Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-09T09:36:53.465Z Has data issue: false hasContentIssue false

30 - Marine mammals summary

from Part VI - Marine mammals

Published online by Cambridge University Press:  07 September 2010

Mark D. Uhen
Affiliation:
Smithsonian Institution, Washington, DC, USA
Christine M. Janis
Affiliation:
Brown University, Rhode Island
Gregg F. Gunnell
Affiliation:
University of Michigan, Ann Arbor
Mark D. Uhen
Affiliation:
University of Alabama, Birmingham
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Árnason, U. (1977). The relationship between the four principal pinniped karyotypes. Hereditas, 87, 227–42.CrossRefGoogle ScholarPubMed
Árnason, . and Widegren, B. (1986). Pinniped phylogeny enlightened by molecular hybridizations using highly repetitive DNA. Molecular Biology and Evolution, 3, 356–65.Google Scholar
Bajpai, S. and Gingerich, P. D. (1998). A new Eocene archaeocete (Mammalia, Cetacea) from India and the time of origin of whales. Proceedings of the National Academy of Science, USA, 95, 15464–8.CrossRefGoogle ScholarPubMed
Barnes, L. G. (1972). Miocene Desmatophocinae (Mammalia: Carnivora) from California. University of California, Publications in Geological Sciences, 89, 1–76.Google Scholar
(1984). Whales, dolphins and porpoises: origin and evolution of the Cetacea. University of Tennessee Department of Geological Sciences Studies in Geology, 8, 139–54.
(1987). An early Miocene pinniped of the genus Desmatophoca (Mammalia: Otariidae) from Washington. Contributions in Science, Los Angeles County Museum of Natural History, 382, 1–20.
Barnes, L. G.(1989). A new enaliarctine pinniped from the Astoria Formation, Oregon, and a classification of the Otariidae (Mammalia: Carnivora). Contributions in Science, Los Angeles County Museum of Natural History, 403, 1–26.Google Scholar
Barnes, L. G. and Sanders, A. E. (1996a). The transition from archaeocetes to mysticetes: late Oligocene toothed mysticetes from near Charleston, South Carolina. [Proceedings of the Sixth North American Paleontological Convention.] Paleontological Society Special Publication, 8, p. 24. Baltimore, MD: Paleontological Society.Google Scholar
Barnes, L. G., and Sanders, A. E.(1996b). The transition from Archaeoceti to Mysticeti: late Oligocene toothed mysticetes from South Carolina, USA. Journal of Vertebrate Paleontology, 16(suppl. to no. 3), p. 21A.Google Scholar
Barnes, L. G., Goedert, J. L., and Furusawa, H. (2001). The earliest known echolocating toothed whales (Mammalia; Odontoceti): preliminary observations of fossils from Washington State. Mesa Southwest Museum Bulletin, 8, 91–100.Google Scholar
Berta, A. (1991). New Enaliarctos∗ (Pinnipedimorpha) from the Oligocene and Miocene of Oregon and the role of “enaliarctids” in pinniped phylogeny. Smithsonian Contributions to Paleobiology, 69, 1–33.CrossRefGoogle Scholar
Berta, A. and Sumich, J. L. (1999). Marine Mammals: Evolutionary Biology. London, : Academic Press.Google Scholar
Berta, A. and Wyss, A. R. (1994). Pinniped phylogeny. Proceedings of the San Diego Society of Natural History, 29, 33–56.Google Scholar
Berta, A., Ray, C. E., and Wyss, A. R. (1989). Skeleton of the oldest known pinniped, Enaliarctos mealsi. Science, 244, 60–2.
