 93, 10931101.CrossRefGoogle Scholar
Chin, K. M. & Wolfe, M. S. (1984). Selection on Erysiphe graminis in pure and mixed stands of barley. Plant Pathology, 33, 535–45.CrossRefGoogle Scholar
Choi, K., Reinhard, C., Serra, H., Ziolkowski, P. A., Underwood, C. J., Zhao, X., Hardcastle, T. J., Yelina, N. E., Griffin, C., Jackson, M., Mézard, C., McVean, G., Copenhaver, G. P. & Henderson, I. R. (2016). Recombination rate heterogeneity within Arabidopsis disease resistance genes. Plos Genetics, 12, e1006179. http://doi:10.1371/journal.pgen.1006179.CrossRefGoogle ScholarPubMed
Ciuffetti, L. M., Manning, V. A., Pandelova, I., Figueroa Betts, M. & Martinez, J. P. (2010). Host-selective toxins, Ptr ToxA and Ptr ToxB, as necrotrophic effectors in the Pyrenophora tritici-repentis – wheat interaction. New Phytologist, 187, 911–19.CrossRefGoogle ScholarPubMed
Cizauskas, C. A., Carlson, C. J., Burgio, K. R., Clements, C. F., Dougherty, E. R., Harris, N. C. & Phillips, A. J. (2017). Parasite vulnerability to climate change: an evidence-based functional trait approach. Royal Society Open Science, 4, (160535).CrossRefGoogle ScholarPubMed
Clark, J. A., Martin, J. H. & Stakman, E. C. (1926). Relative susceptibility of spring-wheat varieties to stem rust. US Department of Agriculture Circular, 365, 117.Google Scholar
Clarke, B. (1976). The ecological genetics of host-parasite relationships. In Taylor, A. E. R. and Muller, R., eds., Genetic Aspects of Host-Parasite Relationships. Oxford, UK: Blackwell Scientific Publications, pp. 87103.Google Scholar
Clarke, D. D. (1986). Tolerance of parasites and disease in plants and its significance in host-parasite interactions. Advances in Plant Pathology, 5, 161–97.Google Scholar
Clarke, D. D. & Akhkha, A. (2002). Population genetics of powdery mildew – natural plant pathosystems. In: Bélanger, R. R., Bushnell, W. R., Dik, A. J. and Carver, T. L. W., eds., The Powdery Mildews: a Comprehensive Treatise., St Paul, MN: American Phytopathological Society Press, pp. 200–18.Google Scholar
Clarke, D. D., Campbell, F. S. & Bevan, J. R. 1990. Genetic interactions between Senecio vulgaris and the powdery mildew fungus Erysiphe fischeri. In Burdon, J. J. and Leather, S. R., eds., Pests, Pathogens and Plant Communities. Oxford, UK: Blackwell Scientific Publications, pp. 189201.Google Scholar
Clay, K. (1995). Correlates of pathogen species richness in the grass family. Canadian Journal of Botany, 73, S42S49.CrossRefGoogle Scholar
Clay, K. & Kover, P. X. (1996). The Red Queen hypothesis and plant/pathogen interactions. Annual Review of Phytopathology, 34, 2950.CrossRefGoogle ScholarPubMed
Clifford, B. C. (1974). Relation between compatible and incompatible infection sites of Puccinia hordei on barley. Transactions of the British Mycological Society, 63, 215–20.CrossRefGoogle Scholar
Coakley, S. M., Scherm, H. & Chakraborty, S. (1999). Climate change and plant disease management. Annual Review of Phytopathology, 37, 399426.CrossRefGoogle ScholarPubMed
Cobb, R. C., Filipe, J. A. N., Meentemeyer, R. K., Gilligan, C. A. & Rizzo, D. M. (2012). Ecosystem transformation by emerging infectious disease: loss of large tanoak from California forests. Journal of Ecology, 100, 712–22.CrossRefGoogle Scholar
Cohen, R., Anikster, Y., Vintal, H., Manisterski, J. & Shtienberg, D. (2013). Overwintering and epidemiology of Puccinia dracunculina, the causal agent of rust in open tarragon fields. Plant Pathology, 62, 4148.CrossRefGoogle Scholar
Colbach, N., Lucas, P. & Meynard, J. M. (1997). Influence of crop management on take-all development and disease cycles on winter wheat. Phytopathology, 87, 2632.CrossRefGoogle ScholarPubMed
Colhoun, J. (1973). Effects of environmental factors on plant disease. Annual Review of Phytopathology, 11, 343–64.CrossRefGoogle Scholar
Colling, G. & Matthies, D. (2004). The effects of plant population size on the interactions between the endangered plant Scorzonera humilis, a specialised herbivore, and a phytopathogenic fungus. Oikos, 105, 71–8.CrossRefGoogle Scholar
Collins, N., Park, R., Spielmeyer, W., Ellis, J. & Pryor, A. J. (2001). Resistance gene analogs in barley and their relationship to rust resistance genes. Genome, 44, 375–81.CrossRefGoogle ScholarPubMed
Collins, N. C., Webb, C. A., Seah, S., Ellis, J. G., Hulbert, S. H. & Pryor, A. (1998). The isolation and mapping of disease resistance gene analogs in maize. Molecular Plant-Microbe Interactions, 11, 968–78.CrossRefGoogle ScholarPubMed
Combes, C. (2001). Parasitism: The Ecology and Evolution of Intimate Interactions. Chicago, IL: University of Chicago Press.Google Scholar
Comins, H. N., Hassel, M. P. & May, R. M. (1992). The spatial dynamics of host-parasitoid systems. Journal of Animal Ecology, 61, 735–48.CrossRefGoogle Scholar
Condeso, T. E. & Meentemeyer, R. K. (2007). Effects of landscape heterogeneity on the emerging forest disease sudden oak death. Journal of Ecology, 95, 364–75.CrossRefGoogle Scholar
Connell, J. H. (1971). On the role of natural enemies in preventing competitive exclusion in some marine animals and rainforest trees. In den Boer, P. J. and Gradwell, G. R., eds., Dynamics in Populations. Wageningen: Center for Agricultural Publishing and Documentation, pp. 298312.Google Scholar
Connolly, B. M. & Orrock, J. L. (2015). Climatic variation and seed persistence: freeze-thaw cycles lower survival via the joint action of abiotic stress and fungal pathogens. Oecologia, 179, 609–16.CrossRefGoogle Scholar
Conrath, U., Pieterse, C. M. J. & Mauch-Mani, B. (2002). Priming in plant-pathogen interactions. Trends in Plant Science, 7, 210–16.CrossRefGoogle ScholarPubMed
Cook, S. A., Copsey, A. D. & Dickman, A. W. (1989). Response of Abies to fire and Phellinus. In Bock, J. H. and Linhart, Y. B., eds., The Evolutionary Ecology of Plants. Boulder, CO: Westview Press, pp. 363–92.Google Scholar
Corwin, J. A. & Kliebenstein, D. J. (2017). Quantitative resistance: more than just perception of a pathogen. The Plant Cell, 29, 655–65.CrossRefGoogle ScholarPubMed
Costes, E., Lauri, P. E., Simon, S. & Andrieu, B. (2013). Plant architecture, its diversity and manipulation in agronomic conditions, in relation with pest and pathogen attacks. European Journal of Plant Pathology, 135, 455–70.CrossRefGoogle Scholar
Coupat-Goutaland, B., Bernillon, D., Guidot, A., Prior, P., Nesme, X. & Bertolla, F. (2011). Ralstonia solanacearum virulence increased following large interstrain gene transfers by natural transformation. Molecular Plant-Microbe Interactions, 24, 497505.CrossRefGoogle ScholarPubMed
Covert, S. F. (1998). Supernumerary chromosomes in filamentous fungi. Current Genetics, 33, 311–19.CrossRefGoogle ScholarPubMed
Cox, C. M., Garrett, K. A., Bowden, R. L., Fritz, A. K., Dendy, S. P. & Heer, W. F. (2004). Cultivar mixtures for the simultaneous management of multiple diseases: Tan spot and leaf rust of wheat. Phytopathology, 94, 961–9.CrossRefGoogle ScholarPubMed
Creissen, H. E., Jorgensen, T. H. & Brown, J. K. M. (2016). Impact of disease on diversity and productivity of plant populations. Functional Ecology, 30, 649–57.CrossRefGoogle ScholarPubMed
Crist, T. O. & Friese, C. F. (1993). The impact of fungi on soil seeds – implications for plants and granivores in a semiarid shrub-steppe. Ecology, 74, 2231–9.CrossRefGoogle Scholar
Croll, D., Lendenmann, M. H., Stewart, E. & McDonald, B. A. (2015). The impact of recombination hotspots on genome evolution of a fungal plant pathogen. Genetics, 201, 1213–28.CrossRefGoogle ScholarPubMed
Crute, I. R. (1987). The geographical distribution and frequency of virulence determinants in Bremia lactucae: relationships between genetic control and host selection. In Wolfe, M. S. and Caten, C. E., eds., Populations of Plant Pathogens: Their Dynamics and Genetics. Oxford, UK: Blackwell Scientific Publications, pp. 193212.Google Scholar
Curran, H. R., Roets, F. & Dreyer, L. L. (2009). Anther-smut fungal infection of South African Oxalis species: spatial distribution patterns and impacts on host fecundity. South African Journal of Botany, 75, 807–15.CrossRefGoogle Scholar
Dale, V. H., Joyce, L. A., McNulty, S., Neilson, R. P., Ayres, M. P., Flannigan, M. D., Hanson, P. J., Irland, L. C., Lugo, A. E., Peterson, C. J., Simberloff, D., Swanson, F. J., Stocks, B. J. & Wotton, M. (2001). Climate change and forest disturbances. BioScience, 51, 723–34.CrossRefGoogle Scholar
Damgaard, C. (1999). Coevolution of a plant host-pathogen gene-for-gene system in a metapopulation model without cost of resistance or cost of virulence. Journal of Theoretical Biology, 201, 112.CrossRefGoogle ScholarPubMed
Dangl, J. L. & Jones, J. D. (2001). Plant pathogens and integrated defence responses to infection. Nature 411, 826–33.CrossRefGoogle ScholarPubMed
Dangl, J. L. & McDowell, J. M. (2006). Two modes of pathogen recognition by plants. Proceedings of the National Academy of Sciences, USA, 103, 8575–6.CrossRefGoogle ScholarPubMed
Danquah, W. Y. & Barrett, J. A. (2002). Evidence of natural selection for disease resistance in Composite Cross Five (CCV) of barley. Genetica, 115, 195203.CrossRefGoogle ScholarPubMed
Davar, R., Darvishzadeh, R. & Majd, A. (2011). Genotype-isolate interaction for resistance to Sclerotinia sclerotiorum in sunflower. Phytopathologia Mediterranea, 50, 442–9.Google Scholar
Davelos, A. L. & Jarosz, A. M. (2004). Demography of American chestnut populations: effects of a pathogen and a hyperparasite. Journal of Ecology, 92, 675–85.CrossRefGoogle Scholar
Daverdin, G., Rouxel, T., Gout, L., Aubertot, J. N., Fudal, I., Meyer, M., Parlange, F., Carpezat, J. & Balesdent, M. H. (2012). Genome structure and reproductive behaviour influence the evolutionary potential of a fungal phytopathogen. PLoS Pathogens, 8, e1003020.CrossRefGoogle ScholarPubMed
Davis, J. J. (1919). Notes on parasitic fungi in Wisconsin – VI. Transactions of the Wisconsin Academy of Sciences, Arts and Letters, 19, 705–27.Google Scholar
Davis, S., Trapman, P., Leirs, H., Begon, M. & Heesterbeek, J. A. P. (2008). The abundance threshold for plague as a critical percolation phenomenon. Nature, 454, 634–7.CrossRefGoogle ScholarPubMed
Day, F. P. & Monk, C. D. (1974). Vegetation patterns on a southern Appalachian watershed. Ecology, 55, 1064–74.CrossRefGoogle Scholar
de Carvalho, C. R. & Mendes-Costa, M. C. (2011). Vegetative compatibility and heterokaryon formation between different isolates of Colletotrichum lindemuthianum by using the nit mutant system. Brazilian Journal of Microbiology, 42, 346–53.CrossRefGoogle Scholar
De Jonge, R., Bolton, M. D., Kombrink, A., van den Berg, G. C. M., Yadeta, K. A. & Thomma, B. P. H. J. (2014). Extensive chromosomal reshuffling drives evolution of virulence in an asexual pathogen. Genome Research, 23, 1271–82.Google Scholar
Delavaux, C. S., Smith-Ramesh, L. M. & Kuebbing, S. E. (2017). Beyond nutrients: a meta-analysis of the diverse effects of arbuscular mycorrhizal fungi on plants and soils. Ecology, 98, 2111–19.CrossRefGoogle ScholarPubMed
Delaye, L., García-Guzmán, G. & Heil, M. (2013). Endophytes versus biotrophic and necrotrophic pathogens – are fungal lifestyles evolutionarily stable traits? Fungal Diversity, 60, 125–35.CrossRefGoogle Scholar
Delmotte, F., Giresse, X., Richard-Cervera, S., M’Baya, J., Vear, F., Tourvieille, J., Walser, P. & Tourvieille de Labrouche, D. (2008). Single nucleotide polymorphisms reveal multiple introductions into France of Plasmopara halstedii, the plant pathogen causing sunflower downy mildew. Infection, Genetics and Evolution, 8, 534–40.CrossRefGoogle ScholarPubMed
de Nooij, M. P. & van Damme, J. M. M. (1988a). Variation in host susceptibility among and within populations of Plantago lanceolata L. infected by the fungus Phomopsis subordinaria (Desm.) Trav. Oecologia, 75, 535–8.CrossRefGoogle ScholarPubMed
de Nooij, M. P. & van Damme, J. M. M. (1988b). Variation in pathogenicity among and within populations of the fungus Phomopsis subordinaria infecting Plantago lanceolata. Evolution, 42, 1166–71.CrossRefGoogle ScholarPubMed
De Smet, G. M. W., Scharen, A. L. & Hockett, E. A. (1985). Conservation of powdery mildew resistance genes in three composite cross populations of barley. Euphytica, 34, 265–72.CrossRefGoogle Scholar
Desprez-Loustau, M-L., Feau, N., Mougou-Hamdane, A. & Dutech, C. (2011). Interspecific and intraspecific diversity in oak powdery mildews in Europe: coevolution history and adaptation to their hosts. Mycoscience, 52, 165–73.CrossRefGoogle Scholar
Desprez-Loustau, M.-L., Robin, C., Reynaud, G., Déqué, M., Badeau, V., Piou, D., Husson, C. & Marcais, . (2007). Simulating the effects of a climate-change scenario on the geographical range and activity of forest-pathogenic fungi. Canadian Journal of Plant Pathology, 29, 101–20.CrossRefGoogle Scholar
Dias, P. C. (1996). Sources and sinks in population biology. Trends in Ecology & Evolution, 11, 326–30.CrossRefGoogle ScholarPubMed
Diaz-Lago, J. E., Stuthman, D. D. & Abadie, T. E. (2002). Recurrent selection for partial resistance to crown rust in oat. Crop Science, 42, 1475–82.CrossRefGoogle Scholar
Dickman, A. & Cook, S. (1989). Fire and fungus in a mountain hemlock forest. Canadian Journal of Botany, 67, 2005–16.CrossRefGoogle Scholar
Didelot, F., Brun, L. & Parisi, L. (2007). Effects of cultivar mixtures on scab control in apple orchards. Plant Pathology, 56, 1014–22.CrossRefGoogle Scholar
Dinoor, A. 1970. Sources of oat crown rust resistance in hexaploid and tetraploid wild oats in Israel. Canadian Journal of Botany, 48, 153–61.CrossRefGoogle Scholar
Dobson, A. (2004). Population dynamics of pathogens with multiple host species. The American Naturalist, 164, S64S78.CrossRefGoogle ScholarPubMed
Dobson, A. & Crawley, M. (1994). Pathogens and the structure of plant communities. Trends in Ecology & Evolution, 9, 393–8.CrossRefGoogle ScholarPubMed
Dodds, P. N. (2010). Genome evolution in plant pathogens. Science, 330, 1486–7.CrossRefGoogle ScholarPubMed
Dodds, P. N., Lawrence, G. J., Catanzariti, A. M., The, T., Wang, C. I. A., Ayliffe, M. A., Kobe, B. & Ellis, J. G. (2006). Direction protein interaction underlies gene-for-gene specificity and coevolution of the flax rust resistance genes and flax rust avirulence genes. Proceedings of the National Academy of Sciences, USA, 103, 8888–93.CrossRefGoogle ScholarPubMed
Dodds, P. N., Lawrence, G. J. & Ellis, J. G. (2001). Contrasting modes of evolution acting on the complex N locus for rust resistance in flax. Plant Journal, 27, 439–53.CrossRefGoogle ScholarPubMed
Dodds, P. N. & Rathjen, J. P. (2010). Pathogen perceptions and responses in plant immunity. Nature Review Genetics, 11, 539–48.Google Scholar
Dowkiw, A. & Bastien, C. (2007). Presence of defeated qualitative resistance genes frequently has major impact on quantitative resistance to Melampsora larici-populina leaf rust in P. x interamericana hybrid poplars. Tree Genetics & Genomes, 3, 261–74.CrossRefGoogle Scholar
Duncan, M. J. & Keane, P. J. (1996). Vegetational changes associated with Phytophthora cinnamomi and its decline under Xanthorrhoea australis in Kinglake National Park, Victoria. Australian Journal of Botany, 44, 355–69.CrossRefGoogle Scholar
Durel, C. E., Parisi, L., Laurens, F., Van de Weg, W. E., Liebhard, R. & Jourjon, M. F. (2003). Genetic dissection of partial resistance to race 6 of Venturia inaequalis in apple. Genome, 46, 224–34.CrossRefGoogle ScholarPubMed
Dvorak, W. S., Potter, K. M., Hipkins, V. D. & Hodge, G. R. (2009). Genetic diversity and gene exchange in Pinus oocarpa, a Mesoamerican pine with resistance to the pitch canker fungus (Fusarium circinatum). International Journal of Plant Sciences, 170, 609–26.CrossRefGoogle Scholar
Dybdahl, M. F., Jenkins, C. E. & Nuismer, S. L. (2014). Identifying the molecular basis of host-parasite coevolution: merging models and mechanisms. The American Naturalist, 184, 113.CrossRefGoogle ScholarPubMed
Elliott, K. J. & Swank, W. T. (2008). Long-term changes in forest composition and diversity following early logging (1919–1923) and the decline of American chestnut (Castanea dentata). Plant Ecology, 197, 155–72.CrossRefGoogle Scholar
Ellis, J. G., Dodds, P. N. & Pryor, T. (2000). Structure, function and evolution of plant disease resistance genes. Current Opinion in Plant Biology, 3, 278–84.CrossRefGoogle ScholarPubMed
Ellis, J. G., Lawrence, G. J., Luck, J. E. & Dodds, P. N. (1999). Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity. Plant Cell, 1, 495–06.Google Scholar
Ellison, A. M., Banks, M. S., Clinton, B. D., Colburn, E. A., Elliott, E., Ford, C. R., Foster, D. R., Kloeppel, B. D., Knoepp, J. D., Lovett, G. M., Mohan, J., Orwig, D. A., Rodenhouse, N. L., Sobczak, W. V., Stinson, K. A., Stone, J. K., Swan, C. M., Thompson, J., Von Halle, B. & Webster, J. R. (2005). Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Frontiers in Ecology and the Environment, 3, 479–86.CrossRefGoogle Scholar
Elmqvist, T., Liu, D., Carlsson, U. & Giles, B. E. (1993). Anther-smut infection in Silene dioica: variation in floral morphology and patterns of spore deposition. Oikos, 68, 207–16.CrossRefGoogle Scholar
El-Soda, M., Malosetti, M., Zwaan, B. J., Koornneef, M. & Aarts, M. G. M. (2014). Genotype x environment interaction QTL mapping in plants: lessons from Arabidopsis. Trends in Plant Science, 19, 390–8.CrossRefGoogle Scholar
Ennos, R. A. & McConnell, K. C. (2003). Variation in host resistance and pathogen selective value in the interaction between Pinus sylvestris and the fungus Crumenulopsis sororia. Heredity, 91, 193201.CrossRefGoogle ScholarPubMed
Enserink, M. (1999). Biological invaders sweep in. Science, 285, 1834–6.CrossRefGoogle Scholar
Ericson, L. & Burdon, J. J. (2009). Linking field epidemiological and individual plant resistance patterns in the Betula pubescens – Melampsoridium betulinum host-pathogen interaction. Oikos, 118, 225–32.CrossRefGoogle Scholar
Ericson, L., Burdon, J. J. & Müller, W. J. (1999). Spatial and temporal dynamics of epidemics of the rust fungus Uromyces valerianae on populations of its host, Valeriana salina. Journal of Ecology, 87, 649–58.CrossRefGoogle Scholar
Ericson, L., Burdon, J. J. & Müller, W. J. (2002). The rust pathogen Triphragmium ulmariae as a selective force affecting its host, Filipendula ulmaria. Journal of Ecology, 90, 167–78.CrossRefGoogle Scholar
Ericson, L., Burdon, J. J. & Wennström, A. (1993). Inter-specific host hybrids and phalacrid beetles implicated in the local survival of smut pathogens. Oikos, 68, 393400.CrossRefGoogle Scholar
Ericson, L., Müller, W. J. & Burdon, J. J. (2017). 28 year temporal sequence of epidemic dynamics in a natural rust – host plant metapopulation. Journal of Ecology, 105, 701–13.CrossRefGoogle Scholar
Eriksson, O. (1996). Regional dynamics of plants: a review of evidence for remnant, source-sink and metapopulations. Oikos, 77, 248–58.CrossRefGoogle Scholar
Espiau, C., Riviere, D., Burdon, J. J., Gartner, S., Daclinat, B., Hasan, S. & Chaboudez, P. (1998). Host-pathogen diversity in a wild system: Chondrilla juncea - Puccinia chondrillina. Oecologia, 113, 133–39.Google Scholar
Estep, L. K., Sackett, K. E. & Mundt, C. C. (2014). Influential disease foci in epidemics and underlying mechanisms: a field experiment and simulations. Ecological Applications, 24, 1854–62.CrossRefGoogle ScholarPubMed
Evans, K. J. & Gomez, D. R. (2004). Genetic markers in rust fungi and their application to weed biocontrol. In Ehler, L. E., Sforza, R. and Mateille, T., eds., Genetics, Evolution and Biological Control. Wallingford, UK: CABI Publishing, pp. 7396.CrossRefGoogle Scholar
Fabre, F., Rousseau, E., Mailleret, L. & Moury, B. (2012). Durable strategies to deploy plant resistance in agricultural landscapes. New Phytologist, 193, 1064–75.CrossRefGoogle ScholarPubMed
Farr, D. F., Bills, G. F., Chamuris, G. P. & Rossman, A. Y. (1989). Fungi on Plants and Plant Products in the United States. St Paul, MN: American Phytopathological Society Press.Google Scholar
Feau, N., Lauron-Moreau, A., Piou, D., Marcais, B., Dutech, C. & Desprez-Loustau, M-L. (2012). Niche partitioning of the genetic lineages of the oak powdery mildew complex. Fungal Ecology, 5, 154–62.CrossRefGoogle Scholar
Fenton, A., Antonovics, J. & Brockhurst, M. A. (2009). Inverse gene-for-gene infection genetics and coevolutionary dynamics. The American Naturalist, 174, E230E242.CrossRefGoogle ScholarPubMed
Fenton, A., Antonovics, J. & Brockhurst, M. A. (2012). Two-step infection processes can lead to coevolution between functionally independent infection and resistance pathways. Evolution, 66, 2030–41.CrossRefGoogle ScholarPubMed
Ferrari, M. J., Du, D. Winsor, J. A. & Stephenson, A. G. (2007). Inbreeding depression of plant quality reduces incidence of an insect-borne pathogen in a wild gourd. International Journal of Plant Sciences, 168, 603–10.CrossRefGoogle Scholar
Filip, G. & Goheen, D. J. (1984). Root diseases cause severe mortality in white and grand fir stands of the Pacific NorthWest. Forest Science, 30, 138–42.Google Scholar
Finch, H., Allen, P. S. & Meyer, S. E. (2013). Environmental factors influencing Pyrenophora semeniperda-caused seed mortality in Bromus tectorum. Seed Science Research, 23, 5766.CrossRefGoogle Scholar
