Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-09T22:52:18.322Z Has data issue: false hasContentIssue false

30 - Late complications after leukemia therapy

from Section 4 - Complications and supportive care

Published online by Cambridge University Press:  05 April 2013

Ching-Hon Pui
Affiliation:
St Jude's Children's Research Hospital
Get access

Summary

Introduction

Because cure rates for children with acute lymphoblastic leukemia (ALL) have improved since the 1970s, concern regarding late treatment sequelae plays a prominent role in contemporary therapy planning. Earlier reports described long-term complications after relatively homogeneous, less-intensive chemotherapy given with cranial or craniospinal irradiation for central nervous system (CNS) preventive therapy. Recognition of new prognostic clinical and biologic features has permitted risk-directed treatment that now cures 80% or more of children with ALL. In particular, recent trials have focused on intensifying systemic chemotherapeutic agents that control ALL in the CNS in an effort to eliminate cranial radiation and its associated late effects. Continued surveillance of the survivor population is important to define long-term health outcomes after these modern, intensive therapies.

Similarly, the long-term survival of children with acute myeloid leukemia (AML) has improved substantially in the last decade with the use of more intensive chemotherapy regimens and allogeneic hematopoietic cell transplantation and advances in supportive care. Today, 50–60% of children with AML are cured of their disease. The increasing numbers of long-term survivors of AML likewise mandate the evaluation of late treatment sequelae and their effect on morbidity and mortality.

Type
Chapter
Information
Childhood Leukemias , pp. 701 - 722
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pui, CH, Campana, D, Pei, D, et al. Treating childhood acute lymphoblastic leukemia without cranial irradiation. N Engl J Med 2009;360:2730–2741.CrossRefGoogle ScholarPubMed
Veerman, AJ, Kamps, WA, van den Berg, H, et al. Dexamethasone-based therapy for childhood acute lymphoblastic leukaemia: results of the prospective Dutch Childhood Oncology Group (DCOG) protocol ALL-9 (1997–2004). Lancet Oncol 2009;10:957–966.CrossRefGoogle Scholar
Groot-Loonen, JJ, Otten, BJ, van t' Hof, MA, Lippens, RJ, Stoelinga, GB. Chemotherapy plays a major role in the inhibition of catch-up growth during maintenance therapy for childhood acute lymphoblastic leukemia. Pediatrics 1995;96:693–695.Google Scholar
Hokken-Koelega, AC, van Doorn, JW, Hahlen, K, et al. Long-term effects of treatment for acute lymphoblastic leukemia with and without cranial irradiation on growth and puberty: a comparative study. Pediatr Res 1993;33:577–582.CrossRefGoogle ScholarPubMed
Kirk, JA, Raghupathy, P, Stevens, MM, et al. Growth failure and growth-hormone deficiency after treatment for acute lymphoblastic leukaemia. Lancet 1987;i:190–193.CrossRefGoogle Scholar
Shalet, SM, Clayton, PE, Morris-Jones, PH, Price, DA. Growth in children treated for acute lymphoblastic leukaemia. Lancet 1988;ii:164.Google Scholar
Sklar, C, Mertens, A, Walter, A, et al. Final height after treatment for childhood acute lymphoblastic leukemia: comparison of no cranial irradiation with 1800 and 2400 centigrays of cranial irradiation. J Pediatr 1993;123:59–64.CrossRefGoogle ScholarPubMed
Mulder, RL, Kremer, LC, van Santen, HM, et al. Prevalence and risk factors of radiation-induced growth hormone deficiency in childhood cancer survivors: a systematic review. Cancer Treat Rev 2009;35:616–632.CrossRefGoogle ScholarPubMed
Blatt, J, Bercu, BB, Gillin, JC, Mendelson, WB, Poplack, DG. Reduced pulsatile growth hormone secretion in children after therapy for acute lymphoblastic leukemia. J Pediatr 1984;104:182–186.CrossRefGoogle ScholarPubMed
Bongers, ME, Francken, AB, Rouwe, C, Kamps, WA, Postma, A. Reduction of adult height in childhood acute lymphoblastic leukemia survivors after prophylactic cranial irradiation. Pediatr Blood Cancer 2005;45:139–143.CrossRefGoogle ScholarPubMed
Cicognani, A, Cacciari, E, Vecchi, V, et al. Differential effects of 18- and 24-Gy cranial irradiation on growth rate and growth hormone release in children with prolonged survival after acute lymphocytic leukemia. Am J Dis Child 1988;142:1199–1202.Google ScholarPubMed
Davies, HA, Didcock, E, Didi, M, et al. Disproportionate short stature after cranial irradiation and combination chemotherapy for leukaemia. Arch Dis Child 1994;70:472–475.CrossRefGoogle Scholar
Hata, M, Ogino, I, Aida, N, et al. Prophylactic cranial irradiation of acute lymphoblastic leukemia in childhood: outcomes of late effects on pituitary function and growth in long-term survivors. Int J Cancer 2001;96(Suppl): 117–124.CrossRefGoogle Scholar
Melin, AE, Adan, L, Leverger, G, et al. Growth hormone secretion, puberty and adult height after cranial irradiation with 18 Gy for leukaemia. Eur J Pediatr 1998;157:703–707.CrossRefGoogle ScholarPubMed
Stubberfield, TG, Byrne, GC, Jones, TW. Growth and growth hormone secretion after treatment for acute lymphoblastic leukemia in childhood. 18-Gy versus 24-Gy cranial irradiation. J Pediatr Hematol Oncol 1995;17:167–171.CrossRefGoogle ScholarPubMed
Uruena, M, Stanhope, R, Chessells, JM, Leiper, AD. Impaired pubertal growth in acute lymphoblastic leukaemia. Arch Dis Child 1991;66:1403–1407.CrossRefGoogle ScholarPubMed
Viana, MB, Vilela, MI. Height deficit during and many years after treatment for acute lymphoblastic leukemia in children: a review. Pediatr Blood Cancer 2008;50(Suppl):509–516; discussion 517.CrossRefGoogle ScholarPubMed
Probert, JC, Parker, BR, Kaplan, HS. Growth retardation in children after megavoltage irradiation of the spine. Cancer 1973;32:634–639.3.0.CO;2-A>CrossRefGoogle ScholarPubMed
Shalet, SM, Gibson, B, Swindell, R, Pearson, D. Effect of spinal irradiation on growth. Arch Dis Child 1987;62:461–464.CrossRefGoogle ScholarPubMed
Birkebaek, NH, Clausen, N. Height and weight pattern up to 20 years after treatment for acute lymphoblastic leukaemia. Arch Dis Child 1998;79:161–164.CrossRefGoogle ScholarPubMed
Holm, K, Nysom, K, Hertz, H, Muller, J. Normal final height after treatment for acute lymphoblastic leukemia without irradiation. Acta Paediatr 1994;83:1287–1290.CrossRefGoogle ScholarPubMed
Katz, JA, Pollock, BH, Jacaruso, D, Morad, A. Final attained height in patients successfully treated for childhood acute lymphoblastic leukemia. J Pediatr 1993;123:546–552.CrossRefGoogle ScholarPubMed
Vilela, MI, Viana, MB. Longitudinal growth and risk factors for growth deficiency in children treated for acute lymphoblastic leukemia. Pediatr Blood Cancer 2007;48:86–92.CrossRefGoogle ScholarPubMed
Dalton, VK, Rue, M, Silverman, LB, et al. Height and weight in children treated for acute lymphoblastic leukemia: relationship to CNS treatment. J Clin Oncol 2003;21:2953–2960.CrossRefGoogle ScholarPubMed
Schell, MJ, Ochs, JJ, Schriock, EA, Carter, M. A method of predicting adult height and obesity in long-term survivors of childhood acute lymphoblastic leukemia. J Clin Oncol 1992;10:128–133.CrossRefGoogle ScholarPubMed
Schriock, EA, Schell, MJ, Carter, M, Hustu, O, Ochs, JJ. Abnormal growth patterns and adult short stature in 115 long-term survivors of childhood leukemia. J Clin Oncol 1991;9:400–405.CrossRefGoogle ScholarPubMed
Chow, EJ, Friedman, DL, Yasui, Y, et al. Decreased adult height in survivors of childhood acute lymphoblastic leukemia: a report from the Childhood Cancer Survivor Study. J Pediatr 2007;150:370–375.CrossRefGoogle ScholarPubMed
Didcock, E, Davies, HA, Didi, M, et al. Pubertal growth in young adult survivors of childhood leukemia. J Clin Oncol 1995;13:2503–2507.CrossRefGoogle ScholarPubMed
Leiper, AD, Stanhope, R, Preece, MA, Grant, DB, Chessells, JM. Precocious or early puberty and growth failure in girls treated for acute lymphoblastic leukaemia. Horm Res 1988;30:72–76.CrossRefGoogle ScholarPubMed