Boyden, A. and Gemeroy, D. (1950). The relative position of the Cetacea among the orders of Mammalia as indicated by precipitin tests. Zoologica, 35, 145–51.Google Scholar
Clementz, M. T., Hoppe, K. A., and Koch, P. L. (2003). A paleoecological paradox: the habit and dietary preferences of the extinct tethythere Desmostylus, inferred from stable isotope analysis. Paleobiology, 29, 506–19.2.0.CO;2>CrossRefGoogle Scholar
Crowley, B. E. and Barnes, L. G. (1996). A new late Oligocene mysticete from Washington State. Paleontological Society Special Publication, 8, 90.Google Scholar
Davies, J. L. (1958). Pleistocene geography and the distribution of northern pinnipeds. Ecology, 39, 97–113.CrossRefGoogle Scholar
Davies, J. L.(1963). The antitropical factor in cetacean speciation. Evolution, 17, 101–16.CrossRefGoogle Scholar
Deméré, T. A., Berta, A., and Adam, P. J. (2003). Pinnipedimorph evolutionary biogeography. Bulletin of the American Museum of Natural History, 279, 33–76.2.0.CO;2>CrossRefGoogle Scholar
Dockery, D. T., III and Lozouet, P. (2003). Molluscan faunas across the Eocene/Oligocene boundary in the North American Gulf Coastal Plain, with comparisons to those of the Eocene and Oligocene of Paris. In From Greenhouse to Icehouse: The Marine Eocene-Oligocene Transition, ed. Prothero, D. R., Ivany, L. C., and Nesbitt, E. A., pp. 303–40. New York: Columbia University Press.Google Scholar
Domning, D. P. (1978). Sirenian evolution in the North Pacific Ocean. University of California, Publications in Geological Sciences, 118, 1–176.Google Scholar
Domning, D. P.(1994). A phylogenetic analysis of the Sirenia. Proceedings of the San Diego Society of Natural History, 29, 177–89.Google Scholar
Domning, D. P.(2001a). The earliest known fully quadrupedal sirenian. Nature, 413, 62–7.CrossRefGoogle Scholar
Domning, D. P.(2001b). Evolution of the Sirenia and Desmostylia. In Secondary Adaptation of Tetrapods to Life in Water, ed. Mazin, J.-M. and Buffrénil, V., pp. 151–68. Munich: Dr. Friedrich Pfeil.Google Scholar
Domning, D. P.(2001c). Sirenians, seagrasses, and Cenozoic ecological change in the Caribbean. Palaeogeography, Palaeoclimatology, Palaeoecology, 166, 27–50.CrossRefGoogle Scholar
Domning, D. P.(2002). The terrestrial posture of Desmostylians. Smithsonian Contributions to Paleobiology, 93, 99–111.Google Scholar
Domning, D. P. and Gingerich, P. D. (1994). Protosiren smithae, new species (Mammalia, Sirenia), from the late middle Eocene of Wadi Hitan, Egypt. Contributions from the Museum of Paleontology, University of Michigan, 29, 69–87.Google Scholar
Domning, D. P. and Ray, C. E. (1986). The earliest sirenian (Mammalia: Dugongidae) from the eastern Pacific Ocean. Marine Mammal Science, 2, 263–76.CrossRefGoogle Scholar
Domning, D. P., Morgan, G. S., and Ray, C. E. (1982). North American Eocene sea cows (Mammalia, Sirenia). Smithsonian Contributions to Paleobiology, 52, 1–69.CrossRefGoogle Scholar
Domning, D. P., Ray, C. E., and McKenna, M. C. (1986). Two new Oligocene desmostylians and a discussion of tethytherian systematics. Smithsonian Contributions to Paleobiology, 59, 1–55.CrossRefGoogle Scholar
Domning, D. P., Gingerich, P. D., Simons, E. L., and Ankel-Simons, F. A. (1994). A new early Oligocene Dugongid (Mammalia, Sirenia) from the Fayum Province, Egypt. Contributions from the Museum of Paleontology, University of Michigan, 29, 89–108.Google Scholar