Finckh, M. R., Gacek, E. S., Goyeau, H., Lannou, C., Merz, U., Mundt, C. C., Munk, L., Nadziak, J., Newton, A. C., de Vallavieille-Pope, C. & Wolfe, M. S. (2000). Cereal variety and species mixtures in practice, with emphasis on disease resistance. Agronomie, 20, 813–7.CrossRefGoogle Scholar
Fisher, A. J., DiTomaso, J. M., Gordon, T. R., Aegerter, B. J. & Ayres, D. R. (2007). Salt marsh Claviceps purpurea in native and invaded Spartina marshes in northern California. Plant Disease, 91, 380–6.CrossRefGoogle ScholarPubMed
Fisher, M. C., Henk, D. A., Briggs, C. J., Brownstein, J. S., Nadoff, L. C., McCraw, S. L. & Gurr, S. J. (2012). Emerging fungal threats to animal, plant and ecosystem health. Nature, 484, 186–94.CrossRefGoogle ScholarPubMed
Fitzpatrick, D. A. (2012). Horizontal gene transfer in fungi. FEMS Microbiology Letters, 329, 18.CrossRefGoogle ScholarPubMed
Flor, H. H. (1955). Host-parasite interactions in flax rust – its genetics and other implications. Phytopathology, 45, 680–5.Google Scholar
Flor, H. H. (1956). The complementary genic systems in flax and flax rust. Advances in Genetics, 8, 2954.CrossRefGoogle Scholar
Flor, H. H. (1958). Mutation to wider virulence in Melampsora lini. Phytopathology, 48, 297301.Google Scholar
Flor, H. H. (1971). Current status of the gene-for-gene concept. Annual Review of Phytopathology, 9, 275–96CrossRefGoogle Scholar
Fox, A. K., Tuch, B. B. & Chuang, J. H. (2008). Measuring the prevalence of regional mutation rates: an analysis of silent substitutions in mammals, fungi, and insects. BMC Evolutionary Biology, 8, 186.CrossRefGoogle ScholarPubMed
Fox, J. F. (1977). Alternation and coexistence of tree species. The American Naturalist, 111, 6989.CrossRefGoogle Scholar
Foxman, B. & Rosenthal, M. (2013). Implications of the human microbiome project for epidemiology. American Journal of Epidemiology, 177, 197201.CrossRefGoogle ScholarPubMed
Frank, S. A. (1991). Ecological and genetic models of host-pathogen coevolution. Heredity, 67, 7383.CrossRefGoogle ScholarPubMed
Frank, S. A. (1992). Models of plant-pathogen coevolution. Trends in Genetics, 8, 213–19.CrossRefGoogle ScholarPubMed
Frank, S. A. (1993a). Specificity versus detectable polymorphism in host-parasite genetics. Proceedings of the Royal Society of London, B, 254, 191–7.Google ScholarPubMed
Frank, S. A. (1993b). Coevolutionary genetics of plants and pathogens. Evolutionary Ecology, 7, 4575.CrossRefGoogle Scholar
Frank, S. A. (1996a). Models of parasite virulence. Quarterly Review of Biology, 71, 3777.CrossRefGoogle ScholarPubMed
Frank, S. A. (1996b). Statistical properties of polymorphism in host-parasite genetics. Evolutionary Ecology, 10, 307–17.CrossRefGoogle Scholar
Freeman, J. S., Potts, B. M. & Vaillancourt, R. E. (2008). Few Mendelian genes underlie the quantitative response of a forest tree, Eucalyptus globulus, to a natural fungal epidemic. Genetics, 178, 563–71.CrossRefGoogle ScholarPubMed
French, J. R. & Mannion, P. D. (1975). Variability of host and pathogen in Hypoxylon canker of aspen. Canadian Journal of Botany, 53, 2740–4.CrossRefGoogle Scholar
French, J. R. & Hart, J. H. (1978). Variation in resistance of trembling aspen to Hypoxylon mammatum identified by inoculating naturally occurring clones. Phytopathology, 68, 485–9.CrossRefGoogle Scholar
Frey, B. R., Lieffers, V. J., Hogg, E. H. & Landhäusser, S. M. (2004). Predicting landscape patterns of aspen dieback: mechanisms and knowledge gaps. Canadian Journal of Forest Research, 34, 1379–90.CrossRefGoogle Scholar
Friesen, T. L., Stukenbrock, E. H., Liu, Z., Meinhardt, S., Ling, H., Faris, J. D., Rasmussen, J. B., Solomon, P. S., McDonald, B. A. & Oliver, R. P. (2006). Emergence of a new disease as a result of interspecific virulence gene transfer. Nature Genetics, 38, 953–6.CrossRefGoogle ScholarPubMed
Fritts, H. C. & Swetnam, T. W. (1989). Dendroecology: A tool for evaluating variations in past and present forest environments. Advances in Ecological Research, 19, 111–88.CrossRefGoogle Scholar
Fritz, R. S., Moulia, C. & Newcombe, G. (1999). Resistance of hybrid plants to herbivores, pathogens, and parasites. Annual Review of Ecology & Systematics, 30, 565–91.CrossRefGoogle Scholar
Fritz, R. S., Roche, B. M., Brunsfeld, S. J. & Orians, C. M. (1996). Interspecific and temporal variation in herbivore responses to hybrid willows. Oecologia, 108, 121–9.CrossRefGoogle ScholarPubMed
Furnier, G. R., Stolz, A. M., Mustaphi, R. M. & Ostry, M. E. (1999). Genetic evidence that butternut canker was recently introduced into North America. Canadian Journal of Botany, 77, 783–5.CrossRefGoogle Scholar
Gadoury, D. M. & Pearson, R. C. (1988). Initiation, development, dispersal, and survival of cleistothecia of Uncinula necator in New York vineyards. Phytopathology, 78, 1413–21.CrossRefGoogle Scholar
Gallana, M., Ryser-Degiorgis, M. P., Wahli, T. & Segner, H. (2013). Climate change and infectious diseases of wildlife: altered interactions between pathogens, vectors and hosts. Current Zoology, 59, 427–37.CrossRefGoogle Scholar
Gallo, L. A., Stephan, B. R. & Krusche, D. (1985). Genetic variation of Melampsora leaf rust resistance in progenies of crossings between and within Populus tremula and Populus tremuloides clones. Silvae Genetica, 34, 208–14.Google Scholar
Gandon, S. (2002). Local adaptation and the geometry of host-parasite coevolution. Ecology Letters 5, 246–56.CrossRefGoogle Scholar
Gandon, S., Capowiez, Y., Dubois, Y., Michalakis, Y. & Olivieri, I. (1996). Local adaptation and gene-for-gene coevolution in a metapopulation model. Proceedings of the Royal Society of London, B, 263, 1003–9.Google Scholar
Gandon, S. & Michalakis, Y. (2002). Local adaptation, evolutionary potential and host-parasite coevolution: interactions between migration, mutation, population size and generation time. Journal of Evolutionary Biology, 15, 451–62.CrossRefGoogle Scholar
Gandon, S. & Van Zandt, P. A. (1998). Local adaptation and host-parasite interactions. Trends in Ecology & Evolution, 13, 214–16.CrossRefGoogle ScholarPubMed
Garcia-Guzmán, G. & Burdon, J. J. (1997). Impact of the flower smut Ustilago cynodontis (Ustilaginaceae) on the performance of the clonal grass Cynodon dactylon (Gramineae). American Journal of Botany, 84, 1565–71.CrossRefGoogle ScholarPubMed
Garcia-Guzmán, G., Burdon, J. J., Ash, J. E. & Cunningham, R. B. (1996). Regional and local patterns in the spatial distribution of the flower-infecting smut fungus Sporisorium amphilophis in natural populations of its host Bothrichloa macra. New Phytologist, 132, 459–69.CrossRefGoogle Scholar
Garcia-Guzmán, G. & Morales, E. (2007). Life-history strategies of plant pathogens: distribution patterns and phylogenetic analysis. Ecology, 88, 589–96.CrossRefGoogle ScholarPubMed
Garcia-Guzmán, G. & Heil, M. (2014). Life histories of hosts and pathogens predict patterns in tropical fungal plant diseases. New Phytologist, 201, 1106–20.CrossRefGoogle ScholarPubMed
Gardiner, D. M., McDonald, M. C., Covarelli, L., Solomon, P. S., Rusu, A. G., Marshall, M., Kazan, K., Chakraborty, S., McDonald, B. A. & Manners, J. M. 2012. Comparative pathogenomics reveals horizontally acquired novel virulence genes in fungi infecting cereal hosts. PLoS Pathogens, 8, e1002952.CrossRefGoogle ScholarPubMed
Gardiner, D. M., Kazan, K. & Manners, J. M. (2013). Cross-kingdom gene transfer facilitates the evolution of virulence in fungal pathogens. Plant Science, 210, 151–8.CrossRefGoogle ScholarPubMed
Gardiner, D. M., Upadhyaya, N. M., Stiller, J., Ellis, J. G., Dodds, P. N., Kazan, K. & Manners, J. M. (2014). Genomic analysis of Xanthomonas translucens pathogenic on wheat and barley reveals cross-kingdom gene transfer events and diverse protein delivery systems. PLoS ONE, 9, e84995.CrossRefGoogle ScholarPubMed
Garnas, J. R., Ayres, M. P., Liebhold, A. M. & Evans, C. (2011). Subcontinental impacts of an invasive tree disease on forest structure and dynamics. Journal of Ecology, 99, 532–41.CrossRefGoogle Scholar
Garrett, K. A., Dendy, S. P., Frank, E. E., Rouse, M. N. & Travers, S. E. (2006). Climate change effects on plant disease: genomes to ecosystems. Annual Review of Phytopathology, 44, 489509.CrossRefGoogle ScholarPubMed
Garrett, K. A. & Mundt, C. C. (1999). Epidemiology in mixed host populations. Phytopathology, 89, 984990.CrossRefGoogle ScholarPubMed
Gates, L. F. (1975). Influence of sowing dates, soil amendments, and cultivars on wheat spindle streak mosaic in winter wheat. Canadian Journal of Plant Science, 55, 891–5.CrossRefGoogle Scholar
Geils, B. W., Hummer, K. E. & Hunt, R. S. (2010). White pines, Ribes, and blister rust: a review and synthesis. Forest Pathology, 40, 147–85.CrossRefGoogle Scholar
Ghaffary, S. M. T., Robert, O., Laurent, V., Lonnet, P., Margale, E., van der Lee, T. A. J., Visser, R. G. F. & Kema, G. H. J. (2011). Genetic analysis of resistance to septoria tritici blotch in the French winter wheat cultivars Balance and Apache. Theoretical & Applied Genetics, 123, 741–54.Google ScholarPubMed
Gibert, J. P., Pires, M. M., Thompson, J. N. & Guimaraes, P. R. Jr (2013). The spatial structure of antagonistic species affects coevolution in predictable ways. The American Naturalist, 182, 578–91.CrossRefGoogle ScholarPubMed
Giblin, F.R. & Carnegie, A.J. (2014). Puccinia psidii (Myrtle rust): Australian and global host lists. www.anbg.gov.au/anpc/resources/Myrtle_Rust.htmlGoogle Scholar
Gibson, G. J., Gilligan, C. A. & Kleczkowski, A. (1999). Predicting variability in biologiocan control of a plant pathogen system using stochastic models. Philosophical Transactions of the Royal Society of London, B, 266, 1743–53.Google ScholarPubMed
Gigot, C., Saint-Jean, S., Huber, L., Maumeme, C., Leconte, M., Kerhornon, B. & de Vallavieille-Pope, C. (2013). Protective effects of a wheat cultivar mixture against splash-dispersed septoria tritici blotch epidemics. Plant Pathology, 62, 1011–19.CrossRefGoogle Scholar
Gilbert, G. S. (2005). Dimensions of plant disease in tropical forests. In Burslem, D., Pinard, M. and Hartley, S., eds., Biotic Interactions in the Tropics: Their Role in Maintenance of Species Diversity. Cambridge, UK: Cambridge University Press, pp. 141–64.Google Scholar
Gilbert, G. S. & Webb, C. O. (2007). Phylogenetic signal in plant pathogen-host range. Proceedings of the National Academy of Sciences, USA, 104, 4979–83.CrossRefGoogle ScholarPubMed
Giles, B. E., Pettersson, T. M., Carlsson-Granér, U., Ingvarsson, P. K. (2006). Natural selection on floral traits of female Silene dioica by a sexually transmitted disease. New Phytologist, 169, 729–39.CrossRefGoogle ScholarPubMed
Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W. & Holt, R. D. (2010). A framework for community interactions under climate change. Trends in Ecology & Evolution, 25, 325–31.CrossRefGoogle ScholarPubMed
Giraud, T., Refrégier, , Le Gac, M., de Vienne, D. M. & Hood, M. E. 2008. Speciation in fungi. Fungal Genetics and Biology, 45, 791802.CrossRefGoogle ScholarPubMed
Goheen, D. J. & Hansen, E. M. (1993). Effects of pathogens and bark beetles on forests. In Schowalter, T. D. and Filip, G. M., eds., Beetle-Pathogen Interactions in Conifer Forests. New York: Academic Press, 175–98.Google Scholar
Goleniewski, G. & Newton, A. C. (1994). Modelling mildew spread in cereal mixtures using a nearest neighbour approach: the effect of geometrical arrangement. Plant Pathology, 43, 631–43.CrossRefGoogle Scholar
Gomulkiewicz, R., Thompson, J. N., Holt, R. D., Nuismer, S. L. & Hochberg, M. E. (2000). Hot spots, cold spots, and the geographic mosaic theory of coevolution. The American Naturalist, 156, 156–74.CrossRefGoogle ScholarPubMed
Goodwin, S. B., Smart, C. D., Sandrock, R. W., Deahl, K. L., Punja, Z. K. & Fry, W. E. (1998). Genetic change within populations of Phytophthora infestans in the United States and Canada during 1994 to 1996: Role of migration and recombination. Phytopathology, 88, 939–49.CrossRefGoogle ScholarPubMed
Goss, E. M. & Bergelson, J. (2006). Variation in resistance and virulence in the interaction between Arabidopsis thaliana and a bacterial pathogen. Evolution, 60, 1562–73.Google Scholar
Goss, E. M., Carbone, I. & Grünwald, N. J. (2009). Ancient isolation and independent evolution of the three clonal lineages of the exotic sudden oak death pathogen Phytophthora ramorum. Molecular Ecology, 18, 1161–74.CrossRefGoogle ScholarPubMed
Gottdenker, N. L., Streicker, D. G., Faust, C. L. & Carroll, C. R. (2014). Anthropogenic land use change and infectious diseases: a review of the evidence. EcoHealth, 11, 619–32.CrossRefGoogle ScholarPubMed
Grady, K. C., Kolb, T. E., Ikeda, D. H. & Whitham, T. G. (2015). A bridge too far: cold and pathogen constraints to assisted migration of riparian forests. Restoration Ecology, 23, 811–20.CrossRefGoogle Scholar
Green, G. J. (1965). Inheritance of virulence in oat stem rust on the varieties Sevnothree, Richland and White Russian. Canadian Journal of Genetics and Cytology, 7, 641–50.CrossRefGoogle Scholar
Gregory, P. H. (1968). Interpreting plant disease gradients. Annual Review of Phytopathology, 6, 189212.CrossRefGoogle Scholar
Grenfell, B. T., Bjornstad, O. N. & Kappey, J. 2001. Travelling waves and spatial hierarchies in measles epidemics. Nature, 414, 716–23.CrossRefGoogle ScholarPubMed
Groppe, K., Steinger, T., Schmid, B., Baur, B. & Boller, T. (2001). Effects of habitat fragmentation on choke disease (Epichloë bromicola) in the grass Bromus erectus. Journal of Ecology, 89, 247–55.CrossRefGoogle Scholar
Grosberg, R. K. & Hart, M. W. (2000). Mate selection and the evolution of highly polymorphic self/nonself recognition genes. Science, 289, 2111–14.CrossRefGoogle ScholarPubMed
Groth, J. V. & Person, C. O. 1977. Genetic interdependence of host and parasite in epidemics. Annals of the New York Academy of Sciences, 287, 97106.CrossRefGoogle Scholar
Grünwald, N. J., Goss, E. M. & Press, C. M. (2008). Phytophthora ramorum: a pathogen with a remarkably wide host range causing sudden oak death on oaks and ramorum blight on woody ornamentals. Molecular Plant Pathology, 9, 729–40.CrossRefGoogle ScholarPubMed
Gworek, J. R., Van der Wall, S. B. & Brussard, P. F. (2007). Changes in biotic interactions and climate determine recruitment of Jeffrey pine along an elevation gradient. Forest Ecology and Management, 239, 5768.CrossRefGoogle Scholar
Hagle, S. K., Schwandt, J. W., Johnson, T. L., Kegley, S. J., Randall, C. S., Taylor, J. T., Lockman, I. B., Sturdevant, N. J. & Marsden, M. A. (2000). Results. Succession Functions of Forest Pathogens and Insects in Northern Idaho and Western Montana. Rep. 00–11. Missoula, MT: U.S. Department of Agriculture, Forest Service, Northern Region, Forest Health Protection.Google Scholar
Haldane, J. B. S. (1949). Disease and evolution. Ricerca Scientifica, 19, 6876.Google Scholar
Hallgren, P. & Hjalten, J. (2004). Vole preference for Salix caprea, S. repens, and their F1, F2, and backcross hybrids. Oikos, 106, 61–6.CrossRefGoogle Scholar
Halliday, F. W., Heckman, R. W., Wilfahrt, P. A. & Mitchell, C. E. (2017). A multivariate test of disease risk reveals conditions leading to disease amplification. Proceedings of the Royal Society of London, B, 284, 20171340. http://doi:10.1098/rspb.2014.0522.Google ScholarPubMed
Halliday, F. W., Umbanhowar, J. & Mitchell, C. E. (2017). Interactions among symbionts operate across scales to influence parasite epidemics. Ecology Letters, 20, 1285–94.CrossRefGoogle ScholarPubMed
Hamilton, W. D. (1980). Sex versus non-sex versus parasite. Oikos, 35, 282–90.CrossRefGoogle Scholar
Hansen, E. M. & Goheen, E. M. (2000). Phellinus weirii and other native root pathogens as determinants of forest structure and process in western North America. Annual Review of Phytopathology, 38, 515–39.CrossRefGoogle ScholarPubMed
Hansen, E. M. & Lewis, K. J. (1997). Compendium of Conifer Diseases. St Paul, MN: American Phytopathological Society Press.Google Scholar
Hanski, I. (1991). Single-species metapopulation dynamics: concepts, models and observations. Biological Journal of the Linnean Society, 42, 1738.CrossRefGoogle Scholar
Hanski, I. (1994). Patch-occupancy dynamics in fragmented landscapes. Trends in Ecology & Evolution, 9, 131–5.CrossRefGoogle ScholarPubMed
Hanski, I. (1998). Metapopulation dynamics. Nature, 396, 41–9.CrossRefGoogle Scholar
Hanski, I. (1999a). Metapopulation Ecology. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Hanski, I. (1999b). Habitat connectivity, habitat continuity, and metapopulations in dynamic landscapes. Oikos, 87, 209–19.CrossRefGoogle Scholar
Hanski, I. & Gilpin, M. E. (1991). Metapopulation dynamics: brief history and conceptual domain. Biological Journal of the Linnean Society, 42, 316.CrossRefGoogle Scholar
Hanski, I. & Gilpin, M. E. (1997). Metapopulation Biology: Ecology, Genetics and Evolution. San Diego, CA: Academic Press.Google Scholar
Hanski, I. & Simberloff, D. (1997). The metapopulation approach, its history, conceptual domain, and application to conservation. In Hanski, I. and Gilpin, M. E., eds., Metapopulation Biology: Ecology, Genetics and Evolution. San Diego, CA: Academic Press, pp. 526.CrossRefGoogle Scholar
Hanson, B. M. & Weinstock, G. M. (2016). The importance of the microbiome in epidemiologic research. Annals of Epidemiology, 26, 301–5.CrossRefGoogle ScholarPubMed
Hansson, P. (1998). Susceptibility of different provenances of Pinus sylvestris, Pinus contorta and Picea abies to Gremmeniella abietina. European Journal of Forest Pathology, 28, 2132.CrossRefGoogle Scholar
Harding, K. C., Begon, M., Eriksson, A. & Wennberg, B. (2012). Increased migration in host-pathogen metapopulations can cause host extinction. Journal of Theoretical Biology, 298, 17.CrossRefGoogle ScholarPubMed
Hariri, D., Fouchard, M. & Prud’homme, H. (2001). Incidence of soil-borne wheat mosaic virus in mixtures of susceptible and resistant wheat cultivars. European Journal of Plant Pathology, 107, 625–31.Google Scholar
Harlan, J. R. (1976). Diseases as a factor in plant evolution. Annual Review of Phytopathology, 14, 3151.CrossRefGoogle Scholar
Harms, K. E., Wright, S. J., Calderón, O., Hernández, A. & Herre, A. E. (2000). Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. Nature, 404, 493–5.CrossRefGoogle Scholar
Harper, J. L. (1977). Population Biology of Plants. London, UK: Academic Press.Google Scholar
Harrison, S. (1991). Local extinction in a metapopulation context: an empirical evaluation. Biological Journal of the Linnean Society, 42, 7388.CrossRefGoogle Scholar
Harrison, S. & Hastings, A. (1996). Genetic and evolutionary consequences of metapopulation structure. Trends in Ecology & Evolution, 11, 180–3.CrossRefGoogle ScholarPubMed
Harrison, S., Murphy, D. D. & Ehrlich, P. R. (1988). Distribution of the bay checkerspot butterfly, Euphydryas editha byenis: evidence for a metapopulation model. The American Naturalist, 132, 360–82.CrossRefGoogle Scholar
Hawkes, C. V. (2007). Are invaders moving targets? The generality and persistence of advantages in size, reproduction, and enemy release in invasive plant species with time since introduction. The American Naturalist, 170, 832–43.CrossRefGoogle Scholar
Hayes, K . R. & Barry, S. C. (2008). Are there any consistent predictors of invasion success? Biological Invasions, 10, 483506.CrossRefGoogle Scholar
He, C., Rusu, A. G., Poplawski, A. M., Irwin, J. A. G. & Manners, J. M. (1998). Transfer of a supernumerary chromosome between vegetatively incompatible biotypes of the fungus Colletotrichum gloeosporioides. Genetics, 150, 1459–66.CrossRefGoogle ScholarPubMed
Helfer, S. (2014). Rust fungi and global change. New Phytologist, 201, 770–80.CrossRefGoogle ScholarPubMed
Hellard, E., Fouchet, D., Vavre, F. & Pontier, D. (2015). Parasite-parasite interactions in the wild: how to detect them? Trends in Parasitology, 31, 640–52.CrossRefGoogle Scholar
Hersh, M. H., Vilgalys, R. & Clark, J. S. (2012). Evaluating the impacts of multiple generalist fungal pathogens on temperate tree seedling survival. Ecology, 93, 511–20.CrossRefGoogle ScholarPubMed
Hess, G. R. (1994). Conservation corridors and contagious disease – a cautionary note. Conservation Biology, 8, 256–62.CrossRefGoogle Scholar
Hess, G. (1996). Disease in metapopulation models: implications for conservation. Ecology, 77, 1617–32.CrossRefGoogle Scholar
Hoegger, P. J., Heiniger, U., Holdenrieder, O. & Rigling, D. (2003). Differential transfer and dissemination of hypovirus and nuclear and mitochondrial genomes of a hypovirus-infected Cryphonectria parasitica strain after introduction into a natural population. Applied Environmental Microbiology, 69, 3767–71.CrossRefGoogle ScholarPubMed
Höckerstedt, L. M., Siren, J. P. & Laine, A-L. (2018). Effect of spatial connectivity on host resistance in a highly natural pathosystem. Journal of Evolutionary Biology, https://doi.org/10.1111/jeb.13268.CrossRefGoogle Scholar
Hoeksema, J. D. & Forde, S. E. (2008). A meta-analysis of factors affecting local adaptation between interacting species. The American Naturalist, 171, 275–90.CrossRefGoogle ScholarPubMed
Holah, J. C., Wilson, M. V. & Hansen, E. M. (1993). Effects of a native forest pathogen, Phellinus weirii, on Douglas-fir forest composition in western Oregon. Canadian Journal of Forest Research, 23, 2473–80.CrossRefGoogle Scholar