Moell, C, Marky, I, Hovi, L, et al. Cerebral irradiation causes blunted pubertal growth in girls treated for acute leukemia. Med Pediatr Oncol 1994;22:375–379.CrossRefGoogle Scholar
Moell, C, Garwicz, S, Westgren, U, Wiebe, T, Albertsson-Wikland, K. Blunted pubertal growth after leukemia: a new pattern of growth hormone insufficiency. Horm Res 1988;30:68–71.Google ScholarPubMed
Quigley, C, Cowell, C, Jimenez, M, et al. Normal or early development of puberty despite gonadal damage in children treated for acute lymphoblastic leukemia. N Engl J Med 1989;321:143–151.CrossRefGoogle ScholarPubMed
Chow, EJ, Friedman, DL, Yasui, Y, et al. Timing of menarche among survivors of childhood acute lymphoblastic leukemia: a report from the Childhood Cancer Survivor Study. Pediatr Blood Cancer 2008;50:854–858.CrossRefGoogle ScholarPubMed
Mohn, A, Chiarelli, F, Di Marzio, A, et al. Thyroid function in children treated for acute lymphoblastic leukemia. J Endocrinol Invest 1997;20:215–219.CrossRefGoogle ScholarPubMed
Pasqualini, T, McCalla, J, Berg, S, et al. Subtle primary hypothyroidism in patients treated for acute lymphoblastic leukemia. Acta Endocrinol 1991;124:375–380.Google ScholarPubMed
Rose, SR, Lustig, RH, Pitukcheewanont, P, et al. Diagnosis of hidden central hypothyroidism in survivors of childhood cancer. J Clin Endocrinol Metab 1999;84:4472–4479.Google ScholarPubMed
Rose, SR, Leong, GM, Yanovski, JA, et al. Thyroid function in non-growth hormone-deficient short children during a placebo-controlled double blind trial of recombinant growth hormone therapy. J Clin Endocrinol Metab 1995;80:320–324.Google ScholarPubMed
Lando, A, Holm, K, Nysom, K, et al. Thyroid function in survivors of childhood acute lymphoblastic leukaemia: the significance of prophylactic cranial irradiation. Clin Endocrinol 2001;55:21–25.CrossRefGoogle ScholarPubMed
van Santen, HM, Vulsma, T, Dijkgraaf, MG, et al. No damaging effect of chemotherapy in addition to radiotherapy on the thyroid axis in young adult survivors of childhood cancer. J Clin Endocrinol Metab 2003;88:3657–3663.CrossRefGoogle ScholarPubMed
Brauner, R, Fontoura, M, Zucker, JM, et al. Growth and growth hormone secretion after bone marrow transplantation. Arch Dis Child 1993;68:458–463.CrossRefGoogle ScholarPubMed
Cohen, A, Rovelli, A, Bakker, B, et al. Final height of patients who underwent bone marrow transplantation for hematological disorders during childhood: a study by the Working Party for Late Effects-EBMT. Blood 1999;93:4109–4115.Google ScholarPubMed
Huma, Z, Boulad, F, Black, P, Heller, G, Sklar, C. Growth in children after bone marrow transplantation for acute leukemia. Blood 1995;86:819–824.Google ScholarPubMed
Sanders, JE, Pritchard, S, Mahoney, P, et al. Growth and development following marrow transplantation for leukemia. Blood 1986;68:1129–1135.Google ScholarPubMed
Bozzola, M, Giorgiani, G, Locatelli, F, et al. Growth in children after bone marrow transplantation. Horm Res 1993;39:122–126.CrossRefGoogle ScholarPubMed
Giorgiani, G, Bozzola, M, Locatelli, F, et al. Role of busulfan and total body irradiation on growth of prepubertal children receiving bone marrow transplantation and results of treatment with recombinant human growth hormone. Blood 1995;86:825–831.Google ScholarPubMed
Leiper, AD, Stanhope, R, Lau, T, et al. The effect of total body irradiation and bone marrow transplantation during childhood and adolescence on growth and endocrine function. Br J Haematol 1987;67:419–426.CrossRefGoogle ScholarPubMed
Sanders, J, Sullivan, K, Witherspoon, R, et al. Long term effects and quality of life in children and adults after marrow transplantation. Bone Marrow Transplant 1989;4(Suppl 4):27–29.Google ScholarPubMed
Thomas, BC, Stanhope, R, Plowman, PN, Leiper, AD. Growth following single fraction and fractionated total body irradiation for bone marrow transplantation. Eur J Pediatr 1993;152:888–892.CrossRefGoogle ScholarPubMed
Clement-de Boers, A, Oostdijk, W, van Weel-Sipman, MH, et al. Final height and hormonal function after bone marrow transplantation in children. J Pediatr 1996;129:544–550.CrossRefGoogle ScholarPubMed
Michel, G, Socie, G, Gebhard, F, et al. Late effects of allogeneic bone marrow transplantation for children with acute myeloblastic leukemia in first complete remission: the impact of conditioning regimen without total-body irradiation: a report from the Societe Francaise de Greffe de Moelle. J Clin Oncol 1997;15:2238–2246.CrossRefGoogle Scholar
Shankar, SM, Bunin, NJ, Moshang, T, Jr. Growth in children undergoing bone marrow transplantation after busulfan and cyclophosphamide conditioning. J Pediatr Hematol Oncol 1996;18:362–366.CrossRefGoogle ScholarPubMed
Wingard, JR, Plotnick, LP, Freemer, CS, et al. Growth in children after bone marrow transplantation: busulfan plus cyclophosphamide versus cyclophosphamide plus total body irradiation. Blood 1992;79:1068–1073.Google ScholarPubMed
Ogilvy-Stuart, AL, Clark, DJ, Wallace, WH, et al. Endocrine deficit after fractionated total body irradiation. Arch Dis Child 1992;67:1107–1110.CrossRefGoogle ScholarPubMed
Sklar, CA, Kim, TH, Ramsay, NK. Thyroid dysfunction among long-term survivors of bone marrow transplantation. Am J Med 1982;73:688–694.CrossRefGoogle ScholarPubMed
Brownstein, CM, Mertens, AC, Mitby, PA, et al. Factors that affect final height and change in height standard deviation scores in survivors of childhood cancer treated with growth hormone: a report from the childhood cancer survivor study. J Clin Endocrinol Metab 2004;89:4422–4427.CrossRefGoogle ScholarPubMed
Leung, W, Rose, SR, Zhou, Y, et al. Outcomes of growth hormone replacement therapy in survivors of childhood acute lymphoblastic leukemia. J Clin Oncol 2002;20:2959–2964.CrossRefGoogle ScholarPubMed
Cara, JF, Kreiter, ML, Rosenfield, RL. Height prognosis of children with true precocious puberty and growth hormone deficiency: effect of combination therapy with gonadotropin releasing hormone agonist and growth hormone. J Pediatr 1992;120:709–715.CrossRefGoogle ScholarPubMed
Gleeson, HK, Stoeter, R, Ogilvy-Stuart, AL, et al. Improvements in final height over 25 years in growth hormone (GH)-deficient childhood survivors of brain tumors receiving GH replacement. J Clin Endocrinol Metab 2003;88:3682–3689.CrossRefGoogle ScholarPubMed
Estrov, Z, Meir, R, Barak, Y, Zaizov, R, Zadik, Z. Human growth hormone and insulin-like growth factor-1 enhance the proliferation of human leukemic blasts. J Clin Oncol 1991;9:394–399.CrossRefGoogle ScholarPubMed
Mercola, KE, Cline, MJ, Golde, DW. Growth hormone stimulation of normal and leukemic human T-lymphocyte proliferation in vitro. Blood 1981;58:337–340.Google ScholarPubMed
Fradkin, JE, Mills, JL, Schonberger, LB, et al. Risk of leukemia after treatment with pituitary growth hormone. JAMA 1993;270:2829–2832.CrossRefGoogle ScholarPubMed
Stahnke, N. Leukemia in growth-hormone-treated patients: an update, 1992. Horm Res 1992;38(Suppl 1):56–62.CrossRefGoogle Scholar
Moshang, T, Jr. Use of growth hormone in children surviving cancer. Med Pediatr Oncol 1998;31:170–172.3.0.CO;2-8>CrossRefGoogle Scholar
Arslanian, SA, Becker, DJ, Lee, PA, Drash, AL, Foley, TP, Jr. Growth hormone therapy and tumor recurrence. Findings in children with brain neoplasms and hypopituitarism. Am J Dis Child 1985;139:347–350.CrossRefGoogle ScholarPubMed
Ogilvy-Stuart, AL, Ryder, WD, Gattamaneni, HR, Clayton, PE, Shalet, SM. Growth hormone and tumour recurrence. BMJ 1992;304:1601–1605.CrossRefGoogle ScholarPubMed
Sklar, CA, Mertens, AC, Mitby, P, et al. Risk of disease recurrence and second neoplasms in survivors of childhood cancer treated with growth hormone: a report from the Childhood Cancer Survivor Study. J Clin Endocrinol Metab 2002;87:3136–3141.CrossRefGoogle ScholarPubMed
Ergun-Longmire, B, Mertens, AC, Mitby, P, et al. Growth hormone treatment and risk of second neoplasms in the childhood cancer survivor. J Clin Endocrinol Metab 2006;91:3494–3498.CrossRefGoogle ScholarPubMed