Emlong, D. R. (1966). A new archaic cetacean from the Oligocene of northwest Oregon. Bulletin of the Oregon University Museum of Natural History, 3, 1–51.Google Scholar
Estes, J. A., Tinker, M. T., Williams, T. M., and Doak, D. F. (1998). Killer whale predation on sea otters linking oceanic and nearshore ecosystems. Science, 282, 473–6.CrossRefGoogle ScholarPubMed
Fish, P. A. (1903). The cerebral fissures of the Atlantic walrus. Proceedings of the United States National Museum, 26, 675–88.CrossRefGoogle Scholar
Flower, W. H. (1883). On the arrangement of the orders and families of existing Mammalia. Proceedings of the Zoological Society of London, 1883, 178–86.Google Scholar
Flynn, J. J. and Nedbal, M. A. (1998). Phylogeny of the Carnivora (Mammalia): congruence vs. incompatibility among multiple data sets. Molecular Phylogenetics and Evolution, 9, 414–26.CrossRefGoogle ScholarPubMed
Flynn, J. J., Neff, N. A., and Tedford, R. H. (1988). Phylogeny of the Carnivora. In The Phylogeny and Classification of the Tetrapods, Vol. 2: Mammals. ed. Benton, M. J., pp. 73–115. [Systematics Association Special Volume No. 35B.] Oxford: Clarendon Press.Google Scholar
Fordyce, R. E. (2002). Oligocene archaeocetes and toothed mysticetes: Cetacea from times of transition. Geological Society of New Zealand Miscellaneous Publication, Secondary Adaptation to Life in Water, pp. 16–17. Wellington: Geological Society of New Zealand.Google Scholar
Fordyce, R. E. (2003). Cetacean evolution and Eocene–Oligocene oceans revisited. In From Greenhouse to Icehouse: The Marine Eocene–Oligocene Transition, ed. Prothero, D. R., Ivany, L. C., and Nesbitt, E. A., pp. 154–70. New York: Columbia University Press.Google Scholar
Fordyce, R. E. and Muizon, C., de (2001). Evolutionary history of cetaceans: a review. In Secondary Adaptation of Tetrapods to Life in Water, ed. Mazin, J.-M. and Buffrénil, V., pp. 169–223. Munich: Dr. Friedrich Pfeil.Google Scholar
Gatesy, J. (1998). Molecular evidence for the phylogenetic affinities of Cetacea. In The Emergence of Whales, ed. Thewissen, J. G. M., pp. 63–112. New York: Plenum Press.CrossRefGoogle Scholar
Gatesy, J., Hayashi, C., Cronin, M., and Arctander, P. (1996). Evidence from milk casein genes that cetaceans are close relatives of hippopotamid artiodactyls. Molecular Biology and Evolution, 13, 954–63.CrossRefGoogle ScholarPubMed
Gatesy, J., Milinkovitch, M., Waddell, V., and Stanhope, M. (1999). Stability of cladistic relationships between Cetacea and higher-level artiodactyl taxa. Systematic Biology, 48, 6–20.CrossRefGoogle ScholarPubMed
Geisler, J. H. (2001). New morphological evidence for the phylogeny of Artiodactyla, Cetacea, and Mesonychidae. American Museum Novitates, 3344, 1–53.2.0.CO;2>CrossRefGoogle Scholar
Geisler, J. H. and Leary, M. A. (1997). A phylogeny of Cetacea, Artiodactyla, Perissodactyla, and archaic ungulates: the morphological evidence. Journal of Vertebrate Paleontology, 17(suppl. to no. 3), p. 48A.Google Scholar
Geisler, J. H. and Sanders, A. E. (2003). Morphological evidence for the phylogeny of Cetacea. Journal of Mammalian Evolution, 10, 23–129.CrossRefGoogle Scholar