Holah, J. C., Wilson, M. V. & Hansen, E. M. (1997). Impacts of a native root-rotting pathogen on successional development of old-growth Douglas fir forests. Oecologia, 111, 429–33.CrossRefGoogle ScholarPubMed
Holmes, S. J. I. (1983). The susceptibility of agricultural grasses to pre-emergence damage caused by Fusarium culmorum and its control by fungicidal seed treatment. Grass and Forage Science 38, 209–14.CrossRefGoogle Scholar
Holyoak, M. & Lawler, S. P. (1996). Persistence of an extinction-prone predator-prey interaction through metapopulation dynamics. Ecology, 77, 1867–79.CrossRefGoogle Scholar
Hood, L. A., Swaine, M. D. & Mason, P. A. (2004). The influence of spatial patterns of damping-off disease and arbuscular mycorrhizal colonization on tree seedling establishment in Ghanaian tropical forest soil. Journal of Ecology, 92, 816–23.CrossRefGoogle Scholar
Hovmøller, M. S., Caffier, V., Jalli, M. & Vronska, O. (2000). The European barley powdery mildew virulence survey and disease nursery 1993–1999. Agronomie, 20, 729–44.CrossRefGoogle Scholar
Howles, P., Lawrence, G., Finnegan, J., McFadden, H., Ayliffe, M., Dodds, P. & Ellis, J. (2005). Autoactive alleles of the Flax L6 rust resistance gene induce non-race-specific rust resistance associated with the hypersensitive response. Molecular Plant-Microbe Interactions, 18, 570–82.CrossRefGoogle ScholarPubMed
Hsiang, T. & Chastagner, G. A. (1993). Variation in Melampsora occidentalis rust on poplars in the Pacific northwest. Canadian Journal of Plant Pathology, 15, 175–81.CrossRefGoogle Scholar
Hubbard, A., Lewis, C. M., Yoshida, K., Ramirez-Gonzalea, R. H., de Vallavieille-Pope, C., Thomas, J., Kamoun, S., Bayles, R., Uauy, C. & Saunders, D. G. O. (2015). Field pathogenomics reveals the emergence of a diverse wheat yellow rust population. Genome Biology, 16, 23. doi:10.1186/s13059-015-0590-8.CrossRefGoogle ScholarPubMed
Huber, D. M. & Watson, R. D. (1974). Nitrogen form and plant disease. Annual Review of Phytopathology, 12, 139–65.CrossRefGoogle ScholarPubMed
Huffaker, C. B. & Kennett, C. E. (1959). A ten year study of vegetation changes associated with biological control of Klamath weed. Journal of Range Management, 12, 6982.CrossRefGoogle Scholar
Hulbert, S. H. & Michelmore, R. W. (1988). DNA restriction fragment length polymorphism and somatic variation in the lettuce downy mildew fungus, Bremia lactucae. Molecular Plant-Microbe Interactions 1, 1724.CrossRefGoogle Scholar
Hulbert, S. H., Webb, C. A., Smith, S. M. & Sun, Q. (2001). Resistance gene complexes: evolution and utilization. Annual Review of Phytopathology, 39, 285312.CrossRefGoogle ScholarPubMed
Hunt, R. S. & Van Sickle, G. A. (1984). Variation in susceptibility to sweet fern rust among Pinus contorta and P. banksiana. Canadian Journal of Forestry Research, 14, 672–75.CrossRefGoogle Scholar
Husband, B. C. & Barrett, S. C. H. (1996). A metapopulation prespective in plant population biology. Journal of Ecology, 84, 461–9.CrossRefGoogle Scholar
Ibrahim, K. M. & Barrett, J. A. (1991). Evolution of mildew resistance in a hybrid bulk population of barley. Heredity, 67, 247–56.CrossRefGoogle Scholar
Inderjit, & Van der Putten, W. H. (2010). Impacts of soil microbial communities on exotic plant invasions. Trends in Ecology & Evolution, 25, 512–19.CrossRefGoogle ScholarPubMed
Inglese, S. J. & Paul, N. D. (2006). Tolerance of Senecio vulgaris to infection and disease caused by native and alien rust fungi. Phytopathology, 96, 718–26CrossRefGoogle ScholarPubMed
Ingvarsson, P. K. & Ericson, L. (1998). Spatial and temporal variation in disease levels of a floral smut (Anthracoidea heterospora) on Carex nigra. Journal of Ecology, 86, 5361.CrossRefGoogle Scholar
Intergovernmental Panel on Climate Change 2014. Climate Change 2014–Impacts, Adaptation and Vulnerability: Regional Aspects. Cambridge, UK: Cambridge University Press.Google Scholar
Inoue, Y., Vy, T. T. P., Yoshida, K., Asano, H., Mitsuoka, C., Asuke, S., Anh, V. L., Cumagun, C. J. R., Chuma, I., Terauchi, R., Kato, K., Mitchell, T., Valent, B., Farman, M. & Tosa, Y. (2017). Evolution of the wheat blast fungus through functional losses in a host specificity determinant. Science, 357, 80–3.CrossRefGoogle Scholar
Ioos, R., Andrieux, A., Marcais., B. & Frey, P. (2006). Genetic characterization of the natural hybrid species Phytophthora alni as inferred from nuclear and mitochondrial DNA analyses. Fungal Genetics and Biology, 43, 511–29.CrossRefGoogle ScholarPubMed
Irwin, J. A. G. (1976). Alternaria carthami, a seed-borne pathogen of safflower. Australian Journal of Experimental Agriculture, 16, 921–5.CrossRefGoogle Scholar
Irwin, M. E. & Thresh, J. M. (1988). Long-range aerial dispersal of cereal aphids as virus vectors in North America. Philosophical Transactions of the Royal Society of London, B, 321, 421–46.Google Scholar
Ivey, C. T. & Carr, D. E. (2005). Effects of herbivory and inbreeding on the pollinators and mating system of Mimulus guttatus (Phrymaceae). American Journal of Botany, 92, 1641–9.CrossRefGoogle ScholarPubMed
Ivors, K., Garbelotto, M., Vries, I. D. E., Ruyter-Spira, C., Te Hekkert, B., Rosenweiz, N. & Bonants, P. (2006). Microsatellite markers identify three lineages of Phytophthora ramorum in US nurseries, yet single lineages in US forest and European nursery populations. Molecular Ecology, 15, 14931505.CrossRefGoogle ScholarPubMed
Jackson, L. F., Kahler, A. L., Webster, R. K. & Allard, R. W. (1978). Conservation of scald resistance in barley composite cross populations, Phytopathology, 68, 645–50.CrossRefGoogle Scholar
Jackson, L. F., Webster, R. K., Allard, R. W. & Kahler, A. L. (1982). Genetic analysis of changes in scald resistance in barley Composite Cross V. Phytopathology, 72, 1069–72.CrossRefGoogle Scholar
Jaenike, J. (1978). An hypothesis to account for the maintenance of sex within populations. Evolutionary Theory, 3, 191–4.Google Scholar
Jamaux, I., Gelie, B. & Lamarque, C. (1995). Early stages of infection of rapeseed petals and leaves by Sclerotinia sclerotiorum revealed by scanning electron microscopy. Plant Pathology, 44, 2230.CrossRefGoogle Scholar
James, T. Y., Marino, J. A., Perfecto, I. & Vandermeera, J. (2016). Identification of putative coffee rust mycoparasites via single-molecule DNA sequencing of infected pustules. Applied and Environmental Microbiology, 82, 631–9.CrossRefGoogle ScholarPubMed
James, W. C. (1974). Assessment of plant diseases and losses. Annual Review of Phytopathology, 12, 2748.CrossRefGoogle Scholar
Janzen, D. H. (1970). Herbivores and the number of tree species in tropical forests. The American Naturalist, 104, 501–28.CrossRefGoogle Scholar
Jarosz, A. M. & Burdon, J. J. (1988). The effect of small-scale environmental changes on disease incidence and severity in a natural plant-pathogen interaction. Oecologia, 75, 278–81.CrossRefGoogle Scholar
Jarosz, A. M. & Burdon, J. J. (1990). Predominance of a single major gene for resistance to Phakopsora pachyrhizi in a population of Glycine argyrea. Heredity, 64, 347–55.CrossRefGoogle Scholar
Jarosz, A. M. & Burdon, J. J. (1991). Host-pathogen interactions in natural populations of Linum marginale and Melampsora lini: II. Local and regional variation in patterns of resistance and racial structure. Evolution, 45, 1618–27.Google ScholarPubMed
Jarosz, A. M. & Burdon, J. J. (1992). Host-pathogen interactions in natural populations of Linum marginale and Melampsora lini: III. Influence of pathogen epidemics on host survivorship and flower production. Oecologia, 89, 5361.CrossRefGoogle ScholarPubMed
Jarosz, A. M., Burdon, J. J. & Müller, W. J. (1989). Long-term effects of disease epidemics. Journal of Applied Ecology, 26, 725–33.CrossRefGoogle Scholar
Jarosz, A. M. & Levy, M. (1988). Effects of habitat and population structure on powdery mildew epidemics in experimental Phlox populations. Phytopathology, 78, 358–62.CrossRefGoogle Scholar
Jayakar, S. D. (1970). A mathematical model for interactions of gene frequencies in a parasite and its host. Theoretical Population Biology, 1, 140–64.CrossRefGoogle Scholar
Jayanth, K. P. & Ganga Visalakshy, P. N. (1966). Succession of vegetation after suppression of parthenium weed by Zygogramma bicolorata in Bangalore, India. Biological Agriculture & Horticulture, 12, 303–09.Google Scholar
Jeger, M. J. (1997). An epidemiological approach to modelling the dynamics of gene-for-gene interactions. In Crute, I. R., Holub, E. B. and Burdon, J. J., eds., The Gene-for-Gene Relationship in Plant-Parasite Interactions. Wallingford, UK: CAB International, pp. 191209.Google Scholar
Jeger, M. J., Salama, N. K. G., Shaw, M. W., van den Berg, F. & van den Bosch, F. (2014). Effects of plant pathogens on population dynamics and community composition in grassland ecosystems: two case studies. European Journal of Plant Pathology, 138, 513–27.CrossRefGoogle Scholar
Jenkyn, J. F. & Bainbridge, A. (1978). Biology and pathology of cereal powdery mildews. In Spencer, D. M., ed., The Powdery Mildews. London, UK: Academic Press, pp. 283321.Google Scholar
Jennersten, O., Nilsson, S. G. & Wastljung, U. (1983). Local plant populations as ecological islands: the infection of Viscaria vulgaris by the fungus Ustilago violacea. Oikos, 41, 391–5.CrossRefGoogle Scholar
Jensen, B. & Munk, L. (1997). Nitrogen-induced changes in colony density and spore production of Erysiphe graminis f.sp. hordei on seedlings of six spring barley cultivars. Plant Pathology, 46, 191202.CrossRefGoogle Scholar
Jiang, H. Y., Wang, C. C., Ping, L., Tian, D. C. & Yang, S. H. (2007). Pattern of LRR nucleotide variation in plant resistance genes. Plant Science, 173, 253–61.CrossRefGoogle Scholar
Jiménez-Gasco, M. M., Milgroom, M. G. & Jiménez-Díaz, R. M. (2004). Stepwise evolution of races in Fusarium oxysporum f. sp. ciceris inferred from fingerprinting with repetitive DNA sequences. Phytopathology, 94, 228–35.Google Scholar
Johannesson, H. & Stenlid, J. (2004). Nuclear reassortment between vegetative mycelia in natural populations of the basidiomycete Heterobasidion annosum. Fungal Genetics and Biology, 41, 563–70.CrossRefGoogle ScholarPubMed
Johansson, L. K. H. & Alstrom, S. (2000). Field resistance to willow leaf rust Melampsora epitea in inter- and intraspecific hybrids of Salix viminalis and S. dasyclados. European Journal of Plant Pathology, 106, 763–9.CrossRefGoogle Scholar
Johnson, B. L. & Haddad, N. M. (2011). Edge effects, not connectivity, determine the incidence and development of a foliar fungal plant disease. Ecology, 92, 1551–8.CrossRefGoogle Scholar
Johnson, L. J., Johnson, R. D., Akamatsu, H., Salamiah, A., Otani, H., Kohmoto, K. & Kodama, M. (2001). Spontaneous loss of a conditionally dispensable chromosome from the Alternaria alternata apply pathotype leads to loss of toxin production and pathogenicity. Current Genetics, 40, 6572.CrossRefGoogle Scholar
Johnson, R. (1984). A critical analysis of durable resistance. Annual Review of Phytopathology, 22, 309–30.CrossRefGoogle Scholar
Johnson, R. & Taylor, A. J. (1976). Spore yields of pathogens in investigations of the race-specificity of host resistance. Annual Review of Phytopathology, 14, 97119.CrossRefGoogle Scholar
Joly, D. L., Langor, D. W. & Hamelin, R. C. (2006). Molecular and morphological evidence for interspecific hybridization between Cronartium ribicola and C. comandrae on Pinus flexilis in southwestern Alberta. Plant Disease, 90, 1552.CrossRefGoogle Scholar
Jones, D. A., Dickinson, M. J., Balint-Kurti, P. J., Dixon, M. S. & Jones, J. D. G. (1993). Two complex resistance loci revealed in tomato by classical and RFLP mapping of the Cf-2, Cf-4, Cf-5, and Cf-9 genes for resistance to Cladosporium fulvum. Molecular Plant-Microbe Interactions, 6, 348–57.CrossRefGoogle Scholar
Jones, J. D. G. & Dangl, J. L. (2006). The plant immune system. Nature, 444, 323–9.CrossRefGoogle ScholarPubMed
Jones, R. H., Sharitz, R. R., Dixon, P. M., Segal, D. S. & Schneider, R. L. (1994). Woody plant regeneration in four floodplain forests. Ecological Monographs, 64, 345–67.CrossRefGoogle Scholar
Joosten, M. H. A. J., Cozijnsen, T. J. & De Wit, P. J. G. M. (1994). Host resistance to a fungal tomato pathogen lost by a single base-pair change in an avirulence gene. Nature, 367, 384–6.CrossRefGoogle Scholar
Jorgensen, T. H. (2012). The effect of environmental heterogeneity on RPW8-mediated resistance to powdery mildews in Arabidopsis thaliana. Annals of Botany, 109, 833–42.CrossRefGoogle ScholarPubMed
Joshi, A. K. & Chand, R. (2002). Variation and inheritance of leaf angle, and its association with spot blotch (Bipolaris sorokiniana) severity in wheat (Triticum aestivum). Euphytica, 124, 283–91.CrossRefGoogle Scholar
Jousimo, J., Tack, A. J. M., Ovaskainen, O., Mononen, T., Susi, H., Tollenaere, C. & Laine, A-L. (2014). Ecological and evolutionary effects of fragmentation on infectious disease dynamics. Science, 344, 1289–93.CrossRefGoogle ScholarPubMed
Jules, E. S., Carroll, A. L., Garcia, A. M., Steenbock, C. M. & Kauffman, M. J. (2014). Host heterogeneity influences the impact of a non-native disease invasion on populations of a foundation tree species. Ecosphere, 5, (9), 1–17.CrossRefGoogle Scholar
Jules, E. S., Kauffman, M. J., Ritts, W. D. & Carroll, A. L. (2002). Spread of an invasive pathogen over a variable landscape: a non-native root rot on Port Orford cedar. Ecology, 83, 3167–81.CrossRefGoogle Scholar
Jupe, F., Witek, K., Verweij, W., Siliwka, J., Pritchard, L., Etherington, G. J., Maclean, D., Cock, P. J., Leggett, R. M., Bryan, G. J., Cardle, L., Hein, I. & Jones, J. D. G. (2013). Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. The Plant Journal, 76, 530–44.CrossRefGoogle ScholarPubMed
Kaltz, O., Gandon, S., Michalakis, Y. & Shykoff, J. A. (1999). Local maladaptation in the anther-smut fungus Microbotryum violaceum to its host plant Silene latifolia: evidence from a cross-inoculation experiment. Evolution, 53, 395407.Google ScholarPubMed
Kaltz, O. & Shykoff, J. A. (1998). Local adaptation in host-parasite systems. Heredity, 81, 361–70.CrossRefGoogle Scholar
Kang, S., Lebrun, M. H., Farrall, L. & Valent, B. (2001). Gain of virulence caused by insertion of a Pot3 transposon in a Magnaporthe grisea virulence gene. Molecular Plant-Microbe Interactions, 14, 671–4.CrossRefGoogle Scholar
Karasov, T. L., Chae, E., Herman, J. J. & Bergelson, J. (2017). Mechanisms to mitigate the trade-off between growth and defense. The Plant Cell, 29, 666–80.CrossRefGoogle ScholarPubMed
Karasov, T. L., Horton, M. W. & Bergelson, J. (2014). Genomic variability as a driver of plant-pathogen coevolution? Current Opinion in Plant Biology, 18, 2430.CrossRefGoogle ScholarPubMed
Karlman, M. (1986). Damage to Pinus contorta in northern Sweden with special emphasis on pathogens. Studia Forestalia Suecica, 176, 142.Google Scholar
Kauffman, M. J. & Jules, E. S. (2006). Heterogeneity shapes invasion: host size and environment influence susceptibility to a nonnative pathogen Ecological Applications, 16, 166–75.CrossRefGoogle ScholarPubMed
Kawecki, T. J. & Ebert, D. (2004). Conceptual issues in local adaptation. Ecology Letters, 7, 1225–41.CrossRefGoogle Scholar
Keane, R. E., Arno, S. F., Brown, J. K. & Tomback, D. F., (1990). Modelling stand dynamics in whitebark pine (Pinus albicaulis) forests. Ecological Modelling, 51, 7395.CrossRefGoogle Scholar
Keane, R. E., Tomback, D. F., Aubry, C. A., Bower, A. D., Campbell, E. M., Cripps, C. L., Jenkins, M. B., Mahalovich, M. F., Manning, M., McKinney, S. T. & Murray, M. P. (2012). A range-wide restoration strategy for whitebark pine (Pinus albicaulis). General Technical Report RMRS-GTR-279. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station.CrossRefGoogle Scholar
Keane, R. M. & Crawley, M. J. (2002). Exotic plant invasions and the enemy release hypothesis. Trends in Ecology & Evolution, 17, 164–70.CrossRefGoogle Scholar
Kearney, B., Ronald, P. C., Dahlbeck, D. & Staskawicz, B. J. (1988). Molecular basis for evasion of plant host defence in bacterial spot disease of pepper. Nature, 332, 541–3.CrossRefGoogle Scholar
Kelly, J. D. & Vallejo, V. A. (2004). A comprehensive review of the major genes conditioning resistance to anthracnose in common bean. Horticulture Science, 39, 1196–207.Google Scholar
Kendall, K. C. & Keane, R. E. (2001). Whitebark pine decline: infection, mortality, and population trends. In Tomback, D. F., Arno, S. F. and Keane, R. E., eds., Whitebark Pine Communities: Ecology and Restoration. Washington, DC: Island Press, pp. 241–2.Google Scholar
Kermack, W. & McKendrick, A. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London, A, 115, 700–21.Google Scholar
Khalifa, M. B., Simon, V., Fakhfakh, H. & Moury, B. (2012). Tunisian Potato virus Y isolates with unnecessary pathogenicity towards pepper: support for the matching allele model in elF4E resistance-potyvirus interactions. Plant Pathology, 61, 441–7.Google Scholar
King, K. C., Delph, L. F., Jokela, J. & Lively, C. M. (2011). Coevolutionary hotspots and coldspots for host sex and parasite local adaptation in a snail-trematode interaction. Oikos, 120, 1335–40.CrossRefGoogle Scholar
King, J. N., David, A., Noshad, D. & Smith, J. (2010). A review of genetic approaches to the management of blister rust in white pines. Forest Pathology, 40, 292313.CrossRefGoogle Scholar
Kinloch, B. B., Davis, D. A. & Burton, D. (2008). Resistance and virulence interactions between two white pine species and blister rust in a 30-year field trial. Tree Genetics & Genomes, 4, 6574.CrossRefGoogle Scholar
Kinloch, B. B. & Dupper, G. E. (1999). Evidence of cytoplasmic inheritance of virulence in Cronartium ribicola to major gene resistance in sugar pine. Phytopathology, 89, 192–6.CrossRefGoogle ScholarPubMed
Kirchner, J. W. & Roy, B. A. (2001). Evolutionary implications of host-pathogen specificity: the fitness consequences of host life history traits. Evolutionary Ecology, 14, 665–92.Google Scholar
Kistler, H. C. & Miao, V. P. W. (1992). New modes of genetic change in filamentous fungi. Annual Review of Phytopathology, 30, 131–52.CrossRefGoogle ScholarPubMed
Kjær, B., Jensen, J. H., Jensen, P. & Jørgensen, J. H. (1990). Associations between three ml-o powdery mildew resistance genes and agronomic traits in barley. Euphytica, 46, 185–93.CrossRefGoogle Scholar
Kniskern, J. M., Barrett, L. G. & Bergelson, J. (2011). Maladaptation in wild populations of the generalist plant pathogen Pseudomonas syringae. Evolution, 65, 818–30.CrossRefGoogle ScholarPubMed
Kniskern, J. M. & Rausher, M. D. (2006). Major-gene resistance to the rust pathogen Coleosporium ipomoeae is common in natural populations of Ipomoea purpurea. New Phytologist, 171, 137–44.CrossRefGoogle Scholar
Knops, J. M. H., Tilman, D., Haddad, N. M., Naeem, S., Mitchell, C. E., Haarstad, J., Ritchie, M. E., Howe, K. M., Reich, P. B., Siemann, E. & Groth, J. V. (1999). Effects of plant species richness on invasion dynamics, disease outbreaks, insect abundances and diversity. Ecology Letters, 2, 286–93.CrossRefGoogle ScholarPubMed
Kobayashi, D. Y., Tamaki, S. J., Trollinger, D. J., Gold, S. & Keen, N. T. (1990). A gene from Pseudomonas syringae pv. glycinea with homology to avirulence gene D from P.s. pv. tomato but devoid of the avirulence phenotype. Molecular Plant-Microbe Interactions, 3, 103–11.CrossRefGoogle ScholarPubMed
Koella, J. C. & Restif, O. (2001). Coevolution of parasite virulence and host life history. Ecology Letters, 4, 207–14.CrossRefGoogle Scholar
Kohn, L. M. (2005). Mechanisms of fungal speciation. Annual Review of Phytopathology, 43, 279308.CrossRefGoogle ScholarPubMed
Kølster, P. & Stølen, O. (1987). Barley isolines with genes for resistance to Erysiphe graminis f.sp. hordei in the recurrent parent ‘Siri’. Crop Science, 98, 7982.Google Scholar
Kono, Y. & Daly, J. M. (1979). Characterization of the host-specific pathotoxin produced by Helminthosporium maydis, race T, affecting corn with Texas male sterile cytoplasm. Bioorganic Chemistry, 8, 391–7.CrossRefGoogle Scholar
Koricheva, J., Vehviläinen, H., Riihimäki, J., Ruohomäki, K., Kaitaniemi, P. & Ranta, H. (2006). Diversification of tree stands as a means to manage pests and diseases in boreal forests: myth or reality? Canadian Journal of Forest Research, 36, 324–36.CrossRefGoogle Scholar
Koslow, J. M. & Clay, K. (2010). Spatial and temporal patterns of rust infection on jewelweed (Impatiens capensis). International Journal of Plant Sciences, 171, 529–37.CrossRefGoogle Scholar
Kousik, C. S. & Richie, D. F. (1999). Development of bacterial spot on near-isogenic lines of bell pepper carrying gene pyramids composed of defeated major resistance genes. Phytopathology, 89, 1066–72.CrossRefGoogle ScholarPubMed
Kraaijeveld, A. R. & Godfray, H. C. J. (1999). Geographic patterns in the evolution of resistance and virulence in Drosophila and its parasitoid. The American Naturalist, 153, S61S74.CrossRefGoogle Scholar
Krasileva, K. V., Zheng, C., Leonelli, L., Goritschnig, S., Dahlbeck, D. & Staskawicz, B. J. (2011). Global analysis of Arabidopsis/downy mildew interactions reveals prevalence of incomplete resistance and rapid evolution of pathogen recognition. PLoS ONE, 6, e28765.CrossRefGoogle ScholarPubMed