Chow, EJ, Pihoker, C, Hunt, K, Wilkinson, K, Friedman, DL. Obesity and hypertension among children after treatment for acute lymphoblastic leukemia. Cancer 2007;110:2313–2320.CrossRefGoogle Scholar
Didi, M, Didcock, E, Davies, HA, et al. High incidence of obesity in young adults after treatment of acute lymphoblastic leukemia in childhood. J Pediatr 1995;127:63–67.CrossRefGoogle ScholarPubMed
Garmey, EG, Liu, Q, Sklar, CA, et al. Longitudinal changes in obesity and body mass index among adult survivors of childhood acute lymphoblastic leukemia: a report from the Childhood Cancer Survivor Study. J Clin Oncol 2008;26:4639–4645.CrossRefGoogle ScholarPubMed
Janiszewski, PM, Oeffinger, KC, Church, TS, et al. Abdominal obesity, liver fat, and muscle composition in survivors of childhood acute lymphoblastic leukemia. J Clin Endocrinol Metab 2007;92:3816–3821.CrossRefGoogle ScholarPubMed
Murphy, AJ, Wells, JC, Williams, JE, et al. Body composition in children in remission from acute lymphoblastic leukemia. Am J Clin Nutr 2006;83:70–74.CrossRefGoogle ScholarPubMed
Nathan, PC, Jovcevska, V, Ness, KK, et al. The prevalence of overweight and obesity in pediatric survivors of cancer. J Pediatr 2006;149:518–525.CrossRefGoogle Scholar
Odame, I, Reilly, JJ, Gibson, BE, Donaldson, MD. Patterns of obesity in boys and girls after treatment for acute lymphoblastic leukaemia. Arch Dis Child 1994;71:147–149.CrossRefGoogle ScholarPubMed
Razzouk, BI, Rose, SR, Hongeng, S, et al. Obesity in survivors of childhood acute lymphoblastic leukemia and lymphoma. J Clin Oncol 2007;25:1183–1189.CrossRefGoogle ScholarPubMed
Reilly, JJ, Kelly, A, Ness, P, et al. Premature adiposity rebound in children treated for acute lymphoblastic leukemia. J Clin Endocrinol Metab 2001;86:2775–2778.Google ScholarPubMed
Reilly, JJ, Ventham, JC, Newell, J, et al. Risk factors for excess weight gain in children treated for acute lymphoblastic leukaemia. Int J Obes Relat Metab Disord 2000;24:1537–1541.CrossRefGoogle ScholarPubMed
Sklar, CA, Mertens, AC, Walter, A, et al. Changes in body mass index and prevalence of overweight in survivors of childhood acute lymphoblastic leukemia: role of cranial irradiation. Med Pediatr Oncol 2000;35:91–95.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
van Dongen-Melman, JE, Hokken-Koelega, AC, Hahlen, K, et al. Obesity after successful treatment of acute lymphoblastic leukemia in childhood. Pediatr Res 1995;38:86–90.CrossRefGoogle ScholarPubMed
Warner, JT. Body composition, exercise and energy expenditure in survivors of acute lymphoblastic leukaemia. Pediatr Blood Cancer 2008;50(2 Suppl):456–461;discussion 468.CrossRefGoogle Scholar
Warner, JT, Evans, WD, Webb, DK, Gregory, JW. Body composition of long-term survivors of acute lymphoblastic leukaemia. Med Pediatr Oncol 2002;38:165–172.CrossRefGoogle ScholarPubMed
Warner, JT, Gregory, JW, Webb, DK. Patterns of obesity in boys and girls after treatment for acute lymphoblastic leukaemia. Arch Dis Child 1995;72:97.CrossRefGoogle Scholar
Zee, P, Chen, CH. Prevalence of obesity in children after therapy for acute lymphoblastic leukemia. Am J Pediatr Hematol Oncol 1986;8:294–299.CrossRefGoogle Scholar
Oeffinger, KC, Mertens, AC, Sklar, CA, et al. Obesity in adult survivors of childhood acute lymphoblastic leukemia: a report from the Childhood Cancer Survivor Study. J Clin Oncol 2003;21:1359–1365.CrossRefGoogle ScholarPubMed
Brennan, BM, Rahim, A, Blum, WF, et al. Hyperleptinaemia in young adults following cranial irradiation in childhood: growth hormone deficiency or leptin insensitivity? Clin Endocrinol 1999;50:163–169.CrossRefGoogle ScholarPubMed
Collipp, PJ, Thomas, J, Curti, V, et al. Body composition changes in children receiving human growth hormone. Metabolism 1973;22:589–595.CrossRefGoogle ScholarPubMed
Ross, JA. Genetic susceptibility and body mass in childhood cancer survivors. Pediatr Blood Cancer 2007;48:731–735.CrossRefGoogle ScholarPubMed
Castillo, LA, Craft, AW, Kernahan, J, Evans, RG, Aynsley-Green, A. Gonadal function after 12-Gy testicular irradiation in childhood acute lymphoblastic leukaemia. Med Pediatr Oncol 1990;18:185–189.CrossRefGoogle ScholarPubMed
Sklar, CA, Robison, LL, Nesbit, ME, et al. Effects of radiation on testicular function in long-term survivors of childhood acute lymphoblastic leukemia: a report from the Children Cancer Study Group. J Clin Oncol 1990;8:1981–1987.CrossRefGoogle ScholarPubMed
Blatt, J, Sherins, RJ, Niebrugge, D, Bleyer, WA, Poplack, DG. Leydig cell function in boys following treatment for testicular relapse of acute lymphoblastic leukemia. J Clin Oncol 1985;3:1227–1231.CrossRefGoogle ScholarPubMed
Brauner, R, Czernichow, P, Cramer, P, Schaison, G, Rappaport, R. Leydig-cell function in children after direct testicular irradiation for acute lymphoblastic leukemia. N Engl J Med 1983;309:25–28.CrossRefGoogle ScholarPubMed
Shalet, SM, Hann, IM, Lendon, M, et al. Testicular function after combination chemotherapy in childhood for acute lymphoblastic leukaemia. Arch Dis Child 1981;56:275–278.CrossRefGoogle ScholarPubMed
Jaffe, N, Sullivan, MP, Ried, H, et al. Male reproductive function in long-term survivors of childhood cancer. Med Pediatr Oncol 1988;16:241–247.CrossRefGoogle ScholarPubMed
Krawczuk-Rybak, M, Solarz, E, Wysocka, J, et al. Testicular function after treatment for acute lymphoblastic leukemia (ALL) in prepubertal and pubertal boys. Pediatr Hematol Oncol 2009;26:504–514.CrossRefGoogle ScholarPubMed
Matus-Ridley, M, Nicosia, SV, Meadows, AT. Gonadal effects of cancer therapy in boys. Cancer 1985;55:2353–2363.3.0.CO;2-L>CrossRefGoogle Scholar
Blatt, J, Poplack, DG, Sherins, RJ. Testicular function in boys after chemotherapy for acute lymphoblastic leukemia. N Engl J Med 1981;304:1121–1124.CrossRefGoogle ScholarPubMed
Crofton, PM, Evans, AE, Groome, NP, et al. Inhibin B in boys from birth to adulthood: relationship with age, pubertal stage, FSH and testosterone. Clin Endocrinol 2002;56:215–221.CrossRefGoogle ScholarPubMed
van Casteren, NJ, van der Linden, GH, Hakvoort-Cammel, FG, et al. Effect of childhood cancer treatment on fertility markers in adult male long-term survivors. Pediatr Blood Cancer 2009;52:108–112.CrossRefGoogle Scholar
Mills, JL, Fears, TR, Robison, LL, et al. Menarche in a cohort of 188 long-term survivors of acute lymphoblastic leukemia. J Pediatr 1997;131:598–602.CrossRefGoogle Scholar
Pasqualini, T, Escobar, ME, Domene, H, et al. Evaluation of gonadal function following long-term treatment for acute lymphoblastic leukemia in girls. Am J Pediatr Hematol Oncol 1987;9:15–22.CrossRefGoogle ScholarPubMed
Wallace, WH, Shalet, SM, Tetlow, LJ, Morris-Jones, PH. Ovarian function following the treatment of childhood acute lymphoblastic leukaemia. Med Pediatr Oncol 1993;21:333–339.CrossRefGoogle ScholarPubMed
Hamre, MR, Robison, LL, Nesbit, ME, et al. Effects of radiation on ovarian function in long-term survivors of childhood acute lymphoblastic leukemia: a report from the Childrens Cancer Study Group. J Clin Oncol 1987;5:1759–1765.CrossRefGoogle ScholarPubMed
Chemaitilly, W, Mertens, AC, Mitby, P, et al. Acute ovarian failure in the childhood cancer survivor study. J Clin Endocrinol Metab 2006;91:1723–1728.CrossRefGoogle ScholarPubMed
Sklar, CA, Mertens, AC, Mitby, P, et al. Premature menopause in survivors of childhood cancer: a report from the childhood cancer survivor study. J Natl Cancer Inst 2006;98:890–896.CrossRefGoogle ScholarPubMed
Byrne, J, Fears, TR, Mills, JL, et al. Fertility in women treated with cranial radiotherapy for childhood acute lymphoblastic leukemia. Pediatr Blood Cancer 2004;42:589–597.CrossRefGoogle ScholarPubMed
Himelstein-Braw, R, Peters, H, Faber, M. Morphological study of the ovaries of leukaemic children. Br J Cancer 1978;38:82–87.CrossRefGoogle ScholarPubMed