Geisler, J. H. and Uhen, M. D. (2003). Morphological support for a close relationship between hippos and whales. Journal of Vertebrate Paleontology, 23, 991–6.CrossRefGoogle Scholar
Geisler, J. H., and Uhen, M. D.(2005). Phylogenetic relationships of extinct Cetartiodactyls: results of simultaneous analyses of molecular, morphological, and stratigraphic data. Journal of Mammalian Evolution, 12, 145–60.CrossRefGoogle Scholar
Gheerbrant, E., Sudre, J., Iarochene, M., and Moumni, A. (2001). First ascertained African “condylarth” mammals (primitive ungulates: cf. Bulbulodentata and cf. Phenacodonta) from the earliest Ypresian of the Ouled Abdoun Basin, Morocco. Journal of Vertebrate Paleontology, 21, 107–18.CrossRefGoogle Scholar
Gingerich, P. D., Haq, M. U.., Khan, I. H., and Malakani, M. S. (2001). Origin of whales from early artiodactyls: hands and feet of Eocene Protocetidae from Pakistan. Science, 293, 2239–42.CrossRefGoogle ScholarPubMed
Goodwin, M. B., Domning, D. P., and Lipps, J. H. (1998). The first record of an Eocene (Lutetian) marine mammal from Israel. Journal of Vertebrate Paleontology, 18, 813–15.CrossRefGoogle Scholar
Howell, A. B. (1930). Aquatic Mammals: Their Adaptations to Life in the Water. Springfield, IL: Charles C. Thomas.Google Scholar
Hunt, R. M. Jr. and Barnes, L. G. (1994). Basicranial evidence for ursid affinity of the oldest pinnipeds. Proceedings of the San Diego Society of Natural History, 29, 57–67.Google Scholar
Inuzuka, N. (2000). Primitive late Oligocene desmostylians from Japan and the phylogeny of the Desmostylia. Bulletin of the Ashoro Museum of Paleontology, 1, 91–123.Google Scholar
Kellogg, R. (1922). Pinnipeds from the Miocene and Pleistocene deposits of California. University of California, Publications in Geology, 13, 23–132.Google Scholar
Kellogg, R.(1936). A Review of the Archaeoceti. Carnegie Institute of Washington Special Publication, 482, 1–366.Google Scholar
King, J. E. (1983). Seals of the World. Ithaca: Comstock.Google Scholar
Koretsky, I. A. and Sanders, A. E. (2002). Paleontology of the late Oligocene Ashley and Chandler Bridge Formations of South Carolina, 1: Paleogene pinniped remains; the oldest known seal (Carnivora: Phocidae). Smithsonian Contributions to Paleobiology, 93, 179–83.Google Scholar
Matthew, W. D. (1909). The Carnivora and Insectivora of the Bridger Basin, Middle Eocene. Memoirs of the American Museum of Natural History, 6, 291–567.Google Scholar
Mazin, J.-M. (2001). Mesozoic marine reptiles: an overview. In Secondary Adaptation of Tetrapods to Life in Water, ed. Mazin, J.-M. and Buffrénil, V. D., pp. 95–117. Munich: Dr. Friedrich Pfeil.Google Scholar
Mchedlidze, G. A. (1984). General Features of Paleobiological Evolution of Cetacea. New Delhi: Amerind.Google Scholar
McKenna, M. C. and Bell, S. K. (1997). Classification of Mammals Above the Species Level. New York: Columbia University Press.Google Scholar
McLaren, I. A. (1960). Are the Pinnipedia biphyletic?Systematic Zoology, 9, 18–28.CrossRefGoogle Scholar
Mitchell, E. D. (1967). Controversy over diphyly in pinnipeds. Systematic Zoology, 16, 350–1.CrossRefGoogle Scholar
Mitchell, E. D.(1975). Parallelism and convergence in the evolution of the Otariidae and Phocidae. Rapports et Procès-Verbaux des Réunions, 169, 12–26.Google Scholar
