Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T23:08:27.019Z Has data issue: false hasContentIssue false

2 - Geometry of Deep Learning

from Part I - Theory of Deep Learning for Image Reconstruction

Published online by Cambridge University Press:  15 September 2023

Jong Chul Ye
Affiliation:
Korea Advanced Institute of Science and Technology (KAIST)
Yonina C. Eldar
Affiliation:
Weizmann Institute of Science, Israel
Michael Unser
Affiliation:
École Polytechnique Fédérale de Lausanne
Get access

Summary

Since the groundbreaking performance improvement by AlexNet at the ImageNet challenge, deep learning has provided significant gains over classical approaches in various fields of data science including imaging reconstruction. The availability of large-scale training datasets and advances in neural network research have resulted in the unprecedented success of deep learning in various applications. Nonetheless, the success of deep learning appears very mysterious. The basic building blocks of deep neural networks are convolution, pooling, and nonlinearity, which are primitive tools of mathematics. Interestingly, the cascaded connection of these primitive tools results in superior performance over traditional approaches. To understand this mystery, one can go back to the basic ideas of the classical approaches to understand the similarities and differences from modern deep-neural-network methods. In this chapter, we explain the limitations of the classical machine learning approaches, and provide a review of mathematical foundations to understand why deep neural networks have successfully overcome their limitations.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×