Mertens, AC, Ramsay, NK, Kouris, S, Neglia, JP. Patterns of gonadal dysfunction following bone marrow transplantation. Bone Marrow Transplant 1998;22:345–350.CrossRefGoogle ScholarPubMed
Sanders, JE. Endocrine problems in children after bone marrow transplant for hematologic malignancies. The Long-term Follow-up Team. Bone Marrow Transplant 1991;8(Suppl 1): 2–4.Google ScholarPubMed
Sanders, JE, Buckner, CD, Amos, D, et al. Ovarian function following marrow transplantation for aplastic anemia or leukemia. J Clin Oncol 1988;6:813–818.CrossRefGoogle ScholarPubMed
Wallace, WH, Thomson, AB, Saran, F, Kelsey, TW. Predicting age of ovarian failure after radiation to a field that includes the ovaries. Int J Radiat Oncol Biol Phys 2005;62:738–744.CrossRefGoogle ScholarPubMed
Afify, Z, Shaw, PJ, Clavano-Harding, A, Cowell, CT. Growth and endocrine function in children with acute myeloid leukaemia after bone marrow transplantation using busulfan/cyclophosphamide. Bone Marrow Transplant 2000;25:1087–1092.CrossRefGoogle ScholarPubMed
Thibaud, E, Rodriguez-Macias, K, Trivin, C, et al. Ovarian function after bone marrow transplantation during childhood. Bone Marrow Transplant 1998;21:287–290.CrossRefGoogle ScholarPubMed
Sarafoglou, K, Boulad, F, Gillio, A, Sklar, C. Gonadal function after bone marrow transplantation for acute leukemia during childhood. J Pediatr 1997;130:210–216.CrossRefGoogle ScholarPubMed
Brennan, BM, Shalet, SM. Endocrine late effects after bone marrow transplant. Br J Haematol 2002;118:58–66.CrossRefGoogle ScholarPubMed
Sklar, C, Boulad, F, Small, T, Kernan, N. Endocrine complications of pediatric stem cell transplantation. Front Biosci 2001;6:G17–G22.CrossRefGoogle ScholarPubMed
Sanders, JE, Hawley, J, Levy, W, et al. Pregnancies following high-dose cyclophosphamide with or without high-dose busulfan or total-body irradiation and bone marrow transplantation. Blood 1996;87:3045–3052.Google ScholarPubMed
Byrne, J, Rasmussen, SA, Steinhorn, SC, et al. Genetic disease in offspring of long-term survivors of childhood and adolescent cancer. Am J Hum Genet 1998;62:45–52.CrossRefGoogle ScholarPubMed
Madanat-Harjuoja, LM, Malila, N, Lahteenmaki, P, et al. Risk of cancer among children of cancer patients: a nationwide study in Finland. Int J Cancer 2010;126:1196–1205.CrossRefGoogle ScholarPubMed
Mulvihill, JJ, Myers, MH, Connelly, RR, et al. Cancer in offspring of long-term survivors of childhood and adolescent cancer. Lancet 1987;ii:813–817.CrossRefGoogle Scholar
Winther, JF, Boice, JD, Jr., Mulvihill, JJ, et al. Chromosomal abnormalities among offspring of childhood-cancer survivors in Denmark: a population-based study. Am J Hum Genet 2004;74:1282–1285.CrossRefGoogle ScholarPubMed
Green, DM, Zevon, MA, Lowrie, G, Seigelstein, N, Hall, B. Congenital anomalies in children of patients who received chemotherapy for cancer in childhood and adolescence. N Engl J Med 1991;325:141–146.CrossRefGoogle ScholarPubMed
Nygaard, R, Clausen, N, Siimes, MA, et al. Reproduction following treatment for childhood leukemia: a population-based prospective cohort study of fertility and offspring. Med Pediatr Oncol 1991;19:459–466.CrossRefGoogle ScholarPubMed
Green, DM, Whitton, JA, Stovall, M, et al. Pregnancy outcome of female survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. Am J Obstet Gynecol 2002;187:1070–1080.CrossRefGoogle ScholarPubMed
Reulen, RC, Zeegers, MP, Wallace, WH, et al. Pregnancy outcomes among adult survivors of childhood cancer in the British Childhood Cancer Survivor Study. Cancer Epidemiol Biomarkers Prev 2009;18:2239–2247.CrossRefGoogle ScholarPubMed
Signorello, LB, Cohen, SS, Bosetti, C, et al. Female survivors of childhood cancer: preterm birth and low birth weight among their children. J Natl Cancer Inst 2006;98:1453–1461.CrossRefGoogle ScholarPubMed
Winther, JF, Boice, JD., Svendsen, AL, et al. Spontaneous abortion in a Danish population-based cohort of childhood cancer survivors. J Clin Oncol 2008;26:4340–4346.CrossRefGoogle Scholar
Anderson, FS, Kunin-Batson, AS. Neurocognitive late effects of chemotherapy in children: the past 10 years of research on brain structure and function. Pediatr Blood Cancer 2009;52:159–164.CrossRefGoogle ScholarPubMed
Butler, RW, Haser, JK. Neurocognitive effects of treatment for childhood cancer. Ment Retard Dev Disabil Res Rev 2006;12:184–191.CrossRefGoogle ScholarPubMed
Campbell, LK, Scaduto, M, Sharp, W, et al. A meta-analysis of the neurocognitive sequelae of treatment for childhood acute lymphocytic leukemia. Pediatr Blood Cancer 2007;49:65–73.CrossRefGoogle ScholarPubMed
Peterson, CC, Johnson, CE, Ramirez, LY, et al. A meta-analysis of the neuropsychological sequelae of chemotherapy-only treatment for pediatric acute lymphoblastic leukemia. Pediatr Blood Cancer 2008;51:99–104.CrossRefGoogle ScholarPubMed
Price, R.Therapy-related central nervous system diseases in children with acute lymphocyte leukemia. In Mastrangelo, R, Poplack, DG, Riccardi, R (eds.) Central Nervous System Leukemia Prevention and Treatment. Boston, MA: Martinus Nijhoff, 1983:71–83.CrossRefGoogle Scholar
Prassopoulos, P, Cavouras, D, Golfinopoulos, S, et al. Quantitative assessment of cerebral atrophy during and after treatment in children with acute lymphoblastic leukemia. Invest Radiol 1996;31:749–754.CrossRefGoogle ScholarPubMed
Vainionpaa, L, Kovala, T, Tolonen, U, Lanning, M. Chemotherapy for acute lymphoblastic leukemia may cause subtle changes of the spinal cord detectable by somatosensory evoked potentials. Med Pediatr Oncol 1997;28:41–47.3.0.CO;2-T>CrossRefGoogle ScholarPubMed
Hasle, H, Helgestad, J, Christensen, JK, Jacobsen, BB, Kamper, J. Prolonged intrathecal chemotherapy replacing cranial irradiation in high-risk acute lymphatic leukaemia: long-term follow up with cerebral computed tomography scans and endocrinological studies. Eur J Pediatr 1995;154:24–29.CrossRefGoogle ScholarPubMed
Iuvone, L, Mariotti, P, Colosimo, C, et al. Long-term cognitive outcome, brain computed tomography scan, and magnetic resonance imaging in children cured for acute lymphoblastic leukemia. Cancer 2002;95:2562–2570.CrossRefGoogle ScholarPubMed
Laitt, RD, Chambers, EJ, Goddard, PR, et al. Magnetic resonance imaging and magnetic resonance angiography in long term survivors of acute lymphoblastic leukemia treated with cranial irradiation. Cancer 1995;76:1846–1852.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Liang, DC, Lin, JC, Shih, SL, et al. Cranial computed tomography in children with acute lymphoblastic leukemia after prophylactic treatment with cranial radiation therapy and intrathecal methotrexate. Cancer 1993;71:2105–2108.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Matsumoto, K, Takahashi, S, Sato, A, et al. Leukoencephalopathy in childhood hematopoietic neoplasm caused by moderate-dose methotrexate and prophylactic cranial radiotherapy: an MR analysis. Int J Radiat Oncol Biol Phys 1995;32:913–918.CrossRefGoogle ScholarPubMed
Paakko, E, Lehtinen, S, Harila-Saari, A, et al. Perfusion MRI and SPECT of brain after treatment for childhood acute lymphoblastic leukemia. Med Pediatr Oncol 2003;40:88–92.CrossRefGoogle ScholarPubMed
Reddick, WE, Glass, JO, Helton, KJ, et al. Prevalence of leukoencephalopathy in children treated for acute lymphoblastic leukemia with high-dose methotrexate. AJNR Am J Neuroradiol 2005;26:1263–1269.Google ScholarPubMed
Reddick, WE, Shan, ZY, Glass, JO, et al. Smaller white-matter volumes are associated with larger deficits in attention and learning among long-term survivors of acute lymphoblastic leukemia. Cancer 2006;106:941–949.CrossRefGoogle ScholarPubMed
Asato, R, Akiyama, Y, Ito, M, et al. Nuclear magnetic resonance abnormalities of the cerebral white matter in children with acute lymphoblastic leukemia and malignant lymphoma during and after central nervous system prophylactic treatment with intrathecal methotrexate. Cancer 1992;70:1997–2004.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Wilson, DA, Nitschke, R, Bowman, ME, et al. Transient white matter changes on MR images in children undergoing chemotherapy for acute lymphocytic leukemia: correlation with neuropsychologic deficiencies. Radiology 1991;180:205–209.CrossRefGoogle ScholarPubMed