Mitchell, E. D.(1989). A new cetacean from the late Eocene La Meseta Formation, Seymour Island, Antarctic Peninsula. Canadian Journal of Fisheries and Aquatic Science, 46, 2219–35.CrossRefGoogle Scholar
Montgelard, C., Catzeflis, F. M., and Douzery, E. (1997). Phylogenetic relationships of artiodactyls and cetaceans as deduced from the comparison of cytochrome b and 12S rRNA mitochondrial sequences. Molecular Biology and Evolution, 14, 550–9.CrossRefGoogle ScholarPubMed
Morgan, G. S. (1994). Miocene and Pliocene marine mammal faunas from the Bone Valley Formation of central Florida. Proceedings of the San Diego Society of Natural History, 29, 239–68.Google Scholar
Muizon, C. (1982). Phocid phylogeny and dispersal. Annals of the South African Museum, 89, 175–213.Google Scholar
Nikaido, M., Matsuno, F., Hamilton, H., et al. (2001). Retroposon analysis of major cetacean lineages: the monophyly of toothed whales and the paraphyly of river dolphins. Proceedings of the National Academy of Science, USA, 98, 7384–9.CrossRefGoogle ScholarPubMed
O'Leary, M. A. (2002). Mesonychia. In Encyclopedia of Marine Mammals, ed. Perrin, W. F., Würsig, B., and Thewissen, J. G. M., pp. 735–7. London: Academic Press.Google Scholar
Okazaki, Y. (1995). A new type of primitive baleen whale (Cetacea; Mysticeti) from Kyushu, Japan. The Island Arc, 3, 432–5.CrossRefGoogle Scholar
Prothero, D. R., Manning, E. M., and Fischer, M. (1988). The phylogeny of the ungulates. In The Phylogeny and Classification of the Tetrapods, Vol. 2, ed. Benton, M. J., pp. 201–34. Oxford: Clarendon Press.Google Scholar
Prothero, D. R., Jaquette, C. D., and Armentrout, J. M. (2001). Magnetic stratigraphy of the upper Eocene–upper Oligocene Lincoln Creek Formation, Porter Bluffs, Washington. In Magnetic Stratigraphy of the Pacific Coast Cenozoic, ed. D. Prothero, pp. 169–78. Santa Fe Springs, CA: Pacific Section of the Society for Sedimentary Geology.
Ray, C. E. (1977). Geography of phocid evolution. Systematic Zoology, 25, 391–406.CrossRefGoogle Scholar
Repenning, C. A., Berta, A., and Wyss, A. R. (1990). Oldest pinniped. Science, 248, 499–500.CrossRefGoogle ScholarPubMed
Sanders, A. E. and Barnes, L. G. (2002). Paleontology of the late Oligocene Ashley and Chandler Bridge Formations of South Carolina, 3: Eomysticetidae, a new family of primitive mysticetes (Mammalia: Cetacea). Smithsonian Contributions to Paleobiology, 93, 313–56.Google Scholar
Savage, R. J. G., Domning, D. P., and Thewissen, J. G. M. (1994). Fossil Sirenian of the west Atlantic and Caribbean region. V. The most primitive known sirenian, Prorastomus sirenoides Owen, 1855. Journal of Vertebrate Paleontology, 14, 427–49.CrossRefGoogle Scholar
Scheffer, V. B. (1958). Seals, Sea Lions, and Walruses. Stanford, CA: Stanford University Press.Google Scholar
Shimamura, M., Yasue, H., Ohshima, K., et al. (1997). Molecular evidence from retroposons that whales form a clade within even-toed ungulates. Nature, 388, 666–70.CrossRefGoogle Scholar
Shimamura, M., Abe, H., Nikaido, M., Ohshima, K., and Okada, N. (1999). Genealogy of families of SINEs in cetaceans and artiodactyls: the presence of a huge superfamily of tRNAGlu-derived families of SINEs. Molecular Biology and Evolution, 16, 1046–60.CrossRefGoogle ScholarPubMed