Krasnov, B. R., Shenbrot, G. I., Khokhlova, I. S., Stanko, M., Morand, S. & Mouillot, D. (2015). Assembly rules of ectoparasite communities across scales: combining patterns of abiotic factors, host composition, geographic space, phylogeny and traits. Ecography, 38, 184–97.CrossRefGoogle Scholar
Krattinger, S. G., Lagudah, E. S., Spielmeyer, W., Singh, R. P., Huerta-Espino, J., McFadden, H., Bossolini, E., Selter, L. L. & Keller, B. (2009). A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science, 323, 1360–3.CrossRefGoogle ScholarPubMed
Krietman, M. & Akashi, H. (1995). Molecular evidence for natural selection. Annual Review of Ecology & Systematics, 26, 403–22.Google Scholar
Kukkonen, I. & Vatanen, E. (1968). Studies on the mechanism of infection and the imperfect stage of Anthracoidea (Ustilaginales). Annales Botanici Fennici, 5, 1016.Google Scholar
Kunin, W. E. & Gaston, K. J. (1997). The Biology of Rarity: Causes and Consequences of Rare-Common Differences. London, UK: Chapman & Hall.CrossRefGoogle Scholar
Lafferty, K. D. (2009). The ecology of climate change and infectious diseases. Ecology, 90, 888900.CrossRefGoogle ScholarPubMed
Lafferty, K. D. & Kuris, A. M. (2002). Trophic strategies, animal diversity and body size. Trends in Ecology & Evolution, 17, 507–13.CrossRefGoogle Scholar
Lagudah, E. S., Krattinger, S. G., Herrera-Foessel, S., Singh, S. P., Huerta-Espino, J., Spielmeyer, W., Brown-Guedira, G., Selter, L. L. & Keller, B. (2009). Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theoretical & Applied Genetics, 119, 889–98.CrossRefGoogle ScholarPubMed
Laine, A-L. (2004). Resistance variation within and among host populations in a plant pathogen metapopulation – implications for regional pathogen dynamics. Journal of Ecology, 92, 9901000.CrossRefGoogle Scholar
Laine, A-L. (2005). Spatial scale of local adaptation in a plant-pathogen metapopulation. Journal of Evolutionary Biology, 18, 930–8.CrossRefGoogle Scholar
Laine, A-L. (2006). Evolution of host resistance: looking for coevolutionary hotspots at small spatial scales. Proceedings of the Royal Society of London, B, 273, 267–73.Google ScholarPubMed
Laine, A-L. (2007a). Detecting local adaptation in a natural plant-pathogen metapopulation – a laboratory vs. field transplant approach. Journal of Evolutionary Biology, 20, 1665–73.CrossRefGoogle Scholar
Laine, A-L. (2007b). Pathogen fitness components and genotypes differ in their sensitivity to nutrient and temperature variation in a wild plant-pathogen association. Journal of Evolutionary Biology, 20, 2371–8.CrossRefGoogle Scholar
Laine, A-L. (2008). Temperature-mediated patterns of local adaptation in a natural plant pathogen metapopulation. Ecology Letters, 11, 327–37.CrossRefGoogle Scholar
Laine, A.-L. (2009). Role of coevolution in generating biological diversity - spatially divergent selection trajectories. Journal of Experimental Botany, 60, 2957–70.CrossRefGoogle ScholarPubMed
Laine, A-L. (2011). Context dependent effects of induced resistance in mediating subsequent infections in a plant-pathogen interaction. Evolutionary Applications, 4, 696707.CrossRefGoogle Scholar
Laine, A.-L. & Barrès, B. (2013). Epidemiological and evolutionary consequences of life-history trade-offs in pathogens. Plant Pathology, 62 (Suppl. 1), 96105.CrossRefGoogle Scholar
Laine, A-L., Burdon, J. J., Dodds, P. N. & Thrall, P. H. (2011). Spatial variation in disease resistance: from molecules to metapopulations. Journal of Ecology, 99, 96112.CrossRefGoogle ScholarPubMed
Laine, A-L., Burdon, J. J., Nemri, A. & Thrall, P. H. (2014). Host ecotype generates evolutionary and epidemiological divergence across a pathogen metapopulation. Proceedings of the Royal Society of London, B, 281, 20140522. http://doi:10.1098/rspb.2014.0522.Google ScholarPubMed
Laine, A-L. & Hanski, I. (2006). Large-scale spatial dynamics of a specialist plant pathogen in a fragmented landscape. Journal of Ecology, 94, 217–26.CrossRefGoogle Scholar
Laine, A-L. & Tellier, A. (2008). Heterogeneous selection promotes maintenance of polymorphism in host-parasite interactions. Oikos, 117, 1281–8.CrossRefGoogle Scholar
Lambrechts, L., Fellous, S. & Koella, J. C. (2006). Coevolutionary interactions between host and parasite genotypes. Trends in Parasitology, 22, 1216.CrossRefGoogle ScholarPubMed
Lannou, C., Hubert, P. & Gimeno, C. (2005). Competition and interactions among stripe rust pathotypes in wheat-cultivar mixtures. Plant Pathology, 54, 699712.CrossRefGoogle Scholar
Lannou, C., Soubeyrand, S., Frezal, L. & Chadoeuf, J. (2008). Autoinfection in wheat leaf rust epidemics. New Phytologist, 177, 1001–11.CrossRefGoogle ScholarPubMed
Lannou, C., de Vallavieille-Pope, C., Biass, C. & Goyeau, H. (1994). The efficacy of mixtures of susceptible and resistant hosts to two wheat rusts of different lesion size: controlled condition experiments and computerized simulations. Journal of Phytopathology, 140, 227–37.CrossRefGoogle Scholar
Latz, E., Eisenhauser, N., Rall, B. C., Allan, E., Roscher, C., Scheu, S. & Jousset, A. (2012). Plant diversity improves protection against soil-borne pathogens by fostering antagonistic bacterial communities. Journal of Ecology, 100, 597604.CrossRefGoogle Scholar
Lawrence, G. J., Anderson, P. A., Dodds, P. N. & Ellis, J. G. (2010). Relationships between rust resistance genes at the M locus in flax. Molecular Plant Pathology, 11, 1932.CrossRefGoogle Scholar
Lawrence, G. J., Boelen, M. G. & Pryor, A. (1988). Transmission of double-stranded RNAs in flax rust, Melampsora lini. Canadian Journal of Botany, 66, 61–6.CrossRefGoogle Scholar
Lawrence, G. J. & Burdon, J. J. (1989). Flax rust from Linum marginale: variation in a natural host-pathogen interaction. Canadian Journal of Botany, 67, 3192–8.Google Scholar
Lebeda, A., Petrzelova, I. & Maryska, Z. (2008). Structure and variation in the wild-plant pathosystem: Lactuca serriola – Bremia lactucae. European Journal of Plant Pathology, 122, 127–46.CrossRefGoogle Scholar
Lebeda, A., Sedláková, B. & Křistková, E. (2007). Temporal changes in pathogenicity structure of cucurbit powdery mildew populations. Acta Horticulturae, 731, 381–8.Google Scholar
LeBoldus, J. M., Isabel, N., Floate, K. D., Blenis, P. & Thomas, B. R. (2013). Testing the ‘hybrid susceptibility’ and ‘phenological sink’ hypotheses using the P. balsamifera – P. deltoides hybrid zone and Septoria leaf spot [Septoria musiva]. PLoS ONE, 8 (12), e84437. http://doi:10.1371/journal.pone.0084437.CrossRefGoogle Scholar
Lee, D. H., Roux, J., Wingfield, B. D. & Wingfield, M. J. (2015). Variation in growth rates and aggressiveness of naturally occurring self-fertile and self-sterile isolates of the wilt pathogen Ceratocystis albifundus. Plant Pathology, 64, 1103–9.CrossRefGoogle Scholar
Lee, D. J., Brawner, J. T. & Pegg, G. S. (2015). Screening Eucalyptus cloeziana and E. argophloia populations for resistance to Puccinia psidii. Plant Disease, 99, 71–9.CrossRefGoogle Scholar
Le Gac, M., Hood, M. E., Fournier, E. & Giraud, T. (2007). Phylogenetic evidence of host-specific cryptic species in the anther smut fungus. Evolution, 61, 1526.CrossRefGoogle Scholar
Legler, S. E., Caffi, T. & Rossi, V. (2012). A nonlinear model for temperature-dependent development of Erysiphe necator chasmothecia on grapevine leaves. Plant Pathology, 61, 96105.CrossRefGoogle Scholar
Legionnet, A., Muranty, H. & Lefèvre, F. (1999). Genetic variation of the riparian pioneer tree species Populus nigra. II. Variation in susceptibility to the foliar rust Melampsora larici-populina. Heredity, 82, 318–27.CrossRefGoogle Scholar
Leister, D. (2004). Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance genes. Trends in Genetics, 20, 116–22.CrossRefGoogle Scholar
Leonard, K. J. (1969). Selection in heterogeneous populations of Puccinia graminis f.sp. avenae. Phytopathology, 59, 1851–7.Google Scholar
Leonard, K. J. (1977). Selection pressures and plant pathogens. Annals of the New York Academy of Sciences, 287, 207–22.CrossRefGoogle Scholar
Leonard, K. J. & Czochor, R. J. (1980). Theory of genetic interactions among populations of plants and their pathogens. Annual Review of Phytopathology, 18, 237–58.CrossRefGoogle Scholar
Leonard, K. J. & Szarbo, L. J. (2005). Stem rust of small grains and grasses caused by Puccinia graminis. Molecular Plant Pathology, 6, 99111.CrossRefGoogle ScholarPubMed
Leppik, E. E. (1976). Gene centers of plants as sources of disease resistance. Annual Review of Phytopathology, 8, 323–44.Google Scholar
Leroy, T., Caffier, V., Celton, J-M., Anger, N., Durel, C-E., Lemaire, C. & Le Cam, B. (2016). When virulence originates from non-agricultural hosts: evolutionary and epidemiological consequences of introgressions following secondary contacts in Venturia inaequalis. New Phytologist, 210, 1443–52.CrossRefGoogle Scholar
Leslie, J. F. (1993). Fungal vegetative compatibility. Annual Review of Phytopathology, 31, 127–50.CrossRefGoogle ScholarPubMed
Levin, D. A. (1975). Pest pressure and recombination systems in plants. The American Naturalist, 109, 437–51.CrossRefGoogle Scholar
Levin, D. A. (1983). Polyploidy and novelty in flowering plants. The American Naturalist, 122, 125.CrossRefGoogle Scholar
Levins, R. (1969). Some demographic and genetic consequences of environmental heterogeneity for biological control. Bulletin of the Entomological Society of America, 15, 237–40.CrossRefGoogle Scholar
Levins, R. (1970). Extinction. Lectures on Mathematics in the Life Sciences, 2, 75107.Google Scholar
Levri, M. A. & Real, L. A. (1998). The role of resources and pathogens in mediating the mating system of Kalmia latifolia. Ecology, 79, 1602–9.CrossRefGoogle Scholar
Li, J., Ding, J., Zhang, W., Zhang, Y. L., Tang, P., Chen, J.-Q., Tian, D. C. & Yang, S. H. (2010). Unique evolutionary pattern of numbers of gramineous NBS-LRR genes. Molecular Genetics & Genomics, 283, 427–38.CrossRefGoogle ScholarPubMed
Li, N., Jia, S. F., Wang, X. N., Duan, X. Y., Zhou, Y. L., Wang, Z. H. & Lu, G. D. (2012). The effect of wheat mixtures on the powdery mildew disease and some yield components. Journal of Integrative Agriculture, 11, 611–20.Google Scholar
Li, Z. K., Luo, L. J., Mei, H. W., Paterson, A. H., Zhao, X. Z., Zhong, D. B., Wang, Y. P., Yu, X. Q., Zhu, L., Tabien, R., Stansel, J. W. & Ying, C. S. (1999). A “defeated” rice resistance gene acts as a QTL against a virulent strain of Xanthomonas oryzae pv. oryzae. Molecular & General Genetics, 261, 5863.CrossRefGoogle Scholar
Liang, M. X., Liu, X. B., Gilbert, G. S., Zheng, Y., Luo, S., Huang, F. M. & Yu, S. X. (2016). Adult trees cause density-dependent mortality in conspecific seedlings by regulating the frequency of pathogenic soil fungi. Ecology Letters, 19, 1448–56.CrossRefGoogle ScholarPubMed
Lilja, A., Rytkonen, A., Hantula, J., Muller, M., Parikka, P. & Kurkela, T. (2011). Introduced pathogens found on ornamentals, strawberry and trees in Finland over the past 20 years. Agricultural and Food Science, 20, 7485.CrossRefGoogle Scholar
Limpert, E., Godet, F. & Müller, K. (1999). Dispersal of cereal mildews across Europe. Agricultural and Forest Meteorology, 97, 293308.CrossRefGoogle Scholar
Linde, C. C., Zala, M. & McDonald, B. A. (2009). Molecular evidence for recent founder populations and human-mediated migration in the barley scald pathogen Rhynchosporium secalis. Molecular Phylogenetics and Evolution, 51, 454–64.CrossRefGoogle ScholarPubMed
Lion, S. & Gandon, S. (2015). Evolution of spatially structured host-parasite interactions. Journal of Evolutionary Biology, 28, 1028.CrossRefGoogle ScholarPubMed
Liu, H. & Stiling, P. (2006). Testing the enemy release hypothesis: a review and meta-analysis. Biological Invasions, 8, 1535–45.CrossRefGoogle Scholar
Liu, J. L., Hu, Y. J., Ning, Y., Jiang, N., Wu, J., Jeon, J. S., Xiao, Y. H., Liu, X. L., Dai, L. Y. & Wang, G. L. (2011). Genetic variation and evolution of the Pi9 blast resistance locus in the AA genome Oryza species. Journal of Plant Biology, 54, 294302.CrossRefGoogle Scholar
Liu, X. B., Liang, M. X., Etienne, R. S., Wang, Y. F., Staehelin, C. & Yu, S. X. (2012). Experimental evidence for a phylogenetic Janzen-Connell effect in a subtropical forest. Ecology Letters, 15, 111–18.CrossRefGoogle Scholar
Liu, Z., Bos, J. I. B., Armstrong, M., Whisson, S. C., da Cunha, L., Torto-Alalibo, T., Win, J., Avrova, A. O., Wright, F., Birch, P. R. J. & Kamoun, S. (2005). Patterns of diversifying selection in the phytotoxin-like scr74 gene family of Phytophthora infestans. Molecular Biology & Evolution, 22, 659–72.CrossRefGoogle ScholarPubMed
Lively, C. M. (1999). Migration, virulence and the geographic mosaic of adaptation by parasites. The American Naturalist, 153, S34S47.CrossRefGoogle ScholarPubMed
Lively, C. M., de Roode, J. C., Duffy, M. A., Graham, A. L. & Koskella, B. (2014). Interesting open questions in disease ecology and evolution. The American Naturalist, 184, S1S8.CrossRefGoogle ScholarPubMed
Lockhart, A., Thrall, P. H. & Antonovics, J. (1996). Sexually transmitted diseases in animals: ecological and evolutionary implications. Biological Reviews of the Cambridge Philosophical Society, 71, 415–75.CrossRefGoogle ScholarPubMed
Loo, J. (2009). Ecological impacts of non-indigenous invasive fungi as forest pathogens. Biological Invasions, 11, 8196.CrossRefGoogle Scholar
Louvett Doust, J. & Cavers, P. (1982). Sex and gender dynamics in jack-in-the-pulpit, Arisaema triphyllum (Araceae). Ecology, 63, 797808.CrossRefGoogle Scholar
Luck, J. E., Lawrence, G. J., Dodds, P. N., Shepherd, K. W. & Ellis, J. G. (2000). Regions outside of the leucine-rich repeats of flax rust resistance proteins play a role in specificity determination. Plant Cell, 12, 1367–77.CrossRefGoogle ScholarPubMed
Ludlam, J. J., Gibson, G. J., Otten, W. & Gilligan, C. A. (2012). Applications of percolation theory to fungal spread with synergy. Journal of the Royal Society Interface, 9, 949–56.CrossRefGoogle ScholarPubMed
Luig, N. H. (1978). Mutation studies in Puccinia graminis tritici. Proceedings, 5th International Wheat Genetics Symposium, New Delhi. Vol., 1, 533–9.Google Scholar
Luig, N. H. (1983). A survey of virulence genes in wheat stem rust, Puccinia graminis f.sp.tritici. Advances in Plant Breeding 11. Berlin, Germany: Verlag Paul Parey.Google Scholar
Luig, N. H. & Rajaram, S. (1972). The effect of temperature and genetic background on host gene expression and interaction to Puccinia graminis tritici. Phytopathology, 62, 1171–4.CrossRefGoogle Scholar
Luig, N. H. & Watson, I. A. (1972). The role of wild and cultivated grasses in the hybridization of formae speciales of Puccinia graminis. Australian Journal of Biological Sciences, 25, 335–42.CrossRefGoogle Scholar
Luig, N. H. & Watson, I. A. (1977). The role of barley, rye and grasses in the 1973–74 wheat stem rust epiphytotic in southern and eastern Australia. Proceedings of the Linnean Society of New South Wales, 101, 6576.Google Scholar
Luijckx, P., Fienberg, H., Duneau, D. & Ebert, D. (2013). A matching-allele model explains host resistance to parasites. Current Biology, 23, 1085–8.CrossRefGoogle ScholarPubMed
McCarthy-Neumann, S. & Kobe, R. K. (2010). Conspecific plant-soil feedbacks reduce survivorship and growth of tropical tree seedlings. Journal of Ecology 98, 396407.CrossRefGoogle Scholar
McCauley, K. J. & Cook, S. A. (1980). Phellinus weirii infestation of two mountain hemlock forests in the Oregon Cascades. Forest Science, 26, 23–9.Google Scholar
McCracken, A. R. & Dawson, W. M. (1997). Growing clonal mixtures of willow to reduce effect of Melampsora epitea var. epitea. European Journal of Forest Pathology, 27, 319–29.CrossRefGoogle Scholar
McDonald, B. A., Bellamy, B. K., Zhan, J. & Appel, D. N. (1998). The effect of an oak wilt epidemic on the genetic structure of a Texas live oak population. Canadian Journal of Botany, 76, 1900–7.CrossRefGoogle Scholar
McDonald, B. A. & Linde, C. (2002a). Pathogen population genetics, evolutionary potential, and durable resistance. Annual Review of Phytopathology, 40, 349–79.CrossRefGoogle ScholarPubMed
McDonald, B. A. & Linde, C. (2002b). The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica, 124, 163–80.CrossRefGoogle Scholar
McDonald, B. A., Zhan, J. & Burdon, J. J. (1999). Genetic Structure of Rhynchosporium secalis in Australia. Phytopathology, 89, 639–45.CrossRefGoogle ScholarPubMed
McIntire, E. J. B. & Waterway, M. J. (2002). Clonal structure and hybrid susceptibility to a smut pathogen in microscale hybrid zones of northern wetland Carex (Cyperaceae). American Journal of Botany, 89, 642–54.CrossRefGoogle ScholarPubMed
McIntosh, R. A., Wellings, C. R. & Park, R. F. (1995). Wheat Rusts: An Atlas of Resistance Genes. Melbourne, Australia: CSIRO Publications.Google Scholar
McKenzie, J. A., Whitten, M. J. & Adena, M. A. (1982). The effects of genetic background on the fitness of diazinon resistance genotypes of the Australian sheep blow fly, Lucilia cuprina. Heredity, 49, 19.CrossRefGoogle Scholar
MacLeod, A., Pautasso, M., Jeger, M. J. & Haines-Young, R. (2010). Evolution of the international regulation of plant pests and challenges for future plant health. Food Security, 2, 4970.CrossRefGoogle Scholar
MacQueen, A., Sun, X. & Bergelson, J. (2016). Genetic architecture and pleiotropy shape costs of Rps-2 mediated resistance in Arabidopsis thaliana. Nature Plants, 2, 16110. http://doi:10.1038/nplants.2016.10.CrossRefGoogle Scholar
Mago, R., Tabe, L., McIntosh, R. A., Pretorius, Z., Kota, R., Paux, E., Wicker, T., Breen, J., Lagudah, E. S., Ellis, J. G. & Spielmeyer, W. (2011). A multiple resistance locus on chromosome arm 3BS in wheat confers resistance to stem rust (Sr2), leaf rust (Lr27) and powdery mildew. Theoretical & Applied Genetics, 123, 615–23.CrossRefGoogle ScholarPubMed
Malmstrom, C. M., Hughes, C. C., Newton, L. A. & Stoner, C. J. (2005a). Virus infection in remnant native bunchgrasses from invaded California grasslands. New Phytologist, 168, 217–30.CrossRefGoogle ScholarPubMed
Malmstrom, C. M., McCullogh, A. J., Johnson, H. A. & Borer, E. T. (2005b). Invasive annual grasses indirectly increase virus incidence in California native perennial bunchgrasses. Oecologia, 145, 153–64.CrossRefGoogle ScholarPubMed
Malpica, J. M., Sacristan, S., Fraile, A. & Garcia-Arenal, F. (2006). Association and host selectivity in multi-host pathogens. PLoS ONE, 1, e41 https://doi.org/10.1371/journal.pone.0000041.CrossRefGoogle ScholarPubMed
Mangan, S. C., Schnitzer, S. A., Herre, E. A., Mack, K. M. L., Valencia, M. C., Sanchez, E. I. & Bever, J. D. (2010). Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature, 466, 752–5.CrossRefGoogle Scholar
Marçais, B. & Desprez-Loustau, M.-L. (2014). European oak powdery mildew: impact on trees, effects of environmental factors, and potential effects of climate change. Annals of Forest Science, 71, 633–42.CrossRefGoogle Scholar
Marçais, B., Dupuis, F. & Desprez-Loustau, M.-L. (1996). Modelling the influence of winter frosts on the development of the stem canker of red oak, caused by Phytophthora cinnamomi. Annals of Forest Science, 53, 369–82.Google Scholar
Marçais, B., Kavkova, M. & Desprez-Loustau, M.-L. (2009). Phenotypic variation in the phenology of ascospore production between European populations of oak powdery mildew. Annals of Forest Science, 66, 814. https://doi.org/10.1051/forest/2009077.CrossRefGoogle Scholar
Marcet-Houbem, M. & Gabaldón, T. (2010). Acquisition of prokaryotic genes by fungal genomes. Trends in Genetics, 26, 58.CrossRefGoogle Scholar
Maron, J. L., Waller, L. P., Hahn, M. A., Diaconu, A., Pal, R. W., Muller-Scharer, H., Klironomos, J. N. & Callaway, R. M. (2013). Effects of soil fungi, disturbance and propagule pressure on exotic plant recruitment and establishment at home and abroad. Journal of Ecology, 101, 924–32.CrossRefGoogle Scholar
Marshall, B., Newton, A. C. & Zhan, J. (2009). Quantitative evolution of aggressiveness of powdery mildew in a two-cultivar barley mixture. Plant Pathology, 58, 378–88.CrossRefGoogle Scholar
Martin, F. N. (2008). Mitochondrial haplotype determination in Phytophthora ramorum. Current Genetics, 54, 2334.CrossRefGoogle ScholarPubMed
Masel, A. M., He, C., Poplawski, A. M., Irwin, J. A. G. & Manners, J. M. (1996). Molecular evidence for chromosome transfer between biotypes of Colletotrichum gloeosporioides. Molecular Plant-Microbe Interactions, 9, 339–48.CrossRefGoogle Scholar
Maskell, L. C., Raybould, A. F., Cooper, J. I., Edwards, M. L. & Gray, A. J. (1999). Effects of turnip mosaic virus and turnip yellow mosaic virus on the survival, growth and reproduction of wild cabbage (Brassica oleracea). Annals of Applied Biology, 135, 401–7.CrossRefGoogle Scholar
Mattner, S. W. & Parbery, D. G. (2007). Crown rust affects plant performance and interference ability of Italian ryegrass in the post-epidemic generation. Grass & Forage Science, 62, 437–44.CrossRefGoogle Scholar
Mauricio, R., Stahl, E. A., Korves, T., Tian, D., Kreitman, M. & Bergelson, J. (2003). Natural selection for polymorphism in the disease resistance gene Rps2 of Arabidopsis thaliana. Genetics, 163, 735–46.CrossRefGoogle ScholarPubMed
May, R. M. & Anderson, R. M. (1979). Population biology of infectious diseases. II. Nature, 280, 455–61.Google ScholarPubMed
Maynard Smith, J. (1978). The Evolution of Sex. Cambridge UK: Cambridge University Press.Google Scholar