Kingma, A, Mooyaart, EL, Kamps, WA, Nieuwenhuizen, P, Wilmink, JT. Magnetic resonance imaging of the brain and neuropsychological evaluation in children treated for acute lymphoblastic leukemia at a young age. Am J Pediatr Hematol Oncol 1993;15:231–238.CrossRefGoogle Scholar
Brouwers, P, Riccardi, R, Poplack, D, Fedio, P. Attentional deficits in long-term survivors of childhood acute lymphoblastic leukemia (ALL). J Clin Neuropsychol 1984;6:325–336.CrossRefGoogle Scholar
Hertzberg, H, Huk, WJ, Ueberall, MA, et al. CNS late effects after ALL therapy in childhood. Part I. Neuroradiological findings in long-term survivors of childhood ALL: an evaluation of the interferences between morphology and neuropsychological performance. The German Late Effects Working Group. Med Pediatr Oncol 1997;28:387–400.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Bleyer, WA, Fallavollita, J, Robison, L, et al. Influence of age, sex, and concurrent intrathecal methotrexate therapy on intellectual function after cranial irradiation during childhood: a report from the Children's Cancer Study Group. Pediatr Hematol Oncol 1990;7:329–338.CrossRefGoogle ScholarPubMed
Leung, W, Hudson, M, Zhu, Y, et al. Late effects in survivors of infant leukemia. Leukemia 2000;14:1185–1190.CrossRefGoogle ScholarPubMed
Leung, W, Hudson, MM, Strickland, DK, et al. Late effects of treatment in survivors of childhood acute myeloid leukemia. J Clin Oncol 2000;18:3273–3279.CrossRefGoogle ScholarPubMed
Belkacemi, Y, Labopin, M, Vernant, JP, et al. Cataracts after total body irradiation and bone marrow transplantation in patients with acute leukemia in complete remission: a study of the European Group for Blood and Marrow Transplantation. Int J Radiat Oncol Biol Phys 1998;41:659–668.CrossRefGoogle ScholarPubMed
Deeg, HJ, Flournoy, N, Sullivan, KM, et al. Cataracts after total body irradiation and marrow transplantation: a sparing effect of dose fractionation. Int J Radiat Oncol Biol Phys 1984;10:957–964.CrossRefGoogle ScholarPubMed
Hoover, DL, Smith, LE, Turner, SJ, Gelber, RD, Sallan, SE. Ophthalmic evaluation of survivors of acute lymphoblastic leukemia. Ophthalmology 1988;95:151–155.CrossRefGoogle ScholarPubMed
Whelan, KF, Stratton, K, Kawashima, T, et al. Ocular late effects in childhood and adolescent cancer survivors: a report from the childhood cancer survivor study. Pediatr Blood Cancer 2010;54:103–109.CrossRefGoogle ScholarPubMed
Holmstrom, G, Borgstrom, B, Calissendorff, B. Cataract in children after bone marrow transplantation: relation to conditioning regimen. Acta Ophthalmol Scand 2002;80:211–215.CrossRefGoogle ScholarPubMed
Kremer, LC, van Dalen, EC, Offringa, M, Voute, PA. Frequency and risk factors of anthracycline-induced clinical heart failure in children: a systematic review. Ann Oncol 2002;13:503–512.CrossRefGoogle ScholarPubMed
Kremer, LC, van der Pal, HJ, Offringa, M, van Dalen, EC, Voute, PA. Frequency and risk factors of subclinical cardiotoxicity after anthracycline therapy in children: a systematic review. Ann Oncol 2002;13:819–829.CrossRefGoogle ScholarPubMed
Adams, MJ, Lipshultz, SE. Pathophysiology of anthracycline- and radiation-associated cardiomyopathies: implications for screening and prevention. Pediatr Blood Cancer 2005;44:600–606.CrossRefGoogle ScholarPubMed
Berry, GJ, Jorden, M. Pathology of radiation and anthracycline cardiotoxicity. Pediatr Blood Cancer 2005;44:630–637.CrossRefGoogle ScholarPubMed
Lipshultz, SE, Colan, SD, Gelber, RD, et al. Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N Engl J Med 1991;324:808–815.CrossRefGoogle ScholarPubMed
Lipshultz, SE, Lipsitz, SR, Mone, SM, et al. Female sex and drug dose as risk factors for late cardiotoxic effects of doxorubicin therapy for childhood cancer. N Engl J Med 1995;332:1738–1743.CrossRefGoogle ScholarPubMed
van Dalen, EC, van der Pal, HJ, Kok, WE, Caron, HN, Kremer, LC. Clinical heart failure in a cohort of children treated with anthracyclines: a long-term follow-up study. Eur J Cancer 2006;42:3191–3198.CrossRefGoogle Scholar
Bossi, G, Lanzarini, L, Laudisa, ML, et al. Echocardiographic evaluation of patients cured of childhood cancer: a single center study of 117 subjects who received anthracyclines. Med Pediatr Oncol 2001;36:593–600.CrossRefGoogle ScholarPubMed
Hudson, MM, Rai, SN, Nunez, C, et al. Noninvasive evaluation of late anthracycline cardiac toxicity in childhood cancer survivors. J Clin Oncol 2007;25:3635–3643.CrossRefGoogle ScholarPubMed
Rammeloo, LA, Postma, A, Sobotka-Plojhar, MA, et al. Low-dose daunorubicin in induction treatment of childhood acute lymphoblastic leukemia: no long-term cardiac damage in a randomized study of the Dutch Childhood Leukemia Study Group. Med Pediatr Oncol 2000;35:13–19.3.0.CO;2-G>CrossRefGoogle Scholar
Sorensen, K, Levitt, GA, Bull, C, Dorup, I, Sullivan, ID. Late anthracycline cardiotoxicity after childhood cancer: a prospective longitudinal study. Cancer 2003;97:1991–1998.CrossRefGoogle ScholarPubMed
Green, DM, Grigoriev, YA, Nan, B, et al. Congestive heart failure after treatment for Wilms' tumor: a report from the National Wilms' Tumor Study Group. J Clin Oncol 2001;19:1926–1934.CrossRefGoogle ScholarPubMed
Krischer, JP, Epstein, S, Cuthbertson, DD, et al. Clinical cardiotoxicity following anthracycline treatment for childhood cancer: the Pediatric Oncology Group experience. J Clin Oncol 1997;15:1544–1552.CrossRefGoogle ScholarPubMed
Goorin, AM, Chauvenet, AR, Perez-Atayde, AR, et al. Initial congestive heart failure, six to ten years after doxorubicin chemotherapy for childhood cancer. J Pediatr 1990;116:144–147.CrossRefGoogle ScholarPubMed
Lipshultz, SE, Lipsitz, SR, Sallan, SE, et al. Chronic progressive cardiac dysfunction years after doxorubicin therapy for childhood acute lymphoblastic leukemia. J Clin Oncol 2005;23:2629–2636.CrossRefGoogle ScholarPubMed
Steinherz, LJ, Steinherz, PG, Tan, CT, Heller, G, Murphy, ML. Cardiac toxicity 4 to 20 years after completing anthracycline therapy. JAMA 1991;266:1672–1677.CrossRefGoogle ScholarPubMed
Sorensen, K, Levitt, G, Bull, C, Chessells, J, Sullivan, I. Anthracycline dose in childhood acute lymphoblastic leukemia: issues of early survival versus late cardiotoxicity. J Clin Oncol 1997;15:61–68.CrossRefGoogle ScholarPubMed
Freter, CE, Lee, TC, Billingham, ME, Chak, L, Bristow, MR. Doxorubicin cardiac toxicity manifesting seven years after treatment. Case report and review. Am J Med 1986;80:483–485.CrossRefGoogle ScholarPubMed
Ali, MK, Ewer, MS, Gibbs, HR, Swafford, J, Graff, KL. Late doxorubicin-associated cardiotoxicity in children. The possible role of intercurrent viral infection. Cancer 1994;74:182–188.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Steinherz, LJ, Steinherz, PG, Tan, C. Cardiac failure and dysrhythmias 6–19 years after anthracycline therapy: a series of 15 patients. Med Pediatr Oncol 1995;24:352–361.CrossRefGoogle ScholarPubMed
Anderson, B.Dexrazoxane for the prevention of cardiomyopathy in anthracycline treated pediatric cancer patients. Pediatr Blood Cancer 2005;44:584–588.CrossRefGoogle ScholarPubMed
Barry, EV, Vrooman, LM, Dahlberg, SE, et al. Absence of secondary malignant neoplasms in children with high-risk acute lymphoblastic leukemia treated with dexrazoxane. J Clin Oncol 2008;26:1106–1111.CrossRefGoogle ScholarPubMed
Lipshultz, SE, Rifai, N, Dalton, VM, et al. The effect of dexrazoxane on myocardial injury in doxorubicin-treated children with acute lymphoblastic leukemia. N Engl J Med 2004;351:145–153.CrossRefGoogle ScholarPubMed
van Dalen, EC, van der Pal, HJ, Caron, HN, Kremer, LC. Different dosage schedules for reducing cardiotoxicity in cancer patients receiving anthracycline chemotherapy. Cochrane Database Syst Rev 2009;(4):CD005008.
