Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T03:59:14.617Z Has data issue: false hasContentIssue false

5 - Linear least squares estimation: method of normal equations

from PART II - DATA ASSIMILATION: DETERMINISTIC/STATIC MODELS

Published online by Cambridge University Press:  18 December 2009

John M. Lewis
Affiliation:
National Severe Storms Laboratory, Oklahoma
S. Lakshmivarahan
Affiliation:
University of Oklahoma
Sudarshan Dhall
Affiliation:
University of Oklahoma
Get access

Summary

In this chapter our goal is to describe the classical method of linear least squares estimation as a deterministic process wherein the estimation problem is recast as an optimization (minimization) problem. This approach is quite fundamental to data assimilation and was originally developed by Gauss in the nineteenth century (refer to Part I). The primary advantage of this approach is that it requires no knowledge of the properties of the observational errors which is an integral part of any measurement system. A statistical approach to the estimation, on the other hand, relies on a probabilistic model for the observational errors. One of the important facets of the statistical approach is that under appropriate choice of the probabilistic model for the observational errors, we can indeed reproduce the classical deterministic least squares solution described in this chapter. Statistical methods for estimation are reviewed in Part IV.

The opening Section 5.1 introduces the basic “trails of thought” leading to the first formulation of the linear least squares estimation using a very simple problem called the straight line problem (see Chapter 3 for details). This problem involves estimation of two parameters – the intercept and the slope of the straight line that is being “fitted” to a swarm of m points (that align themselves very nearly along a line) in a two-dimensional plane. An extension to the general case of linear models – m points in n dimensions (n ≧ 2) is pursued in Section 5.2. Thanks to the beauty and the power of the vector-matrix notation, the derivation of this extension is no more complex than the simple two-dimensional example discussed in Section 5.1.

Type
Chapter
Information
Dynamic Data Assimilation
A Least Squares Approach
, pp. 99 - 120
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×