Mazé-Guilmo, E., Blanchet, S., McCoy, K. D. & Loot, G. (2016). Host dispersal as the driver of parasite genetic structure: a paradigm lost? Ecology Letters, 19, 336–47.CrossRefGoogle ScholarPubMed
Mboup, M., Bahri, B., Leconte, M., De Vallavieille-Pope, C., Kaltz, O. & Enjalbert, J. (2012). Genetic structure and local adaptation of European wheat yellow rust populations: the role of temperature-specific adaptation. Evolutionary Applications, 5, 341–52.CrossRefGoogle ScholarPubMed
Meehan, F. & Murphy, H. C. (1947). Differential phytotoxicity of metabolic by-products of Helminthosporium victoriae. Science, 106, 270–1.CrossRefGoogle ScholarPubMed
Meentemeyer, R. K., Haas, S. E. & Vaclavik, T. (2012). Landscape epidemiology of emerging infectious diseases in natural and human-altered ecosystems. Annual Review of Phytopathology, 50, 379402.CrossRefGoogle ScholarPubMed
Menardo, F., Praz, C. R., Wyder, S., Ben-David, R., Bourras, S., Matsumae, H., McNally, K. E., Parlange, F., Riba, A., Roffler, S., Schaefer, L. K., Shimizu, K. K., Valenti, L., Zbinden, H., Wicker, T. & Keller, B. (2016). Hybridization of powdery mildew strains gives rise to pathogens on novel agricultural crop species. Nature Genetics, 48, 201–5.CrossRefGoogle ScholarPubMed
Mengiste, T. (2012). Plant immunity to necrotrophs. Annual Review of Phytopathology, 50, 267–94.CrossRefGoogle ScholarPubMed
Metz, M. R., Frangioso, K. M., Wickland, A. C., Meentemeyer, R. K. & Rizzo, D. M. (2012). An emergent disease causes directional changes in forest species composition in coastal California. Ecosphere, 3, (86).CrossRefGoogle Scholar
Meyer, S. E., Nelson, D. L. & Clement, S. (2001). Evidence for resistance polymorphism in the Bromus tectorum/Ustilago bullata pathosystem: implications for biocontrol. Canadian Journal of Plant Pathology, 23, 1927.CrossRefGoogle Scholar
Meyer, S. E., Nelson, D. L., Clement, S. & Ramakrishnan, A. (2010). Ecological genetics of the Bromus tectorum (Poaceae) – Ustilago bullata (Ustilaginaceae) pathosystem: a role for frequency-dependent selection? American Journal of Botany, 97, 1304–12.CrossRefGoogle ScholarPubMed
Meyer, S. E., Quinney, D., Nelson, D. L. & Weaver, J. (2007). Impact of the pathogen Pyrenophora semeniperda on Bromus tectorum seedbank dynamics in North American cold deserts. Weed Research, 47, 5462.CrossRefGoogle Scholar
Meyer, S. E., Stewart, T. E. & Clement, S. (2010). The quick and the deadly: growth vs virulence in a seed bank pathogen. New Phytologist, 187, 209–16.CrossRefGoogle Scholar
Meyers, B. C., Kaushik, S. & Nandety, R. S. (2005). Evolving disease resistance genes. Current Opinion in Plant Biology, 8, 129–34.CrossRefGoogle ScholarPubMed
Meyers, B. C., Shen, K., Rohani, P., Gaut, B. S. & Michelmore, R. W. (1998). Receptor-like genes in the major resistance locus of lettuce are subject to divergent selection. The Plant Cell, 11, 1833–46.Google Scholar
Mideo, N., Alizon, S. & Day, T. (2008). Linking within- and between-host dynamics in the evolutionary epidemiology of infectious diseases. Trends in Ecology & Evolution, 23, 511–17.CrossRefGoogle ScholarPubMed
Mikaberidze, A., Mundt, C. C. & Bonhoeffer, S. (2016). Invasiveness of plant pathogens depends on the spatial scale of host distribution. Ecological Applications, 26, 1238–48.CrossRefGoogle ScholarPubMed
Milgroom, M. G. (1996). Recombination and the multilocus structure of fungal populations. Annual Review of Phytopathology, 34, 457–77.CrossRefGoogle ScholarPubMed
Milgroom, M. G. & Cortesi, P. (2004). Biological control of Chestnut blight with hypovirulence: a critical analysis. Annual Review of Phytopathology, 42, 311–38.CrossRefGoogle ScholarPubMed
Milgroom, M. G. & Peever, T. L. (2003). Population biology of plant pathogens. The synthesis of plant disease epidemiology and population genetics. Plant Disease, 87, 608–67.CrossRefGoogle ScholarPubMed
Miller, J. S., Johnson, D. A. & Hamm, P. B. (1998). Aggressiveness of isolates of Phytophthora infestans from the Columbia basin of Washington and Oregon. Phytopathology, 88, 190–7.CrossRefGoogle ScholarPubMed
Miller, M. R., White, A. & Boots, M. (2007). Host life span and the evolution of resistance characteristics. Evolution, 61, 214.CrossRefGoogle ScholarPubMed
Miller, Z. J. (2012). Fungal pathogen species richness: why do some plant species have more pathogens than others? The American Naturalist, 179, 282–92.CrossRefGoogle ScholarPubMed
Mills, K. E. & Bever, J. D. (1998). Maintenance of diversity within plant communities: soil pathogens as agents of negative feedback. Ecology 79, 15951601.CrossRefGoogle Scholar
Mink, G. I. (1993). Pollen- and seed-transmitted viruses and viroids. Annual Review of Phytopathology, 31, 375402.CrossRefGoogle ScholarPubMed
Miot, S., Frey, P. & Pinon, J. (1999). Varietal mixture of poplar clones: effects on infection by Melampsora larici-populina and on plant growth. European Journal of Forest Pathology, 29, 411–23.CrossRefGoogle Scholar
Mitchell, C. E., Blumenthal, D., Jarosik, V., Puckett, E. E. & Pysek, P. (2010). Controls on pathogen species richness in plants’ introduced and native ranges: roles of residence time, range size and host traits. Ecology Letters, 13, 1525–35.CrossRefGoogle ScholarPubMed
Mitchell, C. E. & Power, A. G. (2003). Release of invasive plants from fungal and viral pathogens. Nature, 421, 625–7.CrossRefGoogle ScholarPubMed
Mitchell, C. E., Reich, P. B., Tilman, D. & Groth, J. V. (2003). Effects of elevated C02, nitrogen deposition, and decreased species diversity on foliar fungal plant disease. Global Change Biology, 9, 438–51.CrossRefGoogle Scholar
Mitchell, C. E., Tilman, D. & Groth, J. V. (2002). Effects of grassland plant species diversity, abundance and composition on foliar fungal disease. Ecology, 83, 1713–26.CrossRefGoogle Scholar
Mohammed, Y. & Sangchote, S. (2007). Survival and transmission of Colletotrichum lindemuthianum from naturally infected common bean seeds to the seedlings. Tropical Science, 47, 96103.Google Scholar
Moller, K. & Reents, H .J. (2007). Impact of agronomic strategies (seed tuber pre-sprouting, cultivar choice) to control late blight (Phytophthora infestans) on tuber growth and yield in organic potato (Solanum tuberosum L.) crops. Potato Research, 50, 1529.CrossRefGoogle Scholar
Mondragón-Palomino, M., Meyers, B. C., Michelmore, R. W. & Gaut, B. S. (2002). Patterns of positive selection in the complete NBS-LRR gene family of Arabidopsis thaliana. Genome Research, 12, 1305–15.CrossRefGoogle ScholarPubMed
Montarry, J., Corbiere, R. & Andrivon, D. (2007). Is there a trade-off between aggressiveness and overwinter survival in Phytophthora infestans? Functional Ecology, 21, 603–10.CrossRefGoogle Scholar
Montarry, J., Hamelin, F. M., Glais, I., Corbi, R. & Andrivon, D. (2010). Fitness costs associated with unnecessary virulence factors and life history traits: evolutionary insights from the potato late blight pathogen Phytophthora infestans. BMC Evolutionary Biology, 10, 283.CrossRefGoogle ScholarPubMed
Moore, S. M. & Borer, E. T. (2012). The influence of host diversity and composition on epidemiological patterns at multiple spatial scales. Ecology, 93, 1095–105.CrossRefGoogle ScholarPubMed
Morin, L., van der Merwe, M., Hartley, D. & Müller, P. (2009). Putative natural hybrid between Puccinia lagenophorae and an unknown rust fungus on Senecio madagascariensis in KwaZulu-Natal, South Africa. Mycological Research, 113, 725–6.CrossRefGoogle Scholar
Moritz, K. K., Björkman, C., Parachnowitsch, A. L. & Stenberg, J. A. (2016). Female Salix viminalis are more severely infected by Melampsora spp. but neither sex experiences associational effects. Ecology & Evolution, 6, 1154–62.CrossRefGoogle ScholarPubMed
Morran, L. T., Schmidt, O. G., Gelarden, I. A., Parrish, R. C. & Lively, C. M. (2011). Running with the Red Queen: host-parasite coevolution selects for biparental sex. Science, 333, 216–18.CrossRefGoogle ScholarPubMed
Mostowy, R., Engelstädter, J. & Salathé, M. (2012). Non-genetic inheritance and the patterns of antagonistic coevolution. BMC Evolutionary Biology, 12, 93.CrossRefGoogle ScholarPubMed
Mougou-Hamdane, A., Giresse, X., Dutech, C. & Desprez-Loustau, M.-L. (2010). Spatial distribution of lineages of oak powdery mildew fungi in France, using quick molecular detection methods. Annals of Forest Science, 67, 212. https://doi.org/10.1051/forest/2009105CrossRefGoogle Scholar
Mueller, K-J. (2006). Susceptibility of German spring barley cultivars to loose smut populations from different European origins. European Journal of Plant Pathology, 116, 145–53.CrossRefGoogle Scholar
Müller, D. B., Vogel, C., Bai, Y. & Vorholt, J. A. (2016). The plant microbiota: systems-level insights and perspectives. Annual Review of Genetics, 50, 211–34.CrossRefGoogle Scholar
Mundt, C. C. (2002). Use of multiline cultivars and cultivar mixtures for disease management. Annual Review of Phytopathology, 40, 381410.CrossRefGoogle ScholarPubMed
Mundt, C. C. (2009). Importance of autoinfection to the epidemiology of polycyclic foliar disease. Phytopathology, 99, 1116–20.CrossRefGoogle Scholar
Mundt, C. C., Brophy, L. S. & Schmitt, M. S. (1995). Disease severity and yield of pure-line wheat cultivars and mixtures in the presence of eyespot, yellow rust, and their combination. Plant Pathology, 44, 173–82.CrossRefGoogle Scholar
Mundt, C. C. & Browning, J. A. (1985). Development of crown rust epidemics in genetically diverse oat populations: effect of genotype unit area. Phytopathology, 75, 607–10.Google Scholar
Mundt, C. C. & Leonard, K. (1985). Effect of host genotype unit area on epidemic development of crown rust following focal and general inoculations of mixtures of immune and susceptible oat plants. Phytopathology, 75, 1141–5.Google Scholar
Mundt, C. C. & Leonard, K. (1986). Effect of host genotype unit area on development of focal epidemics of bean rust and common maize rust in mixtures of resistant and susceptible plants. Phytopathology, 76, 895900.CrossRefGoogle Scholar
Muona, O., Allard, R. W. & Webster, R. K. (1984). Evolution of disease resistance and quantitative characters in barley composite cross II – independent or correlated. Hereditas, 101, 143–8.Google Scholar
Murray, B. R., Thrall, P. H., Gill, A. M. & Nicotra, A. B. (2002). How plant life-history and ecological traits relate to species rarity and commonness at varying spatial scales. Austral Ecology, 27, 291310.CrossRefGoogle Scholar
Mursinoff, S. & Tack, A. J. M. (2017). Spatial variation in soil biota mediates plant adaptation to a foliar pathogen. New Phytologist, 214, 644–54.CrossRefGoogle ScholarPubMed
Mussell, H. (1980). Tolerance to disease. In Horsfall, J. G. and Cowling, E. B., eds., Plant Disease: An Advanced Treatise, Vol. V how Plant Defend Themselves. New York: Academic Press.Google Scholar
Muylle, H., Baert, J., Van Bockstaele, E., Pertijs, J. & Roldan-Ruiz, I. (2005). Four QTLs determine crown rust (Puccinia coronata f.sp. lolii) resistance in a perennial ryegrass (Lolium perenne) population. Heredity, 95, 348–57.CrossRefGoogle Scholar
Nass, H. A., Pedersen, W. L., MacKenzie, D. R. & Nelson, R. R. (1981). The residual effects of some “defeated” powdery mildew resistance genes in isolines of winter wheat. Phytopathology, 71, 1315–18.Google Scholar
Needham, J., Merow, C., Butt, N., Malhi, Y., Marthews, T. R., Morecroft, M. & McMahon, S. M. (2016). Forest community response to invasive pathogens: the case of ash dieback in a British woodland. Journal of Ecology, 104, 315–30.CrossRefGoogle Scholar
Nelson, N. N. & Sturrock, R. N. (1993). Susceptibility of western conifers to laminated root rot (Phellinus weirii) in Oregon and British Columbia field tests. Western Journal of Applied Forestry, 8, 6770.CrossRefGoogle Scholar
Nemri, A., Barrett, L. G., Laine, A-L., Burdon, J. J. & Thrall, P. H. (2012). Population processes at multiple spatial scales maintain diversity and adaptation in the Linum marginale - Melampsora lini association PLoS ONE, 7, 114. e41366. http://doi:10.1371/journal.pone.0041366CrossRefGoogle ScholarPubMed
Nevo, E., Moseman, J. G., Beiles, A. & Zohary, D. (1985). Patterns of resistance of Israeli wild emmer wheat to pathogens. I. Predictive method by ecology and allozyme genotypes for powdery mildew and leaf rust. Genetica, 67, 209–22.CrossRefGoogle Scholar
Newcombe, G., Stirling, B., McDonald, S. & Bradshaw, H. D. Jr (2000). Melampsora x columbiana, a natural hybrid of M. medusae and M. occidentalis. Mycological Research, 104, 261–74.CrossRefGoogle Scholar
Newcombe, G., Stirling, B. & Bradshaw, H. D. Jr (2001). Abundant pathogenic variation in the new hybrid rust Melampsora x columbiana on hybrid poplar. Phytopathology, 91, 981–5.CrossRefGoogle Scholar
Newhook, F. J. & Podger, F. D. (1972). The role of Phytophthora cinnamomi in Australian and New Zealand forests. Annual Review of Phytopathology, 10, 299326.CrossRefGoogle Scholar
Newton, A. C., Ellis, R. P., Hackett, C. A. & Guy, D. C. (1997). The effect of component number on Rhynchosporium secalis infection and yield in mixtures of winter barley cultivars. Plant Pathology, 45, 930–38.Google Scholar
Newton, A. C. & Guy, D. C. (2011). Scale and spatial structure effects on the outcome of barley cultivar mixture trials for disease control. Field Crops Research, 123, 74–9.CrossRefGoogle Scholar
Newton, A. C., Thomas, W. T. B., Guy, D. C. & Gaunt, R. E. (1998). The interaction of fertilizer treatment with tolerance to powdery mildew in spring barley. Field Crops Research, 55, 4556.CrossRefGoogle Scholar
Niemi, L., Wennström, A., Hjalten, J., Waldmann, P. & Ericson, L. (2006). Spatial variation in resistance and virulence in the host-pathogen system Salix triandra – Melampsora amygdalinae. Journal of Ecology, 94, 915–21.CrossRefGoogle Scholar
Nilsson, M. C., Wardle, D. A., Zackrisson, O. & Järderud, A. (2002). Effects of alleviation of ecological stresses on an Alpine tundra community over an eight-year period. Oikos, 97, 317.CrossRefGoogle Scholar
Noble, I. R. (1989). Attributes of invaders and the invading process: terrestrial and vascular plants. In Drake, J. A., ed., Biological Invasions: a Global Perspective. Chichester, UK: John Wiley & Sons Ltd.Google Scholar
Nombela, G., Williamson, V. M. & Muniz, M. (2003). The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci. Molecular Plant-Microbe Interactions, 16, 645–9.CrossRefGoogle ScholarPubMed
Nowak, M. A. & May, R. M. (1994). Superinfection and the evolution of parasite virulence. Proceedings of the Royal Society of London, B, 255, 81–9.Google ScholarPubMed
Nuismer, S. L., Thompson, J. N. & Gomulkiewicz, R. (2000). Coevolutionary clines across selection mosaics. Evolution, 54, 1102–15.Google ScholarPubMed
O’Brien, L., Brown, J. S., Young, R. M. & Pascoe, I. (1980). Occurrence and distribution of wheat stripe rust in Victoria and susceptibility of commercial wheat cultivars. Australasian Plant Pathology, 9, 14.CrossRefGoogle Scholar
Oates, J. D., Burdon, J. J. & Brouwer, J. B. (1983). Interactions between Avena and Puccinia species. II. The pathogens: Puccinia coronata Cda and P. graminis Pers. f.sp. avenae Eriks. and Henn. Journal of Applied Ecology, 20, 585–96.CrossRefGoogle Scholar
Oh, C-S. & Beer, S. V. (2005). Molecular genetics of Erwinia amylovora involved in the development of fire blight. FEMS Microbiology Letters, 253, 185–92.CrossRefGoogle ScholarPubMed
O’Hanlon-Manners, D. L. & Kotanen, P. M. (2004). Evidence that fungal pathogens inhibit recruitment of a shade-intolerant tree, white birch (Betula papyrifera), in understory habitats. Oecologia, 140, 650–3.CrossRefGoogle ScholarPubMed
Olff, H., Hoorens, B., de Goede, R. G. M., van der Putten, W. H. & Gleichman, J. M. (2000). Small-scale shifting mosaics of two dominant grassland species: the possible role of soil-borne pathogens. Oecologia, 125, 4554.CrossRefGoogle ScholarPubMed
Oliver, E. J., Thrall, P. H., Burdon, J. J. & Ash, J. E. (2001). Vertical disease transmission in the Cakile-Alternaria host-pathogen interaction. Australian Journal of Botany, 49, 561–9.CrossRefGoogle Scholar
Oliver, R. P. & Solomon, P. S. (2010). New developments in pathogenicity and virulence of necrotrophs. Current Opinion in Plant Biology, 13, 415–19.CrossRefGoogle ScholarPubMed
Oliveri, I., Couvet, D. & Gouyon, P. H. (1990). The genetics of transient populations: research at the metapopulation level. Trends in Ecology & Evolution, 5, 207–10.Google Scholar
Olofsson, J., Ericson, L., Torp, M., Stark, S. & Baxter, R. (2011). Carbon balance of Arctic tundra under increased snow cover mediated by a plant pathogen. Nature Climate Change, 1, 220–3.CrossRefGoogle Scholar
Olofsson, J., te Beest, M. & Ericson, L. (2013). Complex biotic interactions drive long-term vegetation dynamics in a subarctic ecosystem. Philosophical Transactions of the Royal Society of London, B, 368, 20120486. http://doi:10.1098/rstb.2012.0486.CrossRefGoogle Scholar
Olson, Ǻ. & Stenlid, J. (2001). Mitochondrial control of fungal hybrid virulence. Nature, 411, 438.CrossRefGoogle Scholar
Olson, Ǻ. & Stenlid, J. (2002). Pathogen fungal species hybrids infecting plants. Microbes and Infection, 4, 1353–9.CrossRefGoogle ScholarPubMed
Orbach, M. J., Farrall, L., Sweigard, J. A., Chumley, F. G. & Valent, B. (2000). A telomeric avirulence gene determines efficacy for rice blast resistance gene Pi-ta. Plant Cell, 12, 2019–32.CrossRefGoogle ScholarPubMed
Orians, C. M. & Floyd, T. (1997). The susceptibility of parental and hybrid willows to plant enemies under contrasting soil nutrient conditions. Oecologia, 109, 407–13.CrossRefGoogle ScholarPubMed
Orwig, D. A. (2002). Ecosystem to regional impacts of introduced pests and pathogens: historical context, questions and issues. Journal of Biogeography, 29, 1471–4.CrossRefGoogle Scholar
Ostfeld, R. & Keesing, F. (2012). Effects of host diversity on infectious disease. Annual Review of Ecology, Evolution and Systematics, 43, 157–82.CrossRefGoogle Scholar
Ostry, M. E. & Anderson, N. A. (2009). Genetics and ecology of the Entoleuca mammata-Populus pathosystem: implications for aspen improvement and management. Forest Ecology & Management, 257, 390400.CrossRefGoogle Scholar
Otto, S. P. & Michalakis, Y. (1998). The evolution of recombination in changing environments. Trends in Ecology & Evolution, 13, 145–51.CrossRefGoogle ScholarPubMed
Ovaskainen, O. & Laine, A-L. (2006). Inferring evolutionary signals from ecological data in a plant-pathogen metapopulation. Ecology, 87, 880–91.CrossRefGoogle Scholar
Packer, A. & Clay, K. (2000). Soil pathogens and spatial patterns of seedling mortality in a temperate tree. Nature, 404, 278–81.CrossRefGoogle Scholar
Packer, A. & Clay, K. (2003). Soil pathogens and Prunus serotina seedling and sapling growth near conspecific trees. Ecology, 84, 108–19.CrossRefGoogle Scholar
Pagán, I., González-Jara, P., Moreno-Letelier, A., Rodelo-Urrego, M., Fraile, A., Piñero, D. & Garcia-Arenal, F. (2012). Effect of biodiversity changes in disease risk: exploring disease emergence in a plant-virus system. PLoS Pathogens, 8, (7) e1002796. http://doi:10.1371/journal.ppat.1002796.CrossRefGoogle Scholar
Paillard, S., Goldringer, I., Enjalbert, J., Douccinault, G., de Vallavieille-Pope, C. & Brabant, P. (2000a). Evolution of resistance against powdery mildew in winter wheat populations conducted under dynamic management. I. Is specific seedling resistance selected? Theoretical & Applied Genetics, 101, 449–56.Google Scholar
Paillard, S., Goldringer, I., Enjalbert, J., Trottet, M., David, J., de Vallavieille-Pope, C. & Brabant, P. (2000b). Evolution of resistance against powdery mildew in winter wheat populations conducted under dynamic management. II. Adult plant resistance. Theoretical & Applied Genetics, 101, 457–2.Google Scholar
Palomino, C., Satovic, Z., Cubero, J. I. & Torres, A. M. (2006). Identification and characterization of NBS-LRR class resistance gene analogs in faba bean (Vicia faba L.) and chickpea (Cicer arietinum L.). Genome, 49, 1227–37.CrossRefGoogle ScholarPubMed
Pangga, I. B., Hanan, J. & Chakraborty, S. (2013). Climate change impacts on plant canopy architecture - implications for pest and pathogen management. European Journal of Plant Pathology, 135, 595610.CrossRefGoogle Scholar
Papaïx, J., Rimbaud, L., Burdon, J. J., Zhan, J. & Thrall, P. H. (2017). Differential impact of landscape-scale strategies for crop cultivar deployment on disease dynamics, resistance durability and long-term evolutionary control. Evolutionary Applications, https://doi.org/10.1111/eva.12570CrossRefGoogle Scholar
Pariaud, B., Goyeau, H., Halkett, F., Robert, C. & Lannou, C. (2012). Variation in aggressiveness is detected among Puccinia triticina isolates of the same pathotype and clonal lineage in the adult plant stage. European Journal of Plant Pathology, 134, 733–43.CrossRefGoogle Scholar
Park, R. F., Burdon, J. J. & Jahoor, A. (1999). Evidence for somatic hybridisation in nature in Puccinia recondita f. sp. tritici of wheat. Mycological Research, 103, 715–23.CrossRefGoogle Scholar
Park, R. F. & Wellings, C. R. (2012). Somatic hybridization in the Uredinales. Annual Review of Phytopathology, 50, 219–39.CrossRefGoogle ScholarPubMed
Parker, I. M., Saunders, M., Bontrager, M., Weitz, A.P., Hendricks, R., Magarey, R., Suiter, K. & Gilbert, G. S. (2015). Phylogenetic structure and host abundance drive disease pressure in communities. Nature, 520, 542–4.CrossRefGoogle ScholarPubMed