Gupta, M, Steinherz, PG, Cheung, NK, Steinherz, L. Late cardiotoxicity after bolus versus infusion anthracycline therapy for childhood cancers. Med Pediatr Oncol 2003;40:343–347.CrossRefGoogle ScholarPubMed
Lipshultz, SE, Giantris, AL, Lipsitz, SR, et al. Doxorubicin administration by continuous infusion is not cardioprotective: the Dana-Farber 91-01 acute lymphoblastic leukemia protocol. J Clin Oncol 2002;20:1677–1682.CrossRefGoogle Scholar
Turner-Gomes, SO, Lands, LC, Halton, J, et al. Cardiorespiratory status after treatment for acute lymphoblastic leukemia. Med Pediatr Oncol 1996;26:160–165.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Jenney, ME, Faragher, EB, Jones, PH, Woodcock, A. Lung function and exercise capacity in survivors of childhood leukaemia. Med Pediatr Oncol 1995;24:222–230.CrossRefGoogle ScholarPubMed
Collaco, JM, Gower, WA, Mogayzel, PJ, Jr. Pulmonary dysfunction in pediatric hematopoietic stem cell transplant patients: overview, diagnostic considerations, and infectious complications. Pediatr Blood Cancer 2007;49:117–126.CrossRefGoogle ScholarPubMed
Gower, WA, Collaco, JM, Mogayzel, PJ. Pulmonary dysfunction in pediatric hematopoietic stem cell transplant patients: non-infectious and long-term complications. Pediatr Blood Cancer 2007;49:225–233.CrossRefGoogle ScholarPubMed
Kaste, SC, Hopkins, KP, Jones, D, et al. Dental abnormalities in children treated for acute lymphoblastic leukemia. Leukemia 1997;11:792–796.CrossRefGoogle ScholarPubMed
Maciel, JC, de Castro, CG., Brunetto, AL, Di Leone, LP, da Silveira, HE. Oral health and dental anomalies in patients treated for leukemia in childhood and adolescence. Pediatr Blood Cancer 2009;53:361–365.CrossRefGoogle ScholarPubMed
Nunn, JH, Welbury, RR, Gordon, PH, Kernahan, J, Craft, AW. Dental caries and dental anomalies in children treated by chemotherapy for malignant disease: a study in the north of England. Int J Paediatr Dent 1991;1:131–135.CrossRefGoogle ScholarPubMed
Pajari, U, Lanning, M. Developmental defects of teeth in survivors of childhood ALL are related to the therapy and age at diagnosis. Med Pediatr Oncol 1995;24:310–314.CrossRefGoogle ScholarPubMed
Rosenberg, SW, Kolodney, H, Wong, GY, Murphy, ML. Altered dental root development in long-term survivors of pediatric acute lymphoblastic leukemia. A review of 17 cases. Cancer 1987;59:1640–1648.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Sonis, AL, Tarbell, N, Valachovic, RW, et al. Dentofacial development in long-term survivors of acute lymphoblastic leukemia. A comparison of three treatment modalities. Cancer 1990;66:2645–2652.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Sonis, AL, Waber, DP, Sallan, S, Tarbell, NJ. The oral health of long-term survivors of acute lymphoblastic leukaemia: a comparison of three treatment modalities. Eur J Cancer B Oral Oncol 1995;31B:250–252.CrossRefGoogle ScholarPubMed
Kaste, SC, Goodman, P, Leisenring, W, et al. Impact of radiation and chemotherapy on risk of dental abnormalities: a report from the Childhood Cancer Survivor Study. Cancer 2009;115:5817–5827.CrossRefGoogle ScholarPubMed
Maguire, A, Craft, AW, Evans, RG, et al. The long-term effects of treatment on the dental condition of children surviving malignant disease. Cancer 1987;60:2570–2575.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Dahllof, G, Hingorani, SR, Sanders, JE. Late effects following hematopoietic cell transplantation for children. Biol Blood Marrow Transplant 2008;14(Suppl 1):88–93.CrossRefGoogle ScholarPubMed
Holtta, P, Alaluusua, S, Saarinen-Pihkala, UM, Peltola, J, Hovi, L. Agenesis and microdontia of permanent teeth as late adverse effects after stem cell transplantation in young children. Cancer 2005;103:181–190.CrossRefGoogle ScholarPubMed
Holtta, P, Hovi, L, Saarinen-Pihkala, UM, Peltola, J, Alaluusua, S. Disturbed root development of permanent teeth after pediatric stem cell transplantation. Dental root development after SCT. Cancer 2005;103:1484–1493.CrossRefGoogle ScholarPubMed
, van der Pas-vanVoskuilen, IG, Veerkamp, JS, Raber-Durlacher, JE, et al. Long-term adverse effects of hematopoietic stem cell transplantation on dental development in children. Support Care Cancer 2009;17:1169–1175.CrossRefGoogle Scholar
Vaughan, MD, Rowland, CC, Tong, X, et al. Dental abnormalities after pediatric bone marrow transplantation. Bone Marrow Transplant 2005;36:725–729.CrossRefGoogle ScholarPubMed
Sala, A, Barr, RD. Osteopenia and cancer in children and adolescents: the fragility of success. Cancer 2007;109:1420–1431.CrossRefGoogle Scholar
Wasilewski-Masker, K, Kaste, SC, Hudson, MM, et al. Bone mineral density deficits in survivors of childhood cancer: long-term follow-up guidelines and review of the literature. Pediatrics 2008;121:e705–e713.CrossRefGoogle ScholarPubMed
Atkinson, SA, Halton, JM, Bradley, C, Wu, B, Barr, RD. Bone and mineral abnormalities in childhood acute lymphoblastic leukemia: influence of disease, drugs and nutrition. Int J Cancer Suppl 1998;11:35–39.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Halton, JM, Atkinson, SA, Fraher, L, et al. Altered mineral metabolism and bone mass in children during treatment for acute lymphoblastic leukemia. J Bone Miner Res 1996;11:1774–1783.CrossRefGoogle ScholarPubMed
Arikoski, P, Komulainen, J, Voutilainen, R, et al. Reduced bone mineral density in long-term survivors of childhood acute lymphoblastic leukemia. J Pediatr Hematol Oncol 1998;20:234–240.CrossRefGoogle ScholarPubMed
Barr, RD, Halton, J, Willan, A, et al. Impact of age and cranial irradiation on radiographic skeletal pathology in children with acute lymphoblastic leukemia. Med Pediatr Oncol 1998;30:347–350.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Kaste, SC, Jones-Wallace, D, Rose, SR, et al. Bone mineral decrements in survivors of childhood acute lymphoblastic leukemia: frequency of occurrence and risk factors for their development. Leukemia 2001;15:728–734.CrossRefGoogle ScholarPubMed
Mandel, K, Atkinson, S, Barr, RD, Pencharz, P. Skeletal morbidity in childhood acute lymphoblastic leukemia. J Clin Oncol 2004;22:1215–1221.CrossRefGoogle ScholarPubMed
Gilsanz, V, Carlson, ME, Roe, TF, Ortega, JA. Osteoporosis after cranial irradiation for acute lymphoblastic leukemia. J Pediatr 1990;117:238–244.CrossRefGoogle ScholarPubMed
Hoorweg-Nijman, JJ, Kardos, G, Roos, JC, et al. Bone mineral density and markers of bone turnover in young adult survivors of childhood lymphoblastic leukaemia. Clin Endocrinol 1999;50:237–244.CrossRefGoogle ScholarPubMed
Nysom, K, Holm, K, Michaelsen, KF, et al. Bone mass after treatment for acute lymphoblastic leukemia in childhood. J Clin Oncol 1998;16:3752–3760.CrossRefGoogle ScholarPubMed
Thomas, IH, Donohue, JE, Ness, KK, et al. Bone mineral density in young adult survivors of acute lymphoblastic leukemia. Cancer 2008;113:3248–3256.CrossRefGoogle ScholarPubMed
Hulthen, L, Bengtsson, BA, Sunnerhagen, KS, et al. GH is needed for the maturation of muscle mass and strength in adolescents. J Clin Endocrinol Metab 2001;86:4765–4770.CrossRefGoogle ScholarPubMed
Ohlsson, C, Bengtsson, BA, Isaksson, OG, Andreassen, TT, Slootweg, MC. Growth hormone and bone. Endocr Rev 1998;19:55–79.Google Scholar
Aisenberg, J, Hsieh, K, Kalaitzoglou, G, et al. Bone mineral density in young adult survivors of childhood cancer. J Pediatr Hematol Oncol 1998;20:241–245.CrossRefGoogle ScholarPubMed
Kaste, SC, Chesney, RW, Hudson, MM, et al. Bone mineral status during and after therapy of childhood cancer: an increasing population with multiple risk factors for impaired bone health. J Bone Miner Res 1999;14:2010–2014.CrossRefGoogle ScholarPubMed
Demark-Wahnefried, W, Werner, C, Clipp, EC, et al. Survivors of childhood cancer and their guardians. Cancer 2005;103:2171–2180.CrossRefGoogle ScholarPubMed
Florin, TA, Fryer, GE, Miyoshi, T, et al. Physical inactivity in adult survivors of childhood acute lymphoblastic leukemia: a report from the childhood cancer survivor study. Cancer Epidemiol Biomarkers Prev 2007;16:1356–1363.CrossRefGoogle ScholarPubMed
Arico, M, Boccalatte, MF, Silvestri, D, et al. Osteonecrosis: an emerging complication of intensive chemotherapy for childhood acute lymphoblastic leukemia. Haematologica 2003;88:747–753.Google ScholarPubMed
Chan-Lam, D, Prentice, AG, Copplestone, JA, et al. Avascular necrosis of bone following intensified steroid therapy for acute lymphoblastic leukaemia and high-grade malignant lymphoma. Br J Haematol 1994;86:227–230.CrossRefGoogle ScholarPubMed
Felix, C, Blatt, J, Goodman, MA, Medina, J. Avascular necrosis of bone following combination chemotherapy for acute lymphocytic leukemia. Med Pediatr Oncol 1985;13:269–272.CrossRefGoogle ScholarPubMed