Simpson, G. G. (1945). The principles of classification and a classification of mammals. Bulletin of the American Museum of Natural History, 85, 1–350.Google Scholar
Tedford, R. H. (1976). Relationship of pinnipeds to other carnivores (Mammalia). Systematic Zoology, 25, 363–74.CrossRefGoogle Scholar
Thewissen, J. G. M., Williams, E. M., Roe, L. J., and Hussain, S. T. (2001). Skeletons of terrestrial cetaceans and the relationship of whales to artiodactyls. Nature, 413, 277–81.CrossRefGoogle ScholarPubMed
Uhen, M. D. (1998). Middle to late Eocene basilosaurines and dorudontines. In The Emergence of Whales, ed. Thewissen, J. G. M., pp. 29–61. New York: Plenum Press.CrossRefGoogle Scholar
Uhen, M. D.(1999). New species of protocetid archaeocete whale, Eocetus wardii (Mammalia, Cetacea), from the middle Eocene of North Carolina. Journal of Paleontology, 73, 512–28.CrossRefGoogle Scholar
Uhen, M. D.(2002). Evolution of dental morphology (cetacean). In Encyclopedia of Marine Mammals, ed. Perrin, W. F., Würsig, B., and Thewissen, J. G. M., pp. 316–19. London: Academic Press.Google Scholar
Uhen, M. D.(2004). Form, function, and anatomy of Dorudon atrox (Mammalia, Cetacea): an archaeocete from the middle to late Eocene of Egypt. University of Michigan Museum of Paleontology Papers on Paleontology, 34, 1–222.Google Scholar
Uhen, M. D. and Gingerich, P. D. (2001). New genus of dorudontine archaeocete (Cetacea) from the middle-to-late Eocene of South Carolina. Marine Mammal Science, 17, 1–34.CrossRefGoogle Scholar
Valen, L. M. (1966). Deltatheridia, a new order of mammals. Bulletin of the American Museum of Natural History, 132, 1–126.Google Scholar
Vrana, P. B., Milinkovitch, M. C., Powell, J. R., and Wheeler, W. C. (1994). Higher level relationships of the arctoid Carnivora based on sequence data and “total evidence”. Molecular Phylogenetics and Evolution, 3, 47–58.CrossRefGoogle ScholarPubMed
Waddell, P. J., Okada, N., and Hasegawa, M. (1999). Towards resolving the interordinal relationships of placental mammals. Systematic Biology, 48, 1–5.CrossRefGoogle ScholarPubMed
Weber, M. (1904). Die Säugetiere. Jena: G. Fischer.Google Scholar
Wortman, J. L. (1894). Osteology of Patriofelis, a middle Eocene creodont. Bulletin of the American Museum of Natural History, 6, 129–64.Google Scholar
(1906). A new fossil seal from the marine Miocene of the Oregon coast. Science, 24, 89–92.CrossRef
Wozencraft, W. C. (1989). The phylogeny of the Recent Carnivora. In Carnivore Behavior, Ecology, and Evolution, ed. Gittleman, J. L., pp. 495–535, Ithaca NY: Cornell University Press.Google Scholar
Wyss, A. R. (1987). The walrus auditory region and the monophyly of pinnipeds. American Museum Novitates, 2871, 1–31.Google Scholar
Wyss, A. R.(1988). Evidence from flipper structure for a single origin of pinnipeds. Nature, 334, 427–8.CrossRefGoogle Scholar
Wyss, A. R.(1994). The evolution of body size in phocids: some ontogenetic and phylogenetic observations. Proceedings of the San Diego Society of Natural History, 29, 69–76.Google Scholar
Wyss, A. R. and Flynn, J. J. (1993). A phylogenetic analysis and definition of the Carnivora. In Mammal Phylogeny: Placentals, ed. Szalay, F. S., Novacek, M. J., and McKenna, M. C., pp. 32–52. New York: Springer-Verlag.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×