Parker, M. A. (1985). Local population differentiation for compatibility in an annual legume and its host-specific fungal pathogen. Evolution, 39, 713–23.CrossRefGoogle Scholar
Parker, M. A. (1988). Polymorphism for disease resistance in the annual legume Amphicarpaea bracteata. Heredity, 60, 2731.CrossRefGoogle Scholar
Parker, S. R., Welham, S., Paveley, N. D., Foulkes, J. & Scott, R. K. (2004). Tolerance of septoria leaf blotch in winter wheat. Plant Pathology, 53, 110.CrossRefGoogle Scholar
Parlange, F., Daverdin, G., Fudal, I., Kuhn, M-L., Balesdent, M-H., Blaise, F., Grezes-Besset, B. & Rouxel, T. (2009). Leptosphaeria maculans avirulence gene AvrLm4–7 confers a dual recognition specificity by the Rlm4 and Rlm7 resistance genes of oilseed rape, and circumvents Rlm4-mediated recognition through a single amino acid change. Molecular Microbiology, 71, 851–63.CrossRefGoogle ScholarPubMed
Parlevliet, J. E. (1978). Further evidence of polygenic inheritance of partial resistance in barley to leaf rust, Puccinia hordei. Euphytica, 27, 369–79.CrossRefGoogle Scholar
Parratt, S. R. & Laine, A.-L. (2016). The role of hyperparasitism in microbial pathogen ecology and evolution. The ISME Journal, 10.1038/ismej.2015.247.CrossRefGoogle Scholar
Parratt, S. R., Numminen, E. & Laine, A.-L. (2016). Infectious disease dynamics in heterogeneous landscapes. Annual Review of Ecology, Evolution & Systematics, 47, 283306.CrossRefGoogle Scholar
Paul, N. D. & Ayres, P. G. (1986a). The impact of a pathogen (Puccinia lagenophorae) on populations of groundsel (Senecio vulgaris) overwintering in the field. I. Mortality, vegetative growth and the development of size hierarchies. Journal of Ecology, 74, 1069–84.Google Scholar
Paul, N. D. & Ayres, P. G. (1986b). The impact of a pathogen (Puccinia lagenophorae) on populations of groundsel (Senecio vulgaris) overwintering in the field. II. Reproduction. Journal of Ecology, 74, 1085–94.Google Scholar
Paul, N. D. & Ayres, P. G. (1987). Survival, growth and reproduction of groundsel (Senecio vulgaris) infected by rust (Puccinia lagenophorae) in the field during summer. Journal of Ecology, 75, 6171.CrossRefGoogle Scholar
Paul, N. D., Ayres, P. G. & Wyness, L. E. (1989). On the use of fungicides for experimentation in natural vegetation. Functional Ecology, 3, 759–69.CrossRefGoogle Scholar
Pautasso, M., Dehnen-Schmutz, K., Holdenrieder, O., Pietravalle, S., Salama, N., Jeger, M. J. Lange, E. & Hehl-Lange, S. (2010). Plant health and global change – some implications for landscape management. Biological Reviews, 85, 729–55.CrossRefGoogle ScholarPubMed
Pautasso, M., Aas, G., Queloz, V. & Holdenrieder, O. (2013). European ash (Fraxinus excelsior) dieback – a conservation biology challenge. Biological Conservation, 158, 3749.CrossRefGoogle Scholar
Pegg, G., Taylor, T., Entwistle, P., Guymer, G., Giblin, F. & Carnegie, A. (2017). Impact of Austropuccinia psidii (myrtle rust) on Myrtaceae-rich wet sclerophyll forests in south east Queensland. PLoS ONE, 12, (11): e0188058.CrossRefGoogle Scholar
Pegg, G. S., Carnegie, A. J., Wingfield, M. J. & Drenth, A. (2010). Variable resistance to Quambalaria pitereka in spotted gum reveal opportunities for disease screening. Australasian Plant Pathology, 40, 7686.CrossRefGoogle Scholar
Pegg, G. S., Giblin, F. R., McTaggart, A. R., Guymer, G. P., Taylor, H., Ireland, K. B., Shivas, R. G. & Perry, S. (2014). Puccinia psidii in Queensland, Australia: disease symptoms, distribution and impact. Plant Pathology, 63, 1005–21.CrossRefGoogle Scholar
Pegg, G. S., Shuey, L. S., Carnegie, A. J., Wingfield, M. J. & Drenth, A. (2011). Variability in aggressiveness of Quambalaria pitereka isolates. Plant Pathology, 60, 1107–17.CrossRefGoogle Scholar
Penczykowski, R. M. Laine, A.-L. & Koskella, B. (2016). Understanding the ecology and evolution of host–parasite interactions across scales. Evolutionary Applications, 9, 3752.CrossRefGoogle Scholar
Penczykowski, R., Walker, E., Soubeyrand, S. & Laine, A-L. (2015). Linking winter conditions to large-scale disease dynamics in a wild plant-pathogen metapopulation. New Phytologist, 205, 1142–52.CrossRefGoogle Scholar
Perazzolli, M., Malacarne, G., Baldo, A., Righetti, L., Bailey, A., Fontana, P., Velasco, R. & Malnoy, M. (2014). Characterization of resistance gene analogues (RGAs) in apple (Malus x domestica Borkh.) and their evolutionary history of the Rosaceae family. PLoS ONE, 9, e83844.CrossRefGoogle ScholarPubMed
Perez, G., Slippers, B., Wingfield, B. D., Hunter, G. C. & Wingfield, M. J. (2010). Micro- and macrospatial scale analyses illustrates mixed mating strategies and extensive geneflow in populations of an invasive haploid pathogen. Molecular Ecology, 19, 1801–13.CrossRefGoogle ScholarPubMed
Person, C. (1959). Gene-for-gene relationships in host: parasite systems. Canadian Journal of Botany, 35, 1101–30.Google Scholar
Person, C. (1966). Genetic polymorphisms in parasitic systems. Nature, 212, 266–7.CrossRefGoogle ScholarPubMed
Persoons, A., Hayden, K., Fabre, B., Frey, P., de Mita, S., Tellier, A. & Halkett, F. (2017). The escalatory Red Queen: Population extinction and replacement following arms race dynamics in poplar rust. Molecular Ecology, 26, 1902–18.CrossRefGoogle ScholarPubMed
Peterken, G. F. & Mountford, E. P. (1998). Long-term change in an unmanaged population of wych elm subjected to Dutch elm disease. Journal of Ecology, 86, 205–18.CrossRefGoogle Scholar
Peterson, P.D., Leonard, K. J., Roelfs, A. P. & Sutton, T. B. (2005). Effect of barberry eradication on changes in populations of Puccinia graminis in Minnesota. Plant Disease, 89, 935–40.CrossRefGoogle ScholarPubMed
Petrzelova, I. & Lebeda, A. (2004). Occurrence of Bremia lactucae in natural populations of Lactuca serriola. Journal of Phytopathology, 152, 391–8.CrossRefGoogle Scholar
Petrzelova, I. & Lebeda, A. (2011). Distribution of race-specific resistance against Bremia lactucae in natural populations of Lactuca serriola. European Journal of Plant Pathology, 129, 233–53.CrossRefGoogle Scholar
Philibert, A., Desprez-Loustau, M.-L., Fabre, B., Frey, P., Halkett, F., Husson, C., Lung-Escarmant, B., Marcais, B., Robin, C., Vacher, C. & Makowski, D. (2011). Predicting invasion success of forest pathogenic fungi from species traits. Journal of Applied Ecology, 48, 1381–90.CrossRefGoogle Scholar
Phillips., D. H. (1988). Microsphaera alphitoides. In Smith, I. M., ed., European Handbook of Plant Diseases. Oxford, UK: Blackwell Scientific Publications.Google Scholar
Piotrowska, M. J., Riddell, C., Hoebe, P. N. & Ennos, R. A. (2018). Planting exotic relatives has increased the threat posed by Dothistroma septosporum to the Caledonian pine populations of Scotland. Evolutionary Applications http://doi:10.1111/eva12562.CrossRefGoogle Scholar
Piqueras, J. (1999). Infection of Trientalis europaea by the systemic smut fungus Urocystis trientalis: disease incidence, transmission and effects on performance of host ramets. Journal of Ecology, 87, 9951004.CrossRefGoogle Scholar
Pollock, J. L., Kogan, L. A., Thorpe, A. S. & Holben, W. E. (2011). (+/-)-catechin, a root exudate of the invasive Centaurea stoebe Lam. (Spotted Knapweed) exhibits bacteriostatic activity against multiple soil bacterial populations. Journal of Chemical Ecology, 37, 1044–53.CrossRefGoogle Scholar
Pontecorvo, G. (1956). The parasexual cycle in fungi. Annual Review of Microbiology, 10, 393400.CrossRefGoogle ScholarPubMed
Pook, E. W. & Moore, C. W. E. (1966). The influence of aspect on the composition and structure of dry sclerophyll forest on Black Mountain, Canberra, ACT. Australian Journal of Botany, 14, 223–42.CrossRefGoogle Scholar
Potts, B. M., Sandhu, K. S., Wardlaw, T., Freeman, J., Li, H., Tilyard, P. & Park, R. F. (2016). Evolutionary history shapes the susceptibility of an island tree flora to an exotic pathogen. Forest Ecology & Management, 368, 183–93.CrossRefGoogle Scholar
Poulin, R. & Thomas, F. (2008). Epigenetic effects of infection on the phenotype of host offspring: parasites reaching across host generations. Oikos, 117, 331–5.CrossRefGoogle Scholar
Power, A. G., Borer, E. T., Hosseini, P., Mitchell, C. E. & Seabloom, E. W. (2011). The community ecology of barley/cereal yellow dwarf viruses in Western US grasslands. Virus Research, 159, 95100.CrossRefGoogle ScholarPubMed
Pozo, M. J. & Azcon-Aguilar, C. (2007). Unraveling mycorrhiza-induced resistance. Current Opinion in Plant Biology, 10, 393–8.CrossRefGoogle ScholarPubMed
Prasad, R., Singh, S., Sharma, S.N., Singh, C.P., (1988). Studies on pure and mixed stands of wheat and barley under dryland agriculture conditions. Journal of Agronomy and Crop Science, 160, 335–8.CrossRefGoogle Scholar
Price, J. S., Bever, J. D. & Clay, K. (2004). Genotype, environment, and genotype by environment interactions determine quantitative resistance to leaf rust (Coleosporium asterum) in Euthamia graminifolia (Asteraceae). New Phytologist, 162, 729–43.CrossRefGoogle ScholarPubMed
Price, M. V., Waser, N. M., Irwin, R. E., Campbell, D. R. & Brody, A. K. (2005). Temporal and spatial variation in pollination in a montane herb: a seven-year study. Ecology, 86, 2106–16.CrossRefGoogle Scholar
Prospero, S., Hansen, E. M., Grünwald, N. J. & Winton, L. M. (2007). Population dynamics of the sudden oak death pathogen Phytophthora ramorum in Oregon from 2001 to 2004. Molecular Ecology, 16, 2958–73.CrossRefGoogle ScholarPubMed
Qiu, H., Cai, G., Luo, J., Bhattacharya, D. & Zhang, N. (2016). Extensive horizontal gene transfers between plant pathogenic fungi. BMC Biology, 14, 41 http://doi:10.1186/s12915–016–0264–3CrossRefGoogle ScholarPubMed
Quencez, C. & Bastien, C. (2001). Genetic variation within and between populations of Pinus sylvestris L. (Scots pine) for susceptibility to Melampsora pinitorqua Rostr. (pine twist rust). Heredity, 86, 3644.CrossRefGoogle ScholarPubMed
Quirin, E.A., Mann, H., Meyer, R. S., Traini, A., Chiusano, M. L., Litt, A. & Bradeen, J. M. (2012). Evolutionary meta-analysis of Solanaceous resistance gene and Solanum resistance gene analog sequences and a practical framework for cross-species comparisons. Molecular Plant-Microbe Interactions, 25, 603–12.CrossRefGoogle Scholar
Raffaele, S., Farrer, R. A., Cano, L. M., Studholme, D. J. MacLean, D., Thines, M., Jiang, R. H. Y., Zody, M. C., Kunjeti, S. G., Donofrio, N. M., Meyers, B. C., Nusbaum, C. & Kamoun, S. (2010). Genome evolution following host jumps in the Irish potato famine pathogen lineage. Science, 330, 1540–3.CrossRefGoogle ScholarPubMed
Ranta, H. & Saloniemi, I. (2005). Distribution of fungal foliage and shoot pathogens in a natural Scots pine population in relation to environmental variables. Canadian Journal of Forest Research, 35, 503–10.CrossRefGoogle Scholar
Rau, D., Rodriguez, M., Murgia, M. L., Balmas, V., Bitocchi, E., Bellucci, E., Nanni, L. Attene, G. & Papa, R. (2015). Co-evolution in a landrace metapopulation: two closely related pathogens interacting with the same host can lead to different adaptive outcomes. Scientific Reports, 5, 12834. http://doi:10.1038/srep12834CrossRefGoogle Scholar
Rayachetry, M. B., Elliot, M. L. & Van, T. K. (1997). Natural epiphytotic of a rust fungus (Puccinia psidii) on Melaleuca quinquenervia in Florida. Plant Disease, 81, 831.CrossRefGoogle Scholar
Rees, R. G. (1972). Agropyron scabrum and its role in the epidemiology of Puccinia graminis in north-eastern Australia. Australian Journal of Agricultural Research, 23, 789–98.CrossRefGoogle Scholar
Read, A. F. (1994). The evolution of virulence. Trends in Microbiology, 2, 73–6.CrossRefGoogle ScholarPubMed
Read, A. F. & Taylor, L. H. (2001). The ecology of genetically diverse infections. Science, 292, 1099–101.CrossRefGoogle ScholarPubMed
Read, D. J. (1968). Some aspects of the relationship between shade and fungal pathogenicity in an epidemic disease of pines. New Phytologist, 67, 3948.CrossRefGoogle Scholar
Reinhart, K. O., Royo, A. A., Van der Putten, W. H. & Clay, K. (2005). Soil feedback and pathogen activity in Prunus serotina throughout its native range. Journal of Ecology, 93, 890–8.CrossRefGoogle Scholar
Reinhart, K. O. & Clay, K. (2009). Spatial variation in soil-borne disease dynamics of a temperate tree, Prunus serotina. Ecology, 90, 2984–93.CrossRefGoogle ScholarPubMed
Remold, S. K. (2002). Unapparent virus infection and host fitness in three weedy plant species. Journal of Ecology, 90, 967–77.CrossRefGoogle Scholar
Ren, J. S., Yu, Y. C., Gao, F. Y., Zeng, L. H., Lu, X. J., Wu, X. T., Yan, W. G. & Ren, G. J. (2013). Application of resistance gene analog markers to analyses of genetic structure and diversity in rice. Genome, 56, 377–87.CrossRefGoogle ScholarPubMed
Resler, L. M. & Tomback, D. F. (2008). Blister rust prevalence in Krummholz whitebark pine: implications for treeline dynamics, northern Rocky Mountains, Montana, USA. Arctic, Antarctic, and Alpine Research, 40, 161–70.CrossRefGoogle Scholar
Rice, W. R. (1983). Parent-offspring pathogen transmission: a selective agent promoting sexual reproduction. The American Naturalist, 121, 187203.CrossRefGoogle Scholar
Richards, T. A., Soanes, D. M., Jones, M. D. M., Vasieva, O., Leonard, G., Paszkiewicz, K., Foster, P. G., Hall, N. Talbot, N. J. (2011). Horizontal gene transfer facilitated the evolution of plant parasitic mechanisms in the oomycetes. Proceedings of the National Academy of Sciences, USA, 108, 15258–63.CrossRefGoogle ScholarPubMed
Richardson, A. O. & Palmer, J. D. (2007). Horizontal gene transfer in plants. Journal of Experimental Botany, 58, 19.CrossRefGoogle ScholarPubMed
Richter, T. E., Pryor, T. J., Bennetzen, J. L. & Hulbert, S. H. (1995). New rust resistance specificities associated with recombination in the Rp1 complex in maize. Genetics, 141, 373–81.CrossRefGoogle ScholarPubMed
Rizzo, D. M., Slaughter, G. W. & Parmeter, J. R. Jr (2000). Enlargement of canopy gaps associated with a fungal pathogen in Yosemite Valley, California. Canadian Journal of Forest Research, 30, 1501–10.CrossRefGoogle Scholar
Robin, C., Andanson, A., Saint-Jean, G., Fabreguettes, O. & Dutech, C. (2017). What was old is new again: thermal adaptation within clonal lineages during range expansion in a fungal pathogen. Molecular Ecology, 26, S1952S1963.CrossRefGoogle Scholar
Robinson, R. A. (1976). Plant Pathosystems. Berlin, Germany: Springer-Verlag.CrossRefGoogle Scholar
Rochow, W. F. & Ross, A. F. (1995). Virus multiplication in plants doubly infected by potato viruses X and Y. Virology, 1, 1027.CrossRefGoogle Scholar
Roelfs, A. P. (1982). Effects of barberry eradication on stem rust in the United States. Plant Disease, 72, 177–81.Google Scholar
Roelfs, A. P. & Groth, J. V. (1980). A comparison of virulence phenotypes in wheat stem rust populations reproducing sexually and asexually. Phytopathology, 70, 855–62.CrossRefGoogle Scholar
Roelfs, A. P. & McVey, D. V. (1979). Low infection types produced by Puccinia graminis f.sp. tritici and wheat lines with designated genes for resistance. Phytopathology, 69, 722–30.CrossRefGoogle Scholar
Roll-Hansen, F. 1989. Phacidium infestans: a literature review. European Journal of Forest Pathology, 19, 237–50.CrossRefGoogle Scholar
Romero, M.A., Sánchez, J.E., Jiménez, J.J., Belbahri, L., Trapero, A., Lefort, F. & Sánchez, M.E. 2007. New Pythium taxa causing root rot on Mediterranean Quercus species in sout-west Spain and Portugal. Journal of Phytopathology, 155, 289–93.CrossRefGoogle Scholar
Roscher, C., Schumacher, J., Foitzik, O. & Schulze, E-D. (2007). Resistance to rust fungi in Lolium perenne depends on within-species variation and performance of the host species in grasslands of different plant diversity. Oecologia, 153, 173213.CrossRefGoogle ScholarPubMed
Rose, L. E., Bittner-Eddy, P. D., Langley, C. H., Holub, E. B., Michelmore, R. W. & Beynon, J L. (2004). The maintenance of extreme amino acid diversity at the disease resistance gene, RPP13, in Arabidopsis thaliana. Genetics, 166, 1517–27.CrossRefGoogle ScholarPubMed
Rose, L. E., Michelmore, R. W. & Langley, C. H. (2007). Natural variation in the Pto disease resistance gene within species of wild tomato (Lycopersicon). II. Population genetics of Pto. Genetics, 175, 1307–19.CrossRefGoogle ScholarPubMed
Roslin, T., Laine, A.-L. & Gripenberg, S. (2007). Spatial population structure in an obligate plant pathogen colonizing oak (Quercus robur). Functional Ecology, 21, 1168–77.CrossRefGoogle Scholar
Roscher, C., Schumacher, J., Foitzik, O. & Schulze, E-D. (2007). Resistance to rust fungi in Lolium perenne depends on within-species variation and performance of the host species in grasslands of different plant diversity. Oecologia, 153, 173–83.CrossRefGoogle ScholarPubMed
Rosewich, U. L. & Kistler, H. C. (2000). Role of horizontal gene transfer in the evolution of fungi. Annual Review of Phytopathology, 38, 325–63.CrossRefGoogle ScholarPubMed
Rottstock, T., Joshi, J., Kummer, V. & Fischer, M. (2014). Higher plant diversity promotes higher diversity of fungal pathogens, while it decreases pathogen infection per plant. Ecology 95, 1907–17.CrossRefGoogle ScholarPubMed
Rouse, M. N., Saleh, A. A., Seck, A., Keeler, K. H., Travers, S. E., Hulbert, S. H. & Garrett, K. A. (2011). Genomic and resistance gene homolog diversity of the dominant tallgrass prairie species across the U.S. Great Plains precipitation gradient. PLoS ONE, 6, e17641. http://doi:10.1371/journal.pone.0017641CrossRefGoogle ScholarPubMed
Rouvinen, S., Kuuluvainen, T. & Siitonen, J. (2002). Tree mortality in a Pinus sylvestris dominated boreal forest landscape in Vienansalo Wilderness, eastern Fennoscandia. Silva Fennica. 36, 127–45.CrossRefGoogle Scholar
Rouxel, M., Mestre, P., Comont, G., Lehman, B.L., Schilder, A. & Delmotte, F. (2013). Phylogenetic and experimental evidence for host-specialized cryptic species in a biotrophic oomycete. New Phytologist, 197, 251–63.CrossRefGoogle Scholar
Rowe, H. C. & Kliebenstein, D. J. 2008. Complex genetics control natural variation in Arabidopsis thaliana resistance to Botrytis cinerea. Genetics 180, 2237–50.CrossRefGoogle ScholarPubMed
Roy, B.A. 1993. Floral mimicry in a plant pathogen. Nature, 362, 56–8.CrossRefGoogle Scholar
Roy, B. A., Alexander, H. M., Davidson, J., Campbell, F., Burdon, J. J., Sneizko, R. & Brasier, C. (2014). The worldwide loss of forests caused by non-native pests requires new policies and trade regulations. Frontiers in Ecology and the Environment, 12, 457–65.CrossRefGoogle Scholar
Roy, B. A., Gusewell, S. & Harte, J. (2004). Response of plant pathogens and herbivores to a warming experiment. Ecology, 85, 2570–81.CrossRefGoogle Scholar
Roy, B. A. & Kirchner, J. W. (2000). Evolutionary dynamics of pathogen resistance and tolerance. Evolution, 54, 5163.Google ScholarPubMed
Roy, B. A., Kirchner, J. W., Christian, C. E. & Rose, L. E. (2000). High disease incidence and apparent disease tolerance in a North American Great Basin plant community. Evolutionary Ecology, 14, 421–38.CrossRefGoogle Scholar
Runion, G. B., Prior, S. A., Rogers, H. H. & Mitchell, R. J. (2010). Effects of elevated atmospheric CO2 on two southern forest diseases. New Forests, 39, 275–85.CrossRefGoogle Scholar
Sackett, K. E. & Mundt, C. C. (2009). Effect of plot geometry on epidemic velocity of wheat yellow rust. Plant Pathology, 58, 370–7.CrossRefGoogle Scholar
Sache, I. & de Vallavieille-Pope, C. (1995). Classification of airborne plant pathogens based on sporulation and infection characteristics. Canadian Journal of Botany, 73, 1186–95.CrossRefGoogle Scholar
Sacristán, S. & García-Arenal, F. (2008). The evolution of virulence and pathogenicity in plant pathogen populations. Molecular Plant Pathology, 9, 369–84.CrossRefGoogle ScholarPubMed
Sadd, B. M. (2011). Food-environment mediated the outcome of specific interactions between a bumblebee and its trypanasome parasite. Evolution, 65, 29953001.CrossRefGoogle Scholar
Saghai Maroof, M. A., Webster, R. K. & Allard, R. W. (1983). Evolution of resistance to scald, powdery mildew and net blotch in barley Composite Cross II populations. Theoretical & Applied Genetics, 66, 279–83.Google ScholarPubMed
Salamati, S., Zhan, J., Burdon, J. J. & McDonald, B. A. (2000). The genetic structure of field populations of Rhynchosporium secalis from three continents suggests moderate gene flow and regular recombination. Phytopathology 90, 901–8.CrossRefGoogle ScholarPubMed
Salvaudon, L., Giraud, T. & Shykoff, J. A. (2008). Genetic diversity in natural populations: a fundamental component of plant–microbe interactions. Current Opinion in Plant Biology, 11, 135–43.CrossRefGoogle ScholarPubMed
Salvaudon, L., Heraudet, V. & Shykoff, J.A. (2007). Genotype-specific interactions and the trade-off between host and parasite fitness. BMC Evolutionary Biology, 7, 189. https://doi.org/10.1186/1471–2148–7–189.CrossRefGoogle ScholarPubMed
Samuelian, S. K., Baldo, A. M., Pattison, J. A. & Weber, C. A. (2008). Isolation and linkage mapping of NBS-LRR resistance gene analogs in red raspberry (Rubus idaeus L.) and classification among 270 Rosaceae NBS-LRR genes. Tree Genetics & Genomes 4, 881–96.CrossRefGoogle Scholar
Sanders, I. (2006). Rapid disease emergence through horizontal gene transfer between eukaryotes. Trends in Ecology & Evolution, 21, 656–8.CrossRefGoogle ScholarPubMed