Murphy, RG, Greenberg, ML. Osteonecrosis in pediatric patients with acute lymphoblastic leukemia. Cancer 1990;65:1717–1721.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Ojala, AE, Lanning, FP, Paakko, E, Lanning, BM. Osteonecrosis in children treated for acute lymphoblastic leukemia: a magnetic resonance imaging study after treatment. Med Pediatr Oncol 1997;29:260–265.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Ojala, AE, Paakko, E, Lanning, FP, Lanning, M. Osteonecrosis during the treatment of childhood acute lymphoblastic leukemia: a prospective MRI study. Med Pediatr Oncol 1999;32:11–17.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Pui, CH, Cheng, C, Leung, W, et al. Extended follow-up of long-term survivors of childhood acute lymphoblastic leukemia. N Engl J Med 2003;349:640–649.CrossRefGoogle ScholarPubMed
Mattano, LA, Jr., Sather, HN, Trigg, ME, Nachman, JB. Osteonecrosis as a complication of treating acute lymphoblastic leukemia in children: a report from the Children's Cancer Group. J Clin Oncol 2000;18:3262–3272.CrossRefGoogle ScholarPubMed
Strauss, AJ, Su, JT, Dalton, VM, et al. Bony morbidity in children treated for acute lymphoblastic leukemia. J Clin Oncol 2001;19:3066–3072.CrossRefGoogle ScholarPubMed
French, D, Hamilton, LH, Mattano, LA, Jr., et al. A PAI-1 (SERPINE1) polymorphism predicts osteonecrosis in children with acute lymphoblastic leukemia: a report from the Children's Oncology Group. Blood 2008;111:4496–4499.CrossRefGoogle ScholarPubMed
Relling, MV, Yang, W, Das, S, et al. Pharmacogenetic risk factors for osteonecrosis of the hip among children with leukemia. J Clin Oncol 2004;22:3930–3936.CrossRefGoogle ScholarPubMed
Johnson, WW, Meadows, DC. Urinary-bladder fibrosis and telangiectasia associated with long-term cyclophosphamide therapy. N Engl J Med 1971;284:290–294.CrossRefGoogle ScholarPubMed
Lawrence, HJ, Simone, J, Aur, RJ. Cyclophosphamide-induced hemorrhagic cystitis in children with leukemia. Cancer 1975;36:1572–1576.3.0.CO;2-T>CrossRefGoogle ScholarPubMed
Bessho, F, Kinumaki, H, Yokota, S, et al. Liver function studies in children with acute lymphocytic leukemia after cessation of therapy. Med Pediatr Oncol 1994;23:111–115.CrossRefGoogle Scholar
Hersh, EM, Wong, VG, Henderson, ES, Freireich, EJ. Hepatotoxic effects of methotrexate. Cancer 1966;19:600–606.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Stork, LC, Matloub, Y, Broxson, E, et al. Oral 6-mercaptopurine versus oral 6-thioguanine and veno-occlusive disease in children with standard-risk acute lymphoblastic leukemia: report of the Children's Oncology Group CCG-1952 clinical trial. Blood 2010;115:2740–2748.CrossRefGoogle ScholarPubMed
Einhorn, M, Davidsohn, I. Hepatotoxicity of mercaptopurine. JAMA 1964;188:802–806.CrossRefGoogle ScholarPubMed
Lascari, AD, Givler, RL, Soper, RT, Hill, LF. Portal hypertension in a case of acute leukemia treated with antimetabolites for ten years. N Engl J Med 1968;279:303–306.CrossRefGoogle Scholar
McIntosh, S, Davidson, DL, O'Brien, RT, Pearson, HA. Methotrexate hepatotoxicity in children with leukemia. J Pediatr 1977;90:1019–1021.CrossRefGoogle ScholarPubMed
Nesbit, M, Krivit, W, Heyn, R, Sharp, H. Acute and chronic effects of methotrexate on hepatic, pulmonary, and skeletal systems. Cancer 1976;37(Suppl):1048–1057.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Parker, D, Bate, CM, Craft, AW, et al. Liver damage in children with acute leukaemia and non-Hodgkin's lymphoma on oral maintenance chemotherapy. Cancer Chemother Pharmacol 1980;4:121–127.CrossRefGoogle ScholarPubMed
Ruymann, FB, Mosijczuk, AD, Sayers, RJ. Hepatoma in a child with methotrexate-induced hepatic fibrosis. JAMA 1977;238:2631–2633.CrossRefGoogle Scholar
Topley, JM, Benson, J, Squier, MV, Chessells, JM. Hepatotoxicity in the treatment of acute lymphoblastic leukaemia. Med Pediatr Oncol 1979;7:393–399.CrossRefGoogle ScholarPubMed
Bortolotti, F, Vajro, P, Barbera, C, et al. Patterns of antibodies to hepatitis C virus and hepatitis C virus replication in children with chronic non-A, non-B hepatitis. J Pediatr 1994;125:916–918.CrossRefGoogle ScholarPubMed
Locasciulli, A, Cavalletto, D, Pontisso, P, et al. Hepatitis C virus serum markers and liver disease in children with leukemia during and after chemotherapy. Blood 1993;82:2564–2567.Google ScholarPubMed
Sharara, AI, Hunt, CM, Hamilton, JD. Hepatitis C. Ann Intern Med 1996;125:658–668.CrossRefGoogle ScholarPubMed
Locasciulli, A, Gornati, G, Tagger, A, et al. Hepatitis C virus infection and chronic liver disease in children with leukemia in long-term remission. Blood 1991;78:1619–1622.Google ScholarPubMed
Arico, M, Maggiore, G, Silini, E, et al. Hepatitis C virus infection in children treated for acute lymphoblastic leukemia. Blood 1994;84:2919–2922.Google ScholarPubMed
Castellino, S, Lensing, S, Riely, C, et al. The epidemiology of chronic hepatitis C infection in survivors of childhood cancer: an update of the St. Jude Children's Research Hospital hepatitis C seropositive cohort. Blood 2004;103:2460–2466.CrossRefGoogle ScholarPubMed
Cesaro, S, Petris, MG, Rossetti, F, et al. Chronic hepatitis C virus infection after treatment for pediatric malignancy. Blood 1997;90:1315–1320.Google ScholarPubMed
Lackner, H, Moser, A, Deutsch, J, et al. Interferon-alpha and ribavirin in treating children and young adults with chronic hepatitis C after malignancy. Pediatrics 2000;106:E53.CrossRefGoogle Scholar
Locasciulli, A, Testa, M, Pontisso, P, et al. Prevalence and natural history of hepatitis C infection in patients cured of childhood leukemia. Blood 1997;90:4628–4633.Google ScholarPubMed
Neilson, JR, Harrison, P, Skidmore, SJ, et al. Chronic hepatitis C in long term survivors of haematological malignancy treated in a single centre. J Clin Pathol 1996;49:230–232.CrossRefGoogle Scholar
Paul, IM, Sanders, J, Ruggiero, F, et al. Chronic hepatitis C virus infections in leukemia survivors: prevalence, viral load, and severity of liver disease. Blood 1999;93:3672–3677.Google ScholarPubMed
Strickland, DK, Jenkins, JJ, Hudson, MM. Hepatitis C infection and hepatocellular carcinoma after treatment of childhood cancer. J Pediatr Hematol Oncol 2001;23:527–529.CrossRefGoogle ScholarPubMed
Strickland, DK, Riely, CA, Patrick, CC, et al. Hepatitis C infection among survivors of childhood cancer. Blood 2000;95:3065–3070.Google ScholarPubMed
Fujisawa, T, Inui, A, Ohkawa, T, et al. Response to interferon therapy in children with chronic hepatitis C. J Pediatr 1995;127:660–662.CrossRefGoogle ScholarPubMed
Ruiz-Moreno, M, Rua, MJ, Castillo, I, et al. Treatment of children with chronic hepatitis C with recombinant interferon-alpha: a pilot study. Hepatology 1992;16:882–885.CrossRefGoogle ScholarPubMed
Eyrich, M, Wiegering, V, Lim, A, et al. Immune function in children under chemotherapy for standard risk acute lymphoblastic leukaemia: a prospective study of 20 paediatric patients. Br J Haematol 2009;147:360–370.CrossRefGoogle ScholarPubMed
Katz, J, Walter, BN, Bennetts, GA, Cairo, MS. Abnormal cellular and humoral immunity in childhood acute lymphoblastic leukemia in long-term remission. West J Med 1987;146:179–187.Google ScholarPubMed
Kosmidis, S, Baka, M, Bouhoutsou, D, et al. Longitudinal assessment of immunological status and rate of immune recovery following treatment in children with ALL. Pediatr Blood Cancer 2008;50:528–532.CrossRefGoogle Scholar
Lehrnbecher, T, Schubert, R, Behl, M, et al. Impaired pneumococcal immunity in children after treatment for acute lymphoblastic leukaemia. Br J Haematol 2009;147:700–705.CrossRefGoogle ScholarPubMed
Mustafa, MM, Buchanan, GR, Winick, NJ, et al. Immune recovery in children with malignancy after cessation of chemotherapy. J Pediatr Hematol Oncol 1998;20:451–457.CrossRefGoogle ScholarPubMed
Rautonen, J, Siimes, MA, Lundstrom, U, et al. Vaccination of children during treatment for leukemia. Acta Paediatr Scand 1986;75:579–585.CrossRefGoogle ScholarPubMed
Zengin, E, Sarper, N. Humoral immunity to diphtheria, tetanus, measles, and Hemophilus influenzae type b in children with acute lymphoblastic leukemia and response to re-vaccination. Pediatr Blood Cancer 2009;53:967–972.CrossRefGoogle ScholarPubMed
Alanko, S, Pelliniemi, TT, Salmi, TT. Recovery of blood B-lymphocytes and serum immunoglobulins after chemotherapy for childhood acute lymphoblastic leukemia. Cancer 1992;69:1481–1486.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Borella, L, Green, AA, Webster, RG. Immunologic rebound after cessation of long-term chemotherapy in acute leukemia. Blood 1972;40:42–51.Google ScholarPubMed
Borella, L, Webster, RG. The immunosuppressive effects of long-term combination chemotherapy in children with acute leukemia in remission. Cancer Res 1971;31:420–426.Google ScholarPubMed
Feldman, S, Gigliotti, F, Shenep, JL, Roberson, PK, Lott, L. Risk of Haemophilus influenzae type b disease in children with cancer and response of immunocompromised leukemic children to a conjugate vaccine. J Infect Dis 1990;161:926–931.CrossRefGoogle ScholarPubMed
Hitzig, WH, Pluss, HJ, Joller, P, et al. Studies on the immune status of children with acute lymphocytic leukaemia. II. In remission with and without cytostatic treatment. Clin Exp Immunol 1976;26:414–418.Google ScholarPubMed
Lange, B, Jakacki, R, Nasab, AH, Luery, N, McVerry, PH. Immunization of leukemic children with Haemophilus conjugate vaccine. Pediatr Infect Dis J 1989;8:883–884.CrossRefGoogle ScholarPubMed
Layward, L, Levinsky, RJ, Butler, M. Long-term abnormalities in T and B lymphocyte function in children following treatment for acute lymphoblastic leukaemia. Br J Haematol 1981;49:251–258.CrossRefGoogle Scholar
Ljungman, P, Lewensohn-Fuchs, I, Hammarstrom, V, et al. Long-term immunity to measles, mumps, and rubella after allogeneic bone marrow transplantation. Blood 1994;84:657–663.Google ScholarPubMed
Nilsson, A, De Milito, A, Engstrom, P, et al. Current chemotherapy protocols for childhood acute lymphoblastic leukemia induce loss of humoral immunity to viral vaccination antigens. Pediatrics 2002;109:e91.CrossRefGoogle ScholarPubMed
Ogra, PL, Sinks, LF, Karzon, DT. Poliovirus antibody response in patients with acute leukemia. J Pediatr 1971;79:444–449.CrossRefGoogle Scholar
Ridgway, D, Wolff, LJ, Deforest, A. Immunization response varies with intensity of acute lymphoblastic leukemia therapy. Am J Dis Child 1991;145:887–891.Google ScholarPubMed
Feldman, S, Gigliotti, F, Bockhold, C, Naegele, R. Measles and rubella antibody status in previously vaccinated children with cancer. Med Pediatr Oncol 1988;16:308–311.CrossRefGoogle ScholarPubMed
Smith, S, Schiffman, G, Karayalcin, G, Bonagura, V. Immunodeficiency in long-term survivors of acute lymphoblastic leukemia treated with Berlin–Frankfurt–Münster therapy. J Pediatr 1995;127:68–75.CrossRefGoogle ScholarPubMed
Pauksen, K, Duraj, V, Ljungman, P, et al. Immunity to and immunization against measles, rubella and mumps in patients after autologous bone marrow transplantation. Bone Marrow Transplant 1992;9:427–432.Google Scholar
Engelhard, D, Handsher, R, Naparstek, E, et al. Immune response to polio vaccination in bone marrow transplant recipients. Bone Marrow Transplant 1991;8:295–300.Google ScholarPubMed
Ljungman, P, Cordonnier, C, de Bock, R, et al. Immunisations after bone marrow transplantation: results of a European survey and recommendations from the Infectious Diseases Working Party of the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant 1995;15:455–460.Google ScholarPubMed
Ljungman, P, Fridell, E, Lonnqvist, B, et al. Efficacy and safety of vaccination of marrow transplant recipients with a live attenuated measles, mumps, and rubella vaccine. J Infect Dis 1989;159:610–615.CrossRefGoogle ScholarPubMed
Ljungman, P, Wiklund-Hammarsten, M, Duraj, V, et al. Response to tetanus toxoid immunization after allogeneic bone marrow transplantation. J Infect Dis 1990;162:496–500.CrossRefGoogle ScholarPubMed
Bhatia, S, Sather, HN, Pabustan, OB, et al. Low incidence of second neoplasms among children diagnosed with acute lymphoblastic leukemia after 1983. Blood 2002;99:4257–4264.CrossRefGoogle ScholarPubMed
Borgmann, A, Zinn, C, Hartmann, R, et al. Secondary malignant neoplasms after intensive treatment of relapsed acute lymphoblastic leukaemia in childhood. Eur J Cancer 2008;44:257–268.CrossRefGoogle Scholar
Kimball Dalton, VM, Gelber, RD, Li, F, et al. Second malignancies in patients treated for childhood acute lymphoblastic leukemia. J Clin Oncol 1998;16:2848–2853.CrossRefGoogle ScholarPubMed
Loning, L, Zimmermann, M, Reiter, A, et al. Secondary neoplasms subsequent to Berlin–Frankfurt–Münster therapy of acute lymphoblastic leukemia in childhood: significantly lower risk without cranial radiotherapy. Blood 2000;95:2770–2775.Google ScholarPubMed
Maule, M, Scelo, G, Pastore, G, et al. Risk of second malignant neoplasms after childhood leukemia and lymphoma: an international study. J Natl Cancer Inst 2007;99:790–800.CrossRefGoogle Scholar
Meadows, AT, Baum, E, Fossati-Bellani, F, et al. Second malignant neoplasms in children: an update from the Late Effects Study Group. J Clin Oncol 1985;3:532–538.CrossRefGoogle ScholarPubMed
Neglia, JP, Friedman, DL, Yasui, Y, et al. Second malignant neoplasms in five-year survivors of childhood cancer: childhood cancer survivor study. J Natl Cancer Inst 2001;93:618–629.CrossRefGoogle ScholarPubMed
Neglia, JP, Meadows, AT, Robison, LL, et al. Second neoplasms after acute lymphoblastic leukemia in childhood. N Engl J Med 1991;325:1330–1336.CrossRefGoogle ScholarPubMed
Nygaard, R, Garwicz, S, Haldorsen, T, et al. Second malignant neoplasms in patients treated for childhood leukemia. A population-based cohort study from the Nordic countries. The Nordic Society of Pediatric Oncology and Hematology (NOPHO). Acta Paediatr Scand 1991;80:1220–1228.CrossRefGoogle Scholar
Zarrabi, MH, Rosner, F, Grunwald, HW. Second neoplasms in acute lymphoblastic leukemia. Cancer 1983;52:1712–1719.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Hijiya, N, Hudson, MM, Lensing, S, et al. Cumulative incidence of secondary neoplasms as a first event after childhood acute lymphoblastic leukemia. JAMA 2007;297:1207–1215.CrossRefGoogle ScholarPubMed
Hawkins, MM, Draper, GJ, Kingston, JE. Incidence of second primary tumours among childhood cancer survivors. Br J Cancer 1987;56:339–347.CrossRefGoogle ScholarPubMed
Iyer, RS, Soman, CS, Nair, CN, et al. Brain tumors following cure of acute lymphoblastic leukemia. Leuk Lymphoma 1994;13:183–186.CrossRefGoogle ScholarPubMed
Farwell, J, Flannery, JT. Cancer in relatives of children with central-nervous-system neoplasms. N Engl J Med 1984;311:749–753.CrossRefGoogle Scholar
Relling, MV, Rubnitz, JE, Rivera, GK, et al. High incidence of secondary brain tumours after radiotherapy and antimetabolites. Lancet 1999;354:34–39.CrossRefGoogle ScholarPubMed
Walter, AW, Hancock, ML, Pui, CH, et al. Secondary brain tumors in children treated for acute lymphoblastic leukemia at St. Jude Children's Research Hospital. J Clin Oncol 1998;16:3761–3767.CrossRefGoogle ScholarPubMed
Pui, CH, Behm, FG, Raimondi, SC, et al. Secondary acute myeloid leukemia in children treated for acute lymphoid leukemia. N Engl J Med 1989;321:136–142.CrossRefGoogle ScholarPubMed
Pui, CH, Relling, MV, Behm, FG, et al. l-Asparaginase may potentiate the leukemogenic effect of the epipodophyllotoxins. Leukemia 1995;9:1680–1684.Google ScholarPubMed
Pui, CH, Relling, MV, Rivera, GK, et al. Epipodophyllotoxin-related acute myeloid leukemia: a study of 35 cases. Leukemia 1995;9:1990–1996.Google ScholarPubMed
Pui, CH, Ribeiro, RC, Hancock, ML, et al. Acute myeloid leukemia in children treated with epipodophyllotoxins for acute lymphoblastic leukemia. N Engl J Med 1991;325:1682–1687.CrossRefGoogle ScholarPubMed
Winick, N, Buchanan, GR, Kamen, BA. Secondary acute myeloid leukemia in Hispanic children. J Clin Oncol 1993;11:1433.CrossRefGoogle ScholarPubMed
Albain, KS, Le Beau, MM, Ullirsch, R, Schumacher, H. Implication of prior treatment with drug combinations including inhibitors of topoisomerase II in therapy-related monocytic leukemia with a 9;11 translocation. Genes Chromosomes Cancer 1990;2:53–58.CrossRefGoogle ScholarPubMed
Smith, MA, Rubinstein, L, Anderson, JR, et al. Secondary leukemia or myelodysplastic syndrome after treatment with epipodophyllotoxins. J Clin Oncol 1999;17:569–577.CrossRefGoogle ScholarPubMed
Whitlock, JA, Greer, JP, Lukens, JN. Epipodophyllotoxin-related leukemia. Identification of a new subset of secondary leukemia. Cancer 1991;68:600–604.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Relling, MV, Boyett, JM, Blanco, JG, et al. Granulocyte colony-stimulating factor and the risk of secondary myeloid malignancy after etoposide treatment. Blood 2003;101:3862–3867.CrossRefGoogle ScholarPubMed
Sandler, ES, Friedman, DJ, Mustafa, MM, et al. Treatment of children with epipodophyllotoxin-induced secondary acute myeloid leukemia. Cancer 1997;79:1049–1054.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Hudson, MM, Mertens, AC, Yasui, Y, et al. Health status of adult long-term survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. JAMA 2003;290:1583–1592.CrossRefGoogle ScholarPubMed
Oeffinger, KC, Mertens, AC, Sklar, CA, et al. Chronic health conditions in adult survivors of childhood cancer. N Engl J Med 2006;355:1572–1582.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×