Sanders, J.-F. & Heitefuss, R. (1998). Susceptibility to Erysiphe graminis f. sp. tritici and phenolic acid content of wheat as influenced by different levels of nitrogen fertilization. Journal of Phytopathology, 146, 495507.CrossRefGoogle Scholar
Santini, A., Ghelardini, L., De Pace, C., Desprez-Loustau, M.-L. Capretti, P., Chandelier, A., Cech, T., Chira, D., Diamandis, S., Gaitniekis, T., Hantula, J., Holdenrieder, O., Jankovsky, L., Jung, T., Jurc, D., Kirisits, T., Kunca, A., Lygis, V., Malecka, M., Marcais, B., Schmitz, S., Schumacher, J., Solheim, H., Solla, A., Szabo, I., Tsopelas, P., Vannini, A., Vettraino, A. M., Webber, J., Woodward, S. & Stelid, J. (2013). Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytologist, 197, 238–50.CrossRefGoogle ScholarPubMed
Sapoukhina, N., Tyutyunov, Y., Sache, I. & Arditi, R. (2010). Spatially mixed crops to control the stratified dispersal of airborne fungal diseases. Ecological Modelling, 221, 27932800.CrossRefGoogle Scholar
Schafer, M. & Kotanen, P. M. (2004). Impacts of naturally-occurring soil fungi on seeds of meadow plants. Plant Ecology, 175, 1935.CrossRefGoogle Scholar
Schardl, C. L. & Craven, K. D. (2003). Interspecific hybridization in plant-associated fungi and oomycetes: a review. Molecular Ecology, 12, 2861–73.CrossRefGoogle ScholarPubMed
Schmid, B. (1994). Effects of genetic diversity in experimental stands of Solidago altissima – evidence for the potential role of pathogens as selective agents in plant populations. Journal of Ecology, 82, 165–75.CrossRefGoogle Scholar
Schoen, D. J., Burdon, J. J. & Brown, A. H. D. (1992). Resistance of Glycine tomentella to soybean leaf rust (Phakopsora pachyrhizi) in relation to ploidy level and geographic distribution. Theoretical & Applied Genetics, 83, 827–32.Google ScholarPubMed
Schurch, S., Linde, C. C., Knogge, W., Jackson, L. F. & McDonald, B. A. (2004). Molecular population genetic analysis differentiaties two virulence mechanisms of the fungal avirulence gene NIP1. Molecular Plant-Microbe Interactions, 17, 1114–25.CrossRefGoogle ScholarPubMed
Schurch, S. & Roy, B. A. (2004). Comparing single-vs-mixed-genotype infections of Mycosphaerella graminicola on wheat: effects on pathogen virulence and host tolerance. Evolutionary Ecology, 18, 114.CrossRefGoogle Scholar
Schwarzbach, E. (1976). The pleiotropic effects of the ml-o gene and their implications in breeding. In Gaul, H., ed., Barley Genetics III. Proceedings of the 3rd International Barley Genetics Symposium. Munich, Germany: Karl Thiemig, pp. 440–5.Google Scholar
Seabloom, E. W., Borer, E. T., Mitchell, C. E. & Power, A. G. (2010). Viral diversity and prevalence gradients in North American Pacific Coast grasslands. Ecology, 91, 721–32.CrossRefGoogle ScholarPubMed
Seiwa, K., Miwa, Y., Sahashi, N., Kanno, H., Tomita, M., Ueno, N. & Yamazaki, M. (2008). Pathogen attack and spatial patterns of juvenile mortality and growth in a temperate tree, Prunus grayana. Canadian Journal of Forest Research, 38, 2445–54.CrossRefGoogle Scholar
Senn, J. (1999). Tree mortality caused by Gremmeniella abietina in a subalpine afforestation in the central Alps and its relationship with duration of snow cover. European Journal of Forest Pathology, 29, 6574.CrossRefGoogle Scholar
Severns, P. M., Estep, L. K., Sackett, K. E. & Mundt, C. C. (2014). Degree of host susceptibility in the initial disease outbreak influences subsequent epidemic spread. Journal of Applied Ecology, 51, 1622–30.CrossRefGoogle ScholarPubMed
Sha, A. H., Lin, X. H., Huang, J. B. & Zhang, D. P. (2005). Analysis of DNA methylation related to rice adult plant resistance to bacterial blight based on methylation-sensitive AFLP (MSAP) analysis. Molecular Genetics & Genomics, 273, 484540.CrossRefGoogle ScholarPubMed
Shapiro, L., De Moraes, C. M., Stephenson, A. G. & Mescher, M. C. (2012). Pathogen effects on vegetative and floral odours mediate vector attraction and host exposure in a complex pathosystem. Ecology letters, 15, 1430–8.CrossRefGoogle Scholar
Sharma, J. K., Heather, W. A. & Winer, P. (1980). Effect of leaf maturity and shoot age of clones of Populus species on susceptibility to Melampsora larici-populina. Phytopathology, 70, 548–54.CrossRefGoogle Scholar
Shaw, M. W. & Osborne, T. M. (2011). Geographic distribution of plant pathogens in response to climate change. Plant Pathology, 60, 3143.CrossRefGoogle Scholar
Shearer, B. L., Byrne, A., Dillon, M. & Buehrig, R. (1997a). Distribution of Armillaria luteobubalina and its impact on community diversity and structure in Eucalyptus wandoo woodland in southern Western Australia. Australian Journal of Botany, 44, 151–65.Google Scholar
Shearer, B. L., Crane, C. E., Barrett, S. & Cochrane, A. (2007). Phytophthora cinnamomi invasion, a major threatening process to conservation of flora diversity in the South-West Botanical Province of Western Australia. Australian Journal of Botany, 55, 225–38.CrossRefGoogle Scholar
Shearer, B. L., Crane, C. E., Fairman, R. G. & Grant, M. J. (1997b). Occurrence of Armillaria luteobubalina and pathogen-mediated changes in coastal dune vegetation of South-western Australia. Australian Journal of Botany, 45, 905–17.CrossRefGoogle Scholar
Shearer, B. L. & Dillon, M. (1996). Impact and disease centre characteristics of Phytophthora cinnamomi infestations of Banksia woodlands on the Swan Coastal Plain, Western Australia. Australian Journal of Botany, 44, 7990.CrossRefGoogle Scholar
Sherald, J. L., Stidham, T. M., Hadidian, J. M. & Hoeldtke, J. E. (1996). Progress of the dogwood anthracnose epidemic and the status of flowering dogwood in Catoctin National Park. Plant Disease, 80, 310–12.CrossRefGoogle Scholar
Shields, W. J. & Bockheim, J. G. (1981). Deterioration of trembling aspen clones in the Great Lakes region. Canadian Journal of Forest Research, 11, 530–7.CrossRefGoogle Scholar
Shilling, D. D. (1977). The development of a more virulent strain of Scleroderris lagerbergii in New York State. Forest Pathology, 7, 297302.CrossRefGoogle Scholar
Shykoff, J. A., Bucheli, E. & Kaltz, O. (1997). Anther smut disease in Dianthus silvester (Caryophyllaceae): natural selection on floral traits. Evolution, 51, 383–92.CrossRefGoogle ScholarPubMed
Sicard, D., Pennings, P. S., Grandclément, C., Acosta, J., Kaltz, O. & Shykoff, J. A. (2007). Specialization and local adaptation of a fungal parasite on two host species as revealed by two fitness traits. Evolution, 61, 2741.CrossRefGoogle ScholarPubMed
Sidhu, G. S. (1975). Gene-for-gene relationships in plant parasite systems. Science Progress (Oxford), 62, 467–85.Google Scholar
Sierra-Lucero, V., McKeand, S. E., Huber, D. A., Rockwood, D. L. & White, T. L. (2002). Performance differences and genetic parameters for four coastal provenances of loblolly pine in the southeastern United States. Forest Science, 48, 732–42.Google Scholar
Simms, E.L. (1992). Costs of plant resistance to herbivory. In Fritz, R. S. and Simms, E. L., eds., Plant Resistance to Herbivores and Pathogens: Ecology, Evolution, and Genetics. Chicago, IL: University of Chicago Press, pp. 392425.Google Scholar
Simms, E.L. (1993). Genetic-variation for pathogen resistance in tall morning glory. Plant Disease, 77, 901–4.CrossRefGoogle Scholar
Simms, E.L. & Triplett, J. (1994). Costs and benefits of plant responses to disease: resistance and tolerance. Evolution, 48, 1973–85.CrossRefGoogle ScholarPubMed
Simms, E.L. & Vision, T.J. (1995). Pathogen-induced systemic resistance in Ipomoea purpurea. Oecologia, 102, 494500.CrossRefGoogle ScholarPubMed
Six, D. L. & Adams, J. (2007). White pine blister rust severity and selection of individual whitebark pine by the mountain pine beetle (Coleoptera: Curculionidae, Scolytinae). Journal of Entomological Science, 42, 345–53.CrossRefGoogle Scholar
Slippers, B., Stenlid, J. & Wingfield, M. J. (2005). Emerging pathogens: fungal host jumps following anthropogenic introduction. Trends in Ecology & Evolution, 20, 420–1.CrossRefGoogle ScholarPubMed
Sloan, D. B., Giraud, T. & Hood, M. E. (2008). Maximized virulence in a sterilizing pathogen: the anther-smut fungus and its co-evolved hosts. Journal of Evolutionary Biology, 21, 1544–54.CrossRefGoogle Scholar
Smith, D. L., Ericson, L. & Burdon, J. J. (2003). Epidemiological patterns at multiple spatial scales: an 11-year study of a Triphragmium ulmariae – Filipendula ulmaria metapopulation. Journal of Ecology, 91, 890903.CrossRefGoogle Scholar
Smith, D. L., Ericson, L. & Burdon, J. J. (2011). Co-evolutionary hot and cold spots of selective pressure move in space and time. Journal of Ecology, 99, 634–41.CrossRefGoogle Scholar
Smith, E. K., Resler, L. M., Vance, E. A., Carstensen, L. W. Jr & Kolivras, K. N. (2011). Blister rust incidence in treeline whitebark pine, Glacier National Park, U.S.A.: environmental and topographic influences. Arctic, Antarctic, and Alpine Research, 43, 107–17.CrossRefGoogle Scholar
Solla, A., Martin, J.A., Ouellette, G.B. & Gil, L. (2005). Influence of plant age on symptom development in Ulmus minor following inoculation by Ophiostoma novo-ulmi. Plant Disease, 89, 1035–40.CrossRefGoogle ScholarPubMed
Soubeyrand, S., Laine, A.-L., Hanski, I. & Penttinen, A. (2009). Spatiotemporal structure of host-pathogen interactions in a metapopulation. The American Naturalist, 174, 308–20.CrossRefGoogle Scholar
Spear, E. R., Coley, P. D. & Kursar, T. A. (2015). Do pathogens limit the distributions of tropical trees across a rainfall gradient? Journal of Ecology, 103, 165–74.CrossRefGoogle Scholar
Spiegel, K.S. & Leege, L.M. (2013). Impacts of laural wilt disease on redbay (Persea borbonia (L.) Spreng.) population structure and forest communities in the coastal plain of Georgia, USA. Biological Invasions, 15, 2467–87.CrossRefGoogle Scholar
Spiers, A.G. (1998). Melampsora and Marssonina pathogens of poplars and willows in New Zealand. European Journal of Forest Pathology, 28, 233–40.CrossRefGoogle Scholar
Spiers, A. G. & Hopcroft, D. H. (1994). Comparative studies of the poplar rusts Melampsora medusae, M. larici-populina and their interspecific hybrid M. medusae-populina. Mycological Research, 98, 889903.CrossRefGoogle Scholar
Springer, Y.P. (2007). Clinal resistance structure and pathogen local adaptation in a serpentine flax-flax rust interaction. Evolution, 61, 1812–22.CrossRefGoogle Scholar
Springer, Y.P. (2009). Edaphic quality and plant-pathogen interactions: effects of soil calcium on fungal infection of a serpentine flax. Ecology, 90, 1852–62.CrossRefGoogle ScholarPubMed
Stakman, E. C. (1944). Plant diseases are shifty enemies. Minnesota Farm & Home Science, 2, 89. (cited in Large, E.C. [1947]. The Advance of the Fungi. New York: Henry Holt, p. 344).Google Scholar
Stakman, E. C. (1947). Plant diseases are shifty enemies. In Baitsell, G. A., ed., Science in Progress. New Haven, CT: Yale University Press, pp. 235–79.Google Scholar
Stam, R., Scheikl, D. & Tellier, A. (2016). Pooled enrichment sequencing identifies diversity and evolutionary pressures at NLR resistance genes within a wild tomato population. Genome Biology & Evolution, 8, 1501–15.CrossRefGoogle ScholarPubMed
Stebbins, G. L. (1971). Chromosomal Evolution in Higher Plants. London, UK: Addison-Wiley.Google Scholar
Steele, K. A., Humphreys, E., Wellings, C. R. & Dickinson, M. J. (2001). Support for a stepwise mutation model for pathogen evolution in Australasian Puccinia striiformis f.sp. tritici by use of molecular markers. Plant Pathology, 50, 174–80.CrossRefGoogle Scholar
Steets, J. A., Hamrick, J. L., Ashman, T-L. (2006). Consequences of vegetative herbivory for maintenance of intermediate outcrossing in an annual plant. Ecology, 87, 2717–27.CrossRefGoogle Scholar
Stergiopoulos, I., Cordovez, V., Ökmen, B., Beenen, H.G., Kema, G. H. J. & De Wit, P. J. G. M. (2014). Positive selection and intragenic recombination contribute to high allelic diversity in effector genes of Mycosphaerella fijiensis, causal agent of the black leaf streak disease of banana. Molecular Plant Pathology, 15, 447–60.CrossRefGoogle ScholarPubMed
Stergiopoulos, I., De Kock, M. J. D., Lindhout, P. & De Wit, P. J. G. M. (2007). Allelic variation in the effector genes of the tomato pathogen Cladosporium fulvum reveals different modes of adaptive evolution. Molecular Plant-Microbe Interactions, 20, 1271–83.CrossRefGoogle ScholarPubMed
Steuernagel, B., Periyannan, S. K., Hernández-Pinzón, I., Witek, K., Rouse, M. N., Yu, G., Hatta, A., Ayliffe, M., Bariana, H., Jones, J. D. G., Lagudah, E. S. & Wulff, B. B. H. (2016). Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nature Biotechnology, 34, 652–5.CrossRefGoogle ScholarPubMed
Stevens, R. B. (1960). Cultural practices in disease control. In Horsfall, J. G. and Dimond, A. E., eds., Plant Pathology - an Advanced Treatise. New York: Academic Press, pp. 357429.CrossRefGoogle Scholar
Stewart, H. E., Bradshaw, J. E. & Pande, B. (2003). The effect of the presence of R-genes for resistance to late blight (Phytophthora infestans) of potato (Solanum tuberosum) on the underlying level of field resistance. Plant Pathology, 52, 193–8.CrossRefGoogle Scholar
Stewart, J. E., Thomas, K. A., Lawrence, C. B., Christopher, B., Dang, H., Pryor, B. M., Timmer, L. M. & Peever, T. (2013). Signatures of recombination in clonal lineages of the citrus brown spot pathogen, Alternaria alternata sensu lato. Phytopathology, 103, 741–9.CrossRefGoogle ScholarPubMed
Stotz, H. U., de Oliveira Almwida, R., Davey, N., Steuber, V. & Valent, G. T. (2017). Review of combinations of experimental and computational techniques to identify and understand genes involved in innate immunity and effector-triggered defence. Methods, 131, 120–7.CrossRefGoogle ScholarPubMed
Stowe, K. A., Marquis, R. J., Hochwender, C. G. & Simms, E. L. (2000). The evolutionary ecology of tolerance to consumer damage. Annual Review of Ecology & Systematics, 31, 565–95.CrossRefGoogle Scholar
Strauss, S. Y. 1994. Levels of herbivory and parasitism in host hybrid zones. Trends in Ecology & Evolution, 9, 209–14.CrossRefGoogle ScholarPubMed
Strong, D. R. & Levin, D. A. (1975). Species richness of parasitic fungi of British trees. Proceedings of the National Academy of Sciences, USA, 72, 2116–19.CrossRefGoogle ScholarPubMed
Strong, D. R. & Levin, D. A. (1979). Species richness of plant parasites and growth form of their hosts. The American Naturalist, 114, 122.CrossRefGoogle Scholar
Stukenbrock, E. H., Christiansen, F. B., Hansen, T. T., Dutheil, J. Y. & Schierup, M. H. (2012). Fusion of two divergent fungal individuals led to the recent emergence of a unique widespread pathogen species. Proceedings of the National Academy of Science, USA, 109, 10954–9.CrossRefGoogle Scholar
Sturrock, R. N., Frankel, S. J., Brown, A. V., Hennon, P. E., Kliejunas, J. T., Lewis, K. J., Worrall, J. J. & Woods, A. J. 2011. Climate change and forest diseases. Plant Pathology, 60, 133–49.CrossRefGoogle Scholar
Suffert, F., Ravigné, V. & Sache, I. (2015). Seasonal changes drive short-term selection for fitness traits in the wheat pathogen Zymoseptoria tritici. Applied & Environmental Microbiology, 81, 6367–79.CrossRefGoogle ScholarPubMed
Sullivan, L. L., Johnson, B. L., Brudvig, L. A. & Haddad, N. M. (2011). Can dispersal mode predict corridor effects on plant parasites? Ecology, 92, 1559–64.CrossRefGoogle ScholarPubMed
Susi, H., Barres, B., Vale, P. F. & Laine, A-L. (2015a). Co-infection alters population dynamics of infectious disease. Nature Communications, 6, 5975. http://doi:10.1038/ncomms6975CrossRefGoogle ScholarPubMed
Susi, H. & Laine, A-L. (2013). Pathogen life-history correlations revealed in allopatry. Evolution, 67, 3362–70.CrossRefGoogle Scholar
Susi, H., Thrall, P. H., Barrett, L. G. & Burdon, J. J. (2017). Local demographic and epidemiological patterns in the Linum marginale – Melampsora lini association over a twelve year period. Journal of Ecology, 105, 1399–412.CrossRefGoogle Scholar
Susi, H., Vale, P. F. & Laine, A-L. (2015b). Host genotype and coinfection modify the relationship of within and between host transmission. The American Naturalist, 186, 252–63.CrossRefGoogle ScholarPubMed
Sweigard, J. A., Carroll, A. M., Kang, S., Farrall, L., Chumley, F. G. & Valent, B. (1995). Identification, cloning, characterization of PWL2, a gene for host-specific specificity in the rice blast fungus. Plant Cell, 7, 1221–33.Google Scholar
Syller, J. (2003). Molecular and biological features of umbraviruses, the unusual plant viruses lacking genetic information for a capsid protein. Physiological & Molecular Plant Pathology, 63, 3546.CrossRefGoogle Scholar
Syller, J. (2012). Facilitative and antagonistic interactions between plant viruses in mixed infections. Molecular Plant Pathology, 13, 204–16.CrossRefGoogle ScholarPubMed
Sztuba-Solińska, J., Urdanowicz, A., Figlerowicz, M. & Bujarski, J.J. (2011). RNA-RNA recombination in plant virus replication and evolution. Annual Review of Phytopathology, 49, 415–43.CrossRefGoogle ScholarPubMed
Tack, A. J. M., Hakala, J., Petäjä, T., Kulmala, M. & Laine, A-L. (2014). Genotype and spatial structure shape pathogen dispersal and disease dynamics at small spatial scales. Ecology, 95, 703–14.CrossRefGoogle ScholarPubMed
Tack, A. J. M., Horns, F. & Laine, A-L. (2014). The impact of spatial scale and habitat configuration on patterns of trait variation and local adaptation in a wild plant parasite. Evolution, 68, 176–89.CrossRefGoogle Scholar
Tack, A. J. M. & Laine, A-L. (2014). Ecological and evolutionary implications of spatial heterogeneity during the off-season for a wild plant pathogen. New Phytologist, 202, 297308.CrossRefGoogle ScholarPubMed
Tack, A. J. M., Thrall, P. H., Barrett, L. G., Burdon, J. J. & Laine, A-L. (2012). Variation in infectivity and aggressiveness in space and time in wild host-pathogen systems: causes and consequences. Journal of Evolutionary Biology, 25, 1918–36.CrossRefGoogle ScholarPubMed
Tellier, A. & Brown, J. K. M. (2009). The influence of perenniality and seed banks on polymorphism in plant-parasite interactions. The American Naturalist, 174, 769–9.CrossRefGoogle ScholarPubMed
Tellier, A. & Brown, J. K. M. (2011). Spatial heterogeneity, frequency-dependent selection and polymorphism in host-pathogen interactions. BMC Evolutionary Biology, 11, 319. http://doi.org/10.1186/1471–2148–11–319.CrossRefGoogle Scholar
Teste, F. P., Kardol, P., Turner, B. L., Wardle, D. A., Zemunik, G., Renton, M. & Laliberté, E. (2017). Plant-soil feedback and the maintenance of diversity in Mediterranean-climate shrublands. Science, 355, 173–6.CrossRefGoogle ScholarPubMed
The, T. T., Latter, B. D. H., McIntosh, R. A., Ellison, F. W., Brennan, P. S., Fisher, J., Hollamby, G. J., Rathjen, A. J. & Wilson, R. E. (1988). Grain yields of near-isogenic lines with added genes for stem rust resistance. In Miller, T. E. and Koebner, R. M. D., eds., Proceedings of the 7th International Wheat Genetics Symposium. Cambridge, UK: Institute for Plant Science Research, pp. 901–6.Google Scholar
Thompson, J. N. 1999. Specific hypotheses on the geographic mosaic of co-evolution. The American Naturalist, 153, S1S14.CrossRefGoogle Scholar
Thompson, J. N. 2005. The Geographic Mosaic of Coevolution. Chicago, IL: University of Chicago Press.CrossRefGoogle Scholar
Thompson, J. N. 2013. Relentless Evolution. Chicago, IL: University of Chicago Press.CrossRefGoogle Scholar
Thompson, J. N. & Burdon, J. J. (1992). Gene-for-gene coevolution between plants and parasites. Nature, 360, 121–5.CrossRefGoogle Scholar
Thordal-Christensen, H. & Smedegård-Petersen, V. (1988). Comparison of resistance-inducing abilities of virulent and avirulent races of Erysiphe graminis f.sp. hordei and a race of Erysiphe graminis f.sp. hordei in barley. Plant Pathology, 37, 20–7.CrossRefGoogle Scholar
Thrall, P. H., Barrett, L. G., Dodds, P. N. & Burdon, J. J. (2016). Epidemiological and evolutionary outcomes in gene-for-gene and matching allele models. Frontiers in Plant Science, 6, 1084. http://doi:10.3389/fpls.2015.01084CrossRefGoogle ScholarPubMed
Thrall, P. H., Biere, A. & Antonovics, J. (1993). Plant life-history and disease susceptibility – the occurrence of Ustilago violacea on different species within the Caryophyllaceae. Journal of Ecology, 81, 489–98.CrossRefGoogle Scholar
Thrall, P. H. & Burdon, J. J. (1997). Host-pathogen dynamics in a metapopulation context: the ecological and evolutionary consequences of being spatial. Journal of Ecology, 85, 743–53.CrossRefGoogle Scholar
Thrall, P. H. & Burdon, J. J. (1999). The spatial scale of pathogen dispersal: consequences for disease dynamics and persistence. Evolutionary Ecology Research, 1, 681701.Google Scholar
Thrall, P. H. & Burdon, J. J. (2000). Effect of resistance variation in a natural plant host-pathogen metapopulation on disease dynamics. Plant Pathology, 49, 767–73.CrossRefGoogle Scholar
Thrall, P. H. & Burdon, J. J. (2002). Evolution of gene-for-gene systems in metapopulations: the effect of spatial scale of host and pathogen dispersal. Plant Pathology, 51, 169–84.CrossRefGoogle Scholar
Thrall, P. H. & Burdon, J. J. (2003). Evolution of virulence in a plant host-pathogen metapopulation. Science, 299, 1735–37.CrossRefGoogle Scholar
Thrall, P. H. & Burdon, J. J. (2004). Host-pathogen life-history interactions affect biological control success. Weed Technology, 18, 1269–74.CrossRefGoogle Scholar
Thrall, P. H., Burdon, J. J. & Bever, J. D. (2002). Local adaptation in the Linum marginale – Melampsora lini host-pathogen interaction. Evolution, 56, 1340–51.Google ScholarPubMed
Thrall, P. H., Burdon, J. J. & Bock, C. H. (2001a). Short-term epidemic dynamics in the Cakile maritimaAlternaria brassicicola host-pathogen metapopulation association. Journal of Ecology, 89, 723–35.Google Scholar
Thrall, P. H., Burdon, J. J. & Young, A. G. (2001b). Variation in resistance and virulence among demes of a single host-pathogen metapopulation. Journal of Ecology, 89, 736–48.CrossRefGoogle Scholar
Thrall, P. H. & Jarosz, A. M. (1994a). Host-pathogen dynamics in experimental populations of Silene alba and Ustilago violacea. I. Ecological and genetic-determinants of disease spread. Journal of Ecology, 82, 549–59.Google Scholar
Thrall, P. H. & Jarosz, A. M. (1994b). Host-pathogen dynamics in experimental populations of Silene alba and Ustilago violacea. II. Experimental tests of theoretical models. Journal of Ecology, 82, 561–70.Google Scholar
Thrall, P. H., Laine, A-L., Ravensdale, M., Nemri, A., Dodds, P. N. & Burdon, J. J. (2012). Rapid genetic change underpins antagonistic coevolution in a natural host-pathogen metapopulation. Ecology Letters, 15, 425–35.CrossRefGoogle Scholar
Thrall, P. H., Oakeshott, J., Fitt, G., Southerton, S., Burdon, J. J., Sheppard, A., Russell, R. J, Zalucki, M. Heino, M. & Denison, F. (2011). Evolution in agriculture: the application of evolutionary approaches to the management of biotic interactions in agro-ecosystems. Evolutionary Applications, 4, 200–15.CrossRefGoogle Scholar
Tian, D., Traw, M. B., Chen, J. Q., Kreitman, M. & Bergelson, J. (2003). Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature, 423, 74–7.CrossRefGoogle ScholarPubMed
Tinline, R.D. (1962). Cochliobolus sativus. V. Heterokaryosis and parasexuality. Canadian Journal of Botany, 40, 425–37.CrossRefGoogle Scholar
Todesco, M., Balasubramanian, S., Hu, T.T., Traw, M.B., Horton, M., Epple, P., Kuhns, C., Sureshkumar, S., Schwartz, C., Lanz, C., Laitinen, R.A.E., Huang, Y., Chory, J., Lipka, V., Borevitz, J.O., Dangl, J.L., Bergelson, J., Nordborg, M. & Weigel, D. (2010). Natural allelic variation underlying a major fitness trade-off in Arabidopsis thaliana. Nature, 465, 632–6.CrossRefGoogle Scholar
Tollenaere, C. & Laine, A.-L. (2013). Investigating the production of sexual resting structures in a plant pathogen reveals unexpected self-fertility and genotype-by-environment effects. Journal of Evolutionary Biology, 26, 1716–26.CrossRefGoogle Scholar
Tollenaere, C., Pernechele, B., Mäkinen, H. S., Parratt, S. R., Emeth, M. Z. N., Kovacs, G. M., Kiss, L., Tack, A. J. M. & Laine, A.-L. (2014). A hyperparasite affects the population dynamics of a wild plant pathogen. Molecular Ecology, 23, 5877–8.CrossRefGoogle ScholarPubMed
Tollenaere, C., Susi, H. & Laine, A-L. (2016). Evolutionary and epidemiological implications of multiple infection in plants. Trends in Plant Science, 21, 8090.CrossRefGoogle ScholarPubMed
Tollenaere, C. Susi, H., Nokso-Koivisto, J., Koskinen, P. Tack, A. J. M., Auvinen, P. Paulin, L., Frilander, M. J., Lehtonen, R. & Laine, A-L. (2012). SNP design from 454 sequencing of Podosphaera plantaginis transcriptome reveals a genetically diverse pathogen metapopulation with high levels of mixed-genotype infection. PLoS ONE, 7, e52492.CrossRefGoogle ScholarPubMed
Tomas, A., Feng, G. H., Reeck, G. R., Bockus, W. W. & Leach, J. E. (1990). Purification of a cultivar-specific toxin from Pyrenophora tritici-repentis, causal agent of tan spot of wheat. Molecular Plant-Microbe Interactions, 3, 221–4.CrossRefGoogle Scholar
Tomback, D. F. & Achuff, P. (2010). Blister rust and western forest biodiversity: ecology, values and outlook for white pines. Forest Pathology, 40, 186225.CrossRefGoogle Scholar
Tomback, D. F., Clary, J. K., Koehler, J., Hoff, R. J. & Arno, S. F. (1995). The effects of blister rust on post-fire regeneration of whitebark pine: the Sundance Burn of northern Idaho (U.S.A.). Conservation Biology, 9, 654–64.CrossRefGoogle Scholar
Tomback, D. F. & Kendall, K. C. (2001). Biodiversity losses: the downward spiral. In Tomback, D.F., Arno, S.F. and Keane, R. E., eds., Whitebark pine communities: ecology and restoration. Washington, DC: Island Press, pp. 243–62.Google Scholar
Tomback, D. F. & Resler, L. M. (2007). Invasive pathogens at alpine treeline: consequences for treeline dynamics. Physical Geography, 28, 397418.CrossRefGoogle Scholar
Travers, S. E., Gilbert, G. S. & Perry, E. F. (1998). The effect of rust infection on reproduction in a tropical tree (Faramea occidentalis). Biotropica, 30, 438–43.CrossRefGoogle Scholar
Trujillo, E. E. (2005). History and success of plant pathogens for biological control of introduced weeds in Hawaii. Biological Control, 33, 113–22.CrossRefGoogle Scholar
Truscott, J. E. & Gilligan, C.A. (2003). Response of a deterministic epidemiological system to a stochastically varying environment. Proceedings of the National Academy of Sciences, USA, 100, 9067–72.CrossRefGoogle ScholarPubMed
Tugume, A. K., Mukasa, S. B., Kalkkinen, N. &Valkonen, J. P. T. (2010). Recombination and selection pressure in the ipomovirus sweet potato mild mottle virus (Potyviridae) in wild species and cultivated sweet potato in the centre of evolution in East Africa. Journal of General Virology, 91, 1092–108.CrossRefGoogle ScholarPubMed
Tuskan, G. A. & 109 other authors. (2006). The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 313, 1596–604.CrossRefGoogle ScholarPubMed
Valder, P. G. & Shaw, D. E. (1953). Yellow spot disease of wheat in Australia. Proceedings of the Linnean Society of New South Wales, 77, 323–30.Google Scholar
van Beuningen, L. T. & Kohli, M. M. (1990). Deviation from the regression of infection on heading and height as a measure of resistance to Septoria tritici blotch in wheat. Plant Disease, 74, 488–93.CrossRefGoogle Scholar
van den Berg, F., Gaucel, S., Lannou, C., Gilligan, C. A. & van den Bosch, F. (2013). High levels of auto-infection in plant pathogens favour short latent periods: a theoretical approach. Evolutionary Ecology, 27, 409–28.CrossRefGoogle Scholar
Van der Merwe, M. M., Kinnear, M. W., Barrett, L. G., Dodds, P. N., Ericson, L., Thrall, P. H. & Burdon, J. J. (2009). Positive selection in AvrP4 avirulence gene homologues across the genus Melampsora. Proceedings of the Royal Society of London, B, 276, 2913–22.Google ScholarPubMed
Van der Plank, J. E. 1963. Plant Diseases: Epidemics and Control. New York: Academic Press.Google Scholar
Van der Putten, W. H., Van Dijk, C. & Peters, B. A. M. (1993). Plant-specific soil-borne diseases contribute to succession in foredune vegetation. Nature, 362, 53–6.CrossRefGoogle Scholar
VanEtten, H., Funnell-Baerg, D., Wasmann, C. & McCluskey, K. (1994). Location of pathogenicity genes on dispensable chromosomes in Nectria haematococca MPVI. Antonie Leeuwenhoek, 65, 263–7.CrossRefGoogle ScholarPubMed
van Kleunen, M. & Fischer, M. (2009). Release from foliar and floral fungal pathogen species does not explain the geographic spread of naturalized North American plants in Europe. Journal of Ecology, 97, 385–92.CrossRefGoogle Scholar
Van Loon, L. C. (2007). Plant responses to plant growth-promoting rhizobacteria. European Journal of Plant Pathology, 119, 243–54.CrossRefGoogle Scholar
Van Nes, E. H. & Scheffer, M. (2005). A strategy to improve the contribution of complex simulation models to ecological theory. Ecological Modelling, 185, 153–64.CrossRefGoogle Scholar
Van Schaik, J., Dekeukeleire, D. & Kerth, G. (2015). Host and parasite life history interplay to yield divergent population genetic structures in two ectoparasites living on the same bat species. Molecular Ecology, 24, 2324–35.CrossRefGoogle ScholarPubMed
Van Weymers, P. S. M., Baker, K., Chen, X., Harrower, B., Cooke, D. E. L., Gilroy, E. M., Birch, P. R. J., Thilliez, G. J. A., Lees, A. K., Lynott, J. S., Armstrong, M. R., McKenzie, G., Bryan, G. J. & Hein, I. (2016). Utilizing “omic” technologies to identify and prioritize novel sources of resistance to the Oomycete pathogen Phytophthora infestans in potato germplasm collections. Frontiers in Plant Science, 7, Article 672. http://doi:10.3389/fpls.2016.00672CrossRefGoogle Scholar
Vavilov, N. I. (1949). The origin, variation, immunity, and breeding of cultivated plants. Chronica Botanica 13, 1-366.Google Scholar
Verdú, A. M. C. & Mas, M. T. (2015). Density-related effects on the infectivity and aggressiveness of a sterilizing smut in a wild population of Digitaria sanguinalis. Plant Biology, 17, 281–7.CrossRefGoogle Scholar
Vézeau, C. & Payette, S. (2016). Gap expansion in old-growth subarctic forests: the climate-pathogen connection. New Phytologist, 212, 1044–56.CrossRefGoogle ScholarPubMed
Vila-Aiub, M. M., Neve, P. & Roux, F. (2011). A unified approach to the estimation and interpretation of resistance costs in plants. Heredity, 107, 386–94.CrossRefGoogle Scholar
Vilich-Meller, V. (1992). Pseudocercosporella herpotrichoides, Fusarium spp. and Rhizoctonia cerealis stem rot in pure stands and interspecific mixtures of cereals. Crop Protection, 11, 4550.CrossRefGoogle Scholar
Villareal, L. M. M. A. & Lannou, C. (2000). Selection for increased spore efficacy by host genetic background in a wheat powdery mildew population. Phytopathology, 90, 1300–6.CrossRefGoogle Scholar
Visser, J. C. & Bellstedt, D. U. (2009). An assessment of molecular variability and recombination patterns in South African isolates of potato virus Y. Archives of Virology, 154, 1891–900.CrossRefGoogle ScholarPubMed
Wahl, I. (1970). Prevalence and geographic distribution of resistance to crown rust in Avena sterilis. Phytopathology, 60, 746–9.CrossRefGoogle Scholar
Wallis, C. M., Reich, R. W., Lewis, K. J. & Huber, D. P. W. (2010). Lodgepole pine provenances differ in chemical defense capacities against foliage and stem diseases. Canadian Journal of Forestry Research, 40, 2333–44.CrossRefGoogle Scholar
Wang, J., Zhang, L., Li, J., Lawton-Rauh, A. & Tian, D. (2011). Unusual signatures of highly adaptable R-loci in closely related Arabidopsis species. Gene, 482, 2433.CrossRefGoogle ScholarPubMed
Wang, Y., Rosen, B., Scoffield, J., Egnin, M., Mortley, D., Steiner, S., Cook, D. R. & He, G. (2010). Isolation and analysis of resistance gene homologues in sweetpotato. Plant Breeding, 129, 519–25.Google Scholar
Wang, Z., Mackill, D. J. & Bonman, J. M. (1989). Inheritance of partial resistance to blast in Indica rice cultivars. Crop Science, 29, 848–53.CrossRefGoogle Scholar
Washitani, I., Okayama, Y., Sato, K., Takahashi, H. & Ohgushi, T. (1996). Spatial variation in female fertility related to interactions with flower consumers and pathogens in a forest metapopulation of Primula sieboldi. Researches on Population Ecology, 38, 249–56.Google Scholar
Wastie, R. L. ( 1991). Breeding for resistance. Advances in Plant Pathology, 7, 193223.Google Scholar
Watson, I. A. (1981). Wheat and its rust parasites in Australia. In Evans, L. T. and Peacock, W. J., eds., Wheat Science – Today and Tomorrow. Cambridge, UK: Cambridge University Press, pp. 129–47.Google Scholar
Watson, I. A. & Luig, N. H. (1968). Progressive increase in virulence in Puccinia graminis. f.sp. tritici. Phytopathology, 58, 70–3.Google Scholar
Watson, I. A. & de Sousa, C. N. A. (1983). Long distance transport of spores of Puccinia graminis tritici in the southern hemisphere. Proceedings of the Linnean Society of New South Wales, 106, 311–21.Google Scholar
Webster, R. K. (1974). Recent advances in the genetics of plant pathogenic fungi. Annual Review of Phytopathology, 12, 331–53.CrossRefGoogle Scholar
Webster, R. K., Saghai Maroof, M. A. & Allard, R. W. (1986). Evolutionary responses of barley Composite Cross II to Rhynchosporium secalis analysed by pathogenic complexity and by gene-by-race relationships. Phytopathology, 76, 661–8.CrossRefGoogle Scholar
Wellings, C. R. & McIntosh, R. A. (1990). Puccinia striiformis f.sp. tritici in Australasia: pathogenic changes during the first ten years. Plant Pathology, 39, 316–25.CrossRefGoogle Scholar
Weste, G. (2003). The dieback cycle in Victorian forests: a 30-year study of changes caused by Phytophthora cinnamomi in Victorian open forests, woodlands and heathlands. Australasian Plant Pathology, 32, 247–56.CrossRefGoogle Scholar
Weste, G. & Ashton, D. H. (1994). Regeneration and survival of indigenous dry sclerophyll species in the Brisbane Ranges, Victoria, after a Phytophthora cinnamomi epidemic. Australian Journal of Botany, 42, 239–53.CrossRefGoogle Scholar
Weste, G., Brown, K., Kennedy, J. & Walshe, T. (2002). Phytophthora cinnamomi infestation – a 24-year study of vegetation change in forests and woodlands of the Grampians, Western Victoria. Australian Journal of Botany, 50, 247–74.CrossRefGoogle Scholar
Whipps, J. M. (2004). Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Canadian Journal of Botany, 82, 1198–227.CrossRefGoogle Scholar
Whiteman, N. K., Kimball, R. T. & Parker, P. G. (2007). Cophylogeography and comparative population genetics of the threatened Galapagos Hawk and three ectoparasite species: ecology shapes population histories within parasite communities. Molecular Ecology, 16, 4759–73.CrossRefGoogle ScholarPubMed
Whitham, T. G., Morrow, P. A. & Potts, M. B. (1994). Plant hybrid zones as centers of biodiversity: the herbivore community of two endemic Tasmanian eucalypts. Oecologia, 97, 481–90.CrossRefGoogle ScholarPubMed
Wiedermann, M. M., Norden, A., Gunnarsson, U., Nilsson, M. B. & Ericson, L. (2007). Global change shifts vegetation and plant-parasite interactions in a boreal mire. Ecology, 88, 454–64.CrossRefGoogle Scholar
Wilkinson, G. R. (2008). Population differentiation within Eucalyptus obliqua: implications for regeneration success and genetic conservation in production forests. Australian Forestry 2008, 415.CrossRefGoogle Scholar
Williams, G. C. (1975). Sex and Evolution. Princeton, NJ: Princeton University Press.Google ScholarPubMed
Wills, R. T. (1993). The ecological impact of Phytophthora cinnamomi in the Stirling Range National Park, Western Australia. Australian Journal of Ecology, 18, 145–59.CrossRefGoogle Scholar
Wilson, M. & Henderson, D. M. (1966). British Rust Fungi. Cambridge, UK: Cambridge University Press.Google Scholar
Wintermantel, W. M., Cortez, A. A., Anchieta, A. G., Gulati-Sakhuja, A. & Hladky, L. L. (2008). Co-Infection by two criniviruses alters accumulation of each virus in a host-specific manner and influences efficiency of virus transmission. Phytopathology, 98, 1340–45.CrossRefGoogle Scholar
Witek, K., Jupe, F., Witek, A. I., Baker, D., Clark, M. D. & Jones, J. D. G. (2016). Accelerated cloning of a potato late blight–resistance gene using RenSeq and SMRT sequencing. Nature Biotechnology 34, 656–60.CrossRefGoogle ScholarPubMed
Wolfe, M. S. (1985). The current status and prospects of multiline cultivars and variety mixtures for disease resistance. Annual Review of Phytopathology, 64, 148–55.Google Scholar
Wolfe, M. S. & Barrett, J. A. (1980). Can we lead the pathogen astray? Plant Disease, 64, 148–55.CrossRefGoogle Scholar
Wolinska, J. & King, K. C. (2009). Environment can alter selection in host-parasite interactions. Trends in Parasitology, 25, 236–44.CrossRefGoogle ScholarPubMed
Wolpert, T. J., Dunkle, L. D. & Ciuffetti, L. M. (2002). Host-selective toxins and avirulence determinants: what’s in a name? Annual Review of Phytopathology, 40, 251–85.CrossRefGoogle Scholar
Wong, C. M. & Daniels, L. D. (2017). Novel forest decline triggered by multiple interactions among climate, an introduced pathogen and bark beetles. Global Change Biology, 23, 1926–41.CrossRefGoogle ScholarPubMed
Wood, A. R. & Morris, M. J. (2007). Impact of the gall-forming rust fungus Uromycladium tepperianum on the invasive tree Acacia saligna in South Africa: 15 years of monitoring. Biological Control, 41, 6877.CrossRefGoogle Scholar
Woods, A., Coates, K. D. & Hamann, A. (2005). Is an unprecedented Dothistroma needle blight epidemic related to climate change? BioScience, 55, 761–9.CrossRefGoogle Scholar
Woods, K. D. (1979). Reciprocal replacement and the maintenance of codominance in a beech–maple forest. Oikos, 33, 31–9.CrossRefGoogle Scholar
Woods, K. D. (1984). Patterns of tree replacement: canopy effects on understory pattern in hemlock-northern hardwood forests. Vegetatio, 56, 87107.CrossRefGoogle Scholar
Worrall, J. J., Lee, T. D. & Harrington, T. C. (2005). Forest dynamics and agents that initiate and expand canopy gaps in Picea-Abies forests of Crawford Notch, New Hampshire, USA. Journal of Ecology, 93, 178–90.CrossRefGoogle Scholar
Wright, S. (1951). The genetical structure of populations. Annals of Eugenetics 15, 323–54.Google ScholarPubMed
Xhaard, C., Barrès, B., Andrieux, A., Bousset, L., Halkett, F. & Frey, P. (2012). Disentangling the genetic origins of a plant pathogen during disease spread using an original molecular epidemiology approach. Molecular Ecology, 21, 2383–98.CrossRefGoogle ScholarPubMed
Xu, M. & Yu, S. X. (2014). Elevational variation in density dependence in a subtropical forest. Ecology & Evolution, 4, 2823–33.CrossRefGoogle Scholar
Yamazaki, M., Iwamoto, S. & Seiwa, K. (2009). Distance- and density-dependent seedling mortality caused by several diseases in eight tree species co-occurring in a temperate forest. Plant Ecology, 201, 181–16.CrossRefGoogle Scholar
Young, N. D. (1996). QTL mapping and quantitative disease resistance in plants. Annual Review of Phytopathology, 34, 479501.CrossRefGoogle ScholarPubMed
Zargar, U. R., Chisti, M. Z., Ahmad, F. & Rather, M. I. (2014). Does alteration in biodiversity really affect disease outcome? – A debate is brewing. Saudi Journal of Biological Sciences, 22, 1418.CrossRefGoogle ScholarPubMed
Zeigler, R. S., Scott, R. P., Leung, H., Bordeos, A. A., Kumar, J. & Nelson, R. J. (1997). Evidence for parasexual exchange of DNA in the rice blast fungus challenges its exclusive clonality. Phytopathology, 87, 284–94.CrossRefGoogle ScholarPubMed
Zhan, J., Ericson, L. & Burdon, J. J. (2018). Climate change accelerates local disease extinction rates in a long-term wild host-pathogen association. Global Change Biology https://doi.org/10.1111/gcb.14111CrossRefGoogle Scholar
Zhan, J. & McDonald, B. A. (2013). Experimental measures of pathogen competition and relative fitness. Annual Review of Phytopathology, 51, 131–53.CrossRefGoogle ScholarPubMed
Zhan, J., Mundt, C. C. & McDonald, B. A. (1998). Measuring immigration and sexual reproduction in field populations of Mycosphaerella graminicola. Phytopathology, 88, 1330–7.CrossRefGoogle ScholarPubMed
Zhan, J., Mundt, C. C., Hoffer, M. E. & McDonald, B. A. (2002). Local adaptation and the effect of host genotype on the rate of pathogen evolution: an experimental test in a plant pathosystem. Journal of Evolutionary Biology, 15, 634–47.CrossRefGoogle Scholar
Zhao, J., Wang, L., Wang, Z. Y., Chen, X. M., Zhang, H. C., Yao, J. N., Zhan, G. M., Chen, W., Huang, L. L. & Kang, Z. S. (2013). Identification of eighteen Berberis species as alternate hosts of Puccinia striiformis f.sp. tritici and virulence variation in the pathogen isolates from natural infection of barberry plants in China. Phytopathology, 103, 927–34.CrossRefGoogle ScholarPubMed
Zhu, Q. H., Bennetzen, J. L. & Smith, S. M. (2013). Isolation and diversity analysis of resistance gene homologues from Switchgrass. G3 – Genes | Genomes | Genetics, 3, 1031–42.Google ScholarPubMed
Zhu, Y., Comita, L. S., Hubbell, S. P. & Ma, K. (2015). Conspecific and phylogenetic density-dependent survival differs across life stages in a tropical forest. Journal of Ecology, 103, 957–66.CrossRefGoogle Scholar
Zimmer, D. R., Schafer, J. F. & Patterson, F. L. (1963). Mutations for virulence in Puccinia coronata. Phytopathology, 53, 171–6.Google Scholar
Ziogas, B. N., Markoglou, A. N. & Tzima, A. (2002). A non-Mendelian inheritance of resistant to strobilurin fungicides in Ustilago maydis. Pest Management Science, 58, 908–16.CrossRefGoogle ScholarPubMed
Zolan, M. E. (1995). Chromosome length polymorphism in fungi. Microbiological Reviews, 59, 686–98.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Jeremy J. Burdon, Commonwealth Scientific and Industrial Research Organisation, Canberra, Anna-Liisa Laine, University of Helsinki
  • Book: Evolutionary Dynamics of Plant-Pathogen Interactions
  • Online publication: 09 March 2019
  • Chapter DOI: https://doi.org/10.1017/9781108625517.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Jeremy J. Burdon, Commonwealth Scientific and Industrial Research Organisation, Canberra, Anna-Liisa Laine, University of Helsinki
  • Book: Evolutionary Dynamics of Plant-Pathogen Interactions
  • Online publication: 09 March 2019
  • Chapter DOI: https://doi.org/10.1017/9781108625517.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Jeremy J. Burdon, Commonwealth Scientific and Industrial Research Organisation, Canberra, Anna-Liisa Laine, University of Helsinki
  • Book: Evolutionary Dynamics of Plant-Pathogen Interactions
  • Online publication: 09 March 2019
  • Chapter DOI: https://doi.org/10.1017/9781108625517.012
Available formats
×