Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-10T11:30:29.471Z Has data issue: false hasContentIssue false

17 - Predicting Cognitive-Ability Differences from Genetic and Brain-Imaging Data

from Part IV - Predictive Modeling Approaches

Published online by Cambridge University Press:  11 June 2021

Aron K. Barbey
Affiliation:
University of Illinois, Urbana-Champaign
Sherif Karama
Affiliation:
McGill University, Montréal
Richard J. Haier
Affiliation:
University of California, Irvine
Get access

Summary

Statistical genetics and brain imaging are together at the technological forefront of research into human intelligence. While these approaches have historically had little practical overlap, they are united both conceptually and in several broad methodological challenges. In concept, both areas attempt to explain complex human behavior by understanding its biological origins, and in doing so have faced the problems that arise from this complexity. The prospect of finding large-effect predictors, for example, has shaped both histories: statistical genetics, with its study of candidate genes that were once thought to have outsized influence on the development of many traits, and neuroscience, with its search for localized brain properties underlying complex behaviors. Both of these areas have then had to adjust their scope and methodology to address the issue of making valid and meaningful predictions from a large number of predictors with small effects. A key understanding is that larger samples of participants than originally employed may be necessary for these predictions to be accurate and useful.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allegrini, A. G., Selzam, S., Rimfeld, K., von Stumm, S., Pingault, J.-B., & Plomin, R. (2019). Genomic prediction of cognitive traits in childhood and adolescence. Molecular Psychiatry, 24(6), 819827. doi: 10.1038/s41380-019-0394-4.CrossRefGoogle ScholarPubMed
Barbey, A. K. (2018). Network neuroscience theory of human intelligence. Trends in Cognitive Sciences, 22(1), 120. doi: 10.1016/j.tics.2017.10.001.CrossRefGoogle ScholarPubMed
Bates, T. C., Maher, B. S., Colodro-Conde, L., Medland, S. E., McAloney, K., Wright, M. J., … Gillespie, N. A. (2019). Social competence in parents increases children’s educational attainment: Replicable genetically-mediated effects of parenting revealed by non-transmitted DNA. Twin Research and Human Genetics, 22(1), 13. doi: 10.1017/thg.2018.75.Google Scholar
Beauchamp, J. P. (2016). Genetic evidence for natural selection in humans in the contemporary United States. Proceedings of the National Academy of Sciences, 113(28), 77747779. doi: 10.1073/pnas.1600398113.CrossRefGoogle ScholarPubMed
Belsky, D. W., Domingue, B. W., Wedow, R., Arseneault, L., Boardman, J. D., Caspi, A., … Harris, K. M. (2018). Genetic analysis of social-class mobility in five longitudinal studies. Proceedings of the National Academy of Sciences, 115(31), E7275E7284. doi: 10.1073/pnas.1801238115.CrossRefGoogle ScholarPubMed
Cox, S. R., Ritchie, S. J., Fawns-Ritchie, C., Tucker-Drob, E. M., & Deary, I. J. (2019). Structural brain imaging correlates of general intelligence in UK Biobank. Intelligence, 76, 113. doi: 10.1016/j.intell.2019.101376.Google Scholar
de Vlaming, R., & Groenen, P. J. F. (2015). The current and future use of ridge regression for prediction in quantitative genetics. BioMed Research International, 2015, 143712. doi: 10.1155/2015/143712.CrossRefGoogle ScholarPubMed
Dubois, J., Galdi, P., Paul, L. K., & Adolphs, R. (2018). A distributed brain network predicts general intelligence from resting-state human neuroimaging data. Philosophical Transactions of the Royal Society B, 373(1756), 20170284. doi: 10.1098/rstb.2017.0284.CrossRefGoogle ScholarPubMed
Dudbridge, F. (2013). Power and predictive accuracy of polygenic risk scores. PLoS Genetics, 9(3), e1003348. doi: 10.1371/journal.pgen.1003348.Google Scholar
Elliott, L. T., Sharp, K., Alfaro-Almagro, F., Shi, S., Miller, K. L., Douaud, G., … Smith, S. M. (2018). Genome-wide association studies of brain imaging phenotypes in UK Biobank. Nature, 562(7726), 210216. doi: 10.1038/s41586-018-0571-7.Google Scholar
Fisher, R. A. (1918). The correlation between relatives on the supposition of Mendelian inheritance. Transactions of the Royal Society of Edinburgh, 52(2), 399433. doi: 10.1017/S0080456800012163.Google Scholar
Fisher, R. A. (1941). Average excess and average effect of a gene substitution. Annals of Eugenics, 11(1), 5363. doi: 10.1111/j.1469-1809.1941.tb02272.x.Google Scholar
Fornito, A., Arnatkevičiūtė, A., & Fulcher, B. D. (2019). Bridging the gap between connectome and transcriptome. Trends in Cognitive Sciences, 23(1), 3450. doi: 10.1016/j.tics.2018.10.005.CrossRefGoogle ScholarPubMed
Gignac, G. E., & Bates, T. C. (2017). Brain volume and intelligence: The moderating role of intelligence measurement quality. Intelligence, 64(May), 1829. doi: 10.1016/j.intell.2017.06.004.Google Scholar
Haier, R. J. (2011). Biological basis of intelligence. In Sternberg, R. J. & Kaufman, S. B. (eds.), The Cambridge handbook of intelligence (pp. 351368). Cambridge University Press. doi: 10.1017/CBO9780511977244.019.Google Scholar
Jung, R. E., & Haier, R. J. (2007). The Parieto-Frontal Integration Theory (P-FIT) of intelligence: Converging neuroimaging evidence. Behavioral and Brain Sciences, 30(2), 135154. doi: 10.1017/S0140525X07001185.Google Scholar
Karama, S., Ad-Dab’bagh, Y., Haier, R. J., Deary, I. J., Lyttelton, O. C., Lepage, C., … Brain Development Cooperative Group. (2009). Positive association between cognitive ability and cortical thickness in a representative US sample of healthy 6 to 18 year-olds. Intelligence, 37(2), 145155. doi: 10.1016/j.intell.2008.09.006.Google Scholar
Kong, A., Thorleifsson, G., Frigge, M. L., Vilhjálmsson, B. J., Young, A. I., Thorgeirsson, T. E., … Stefansson, K. (2018). The nature of nurture: Effects of parental genotypes. Science, 359(6374), 424428. doi: 10.1126/science.aan6877.Google Scholar
Lande, R., & Thompson, R. (1990). Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics, 124(3), 743756. doi: 10.1046/j.1365-2540.1998.00308.x.Google Scholar
Lee, J. J. (2012). Correlation and causation in the study of personality (with discussion). European Journal of Personality, 26(4), 372412. doi: 10.1002/per.1863.Google Scholar
Lee, J. J., & Chow, C. C. (2013). The causal meaning of Fisher’s average effect. Genetics Research, 95(2–3), 89109. doi: 10.1017/S0016672313000074.Google Scholar
Lee, J. J., & McGue, M. (2016). Why behavioral genetics matters: A comment on Plomin (2016). Perspectives on Psychological Science, 11(1), 2930. doi: 10.1177/1745691615611932.CrossRefGoogle ScholarPubMed
Lee, J. J., McGue, M., Iacono, W. G., Michael, A. M., & Chabris, C. F. (2019). The causal influence of brain size on human intelligence: Evidence from within-family phenotypic associations and GWAS modeling. Intelligence, 75, 4858. doi: 10.1016/j.intell.2019.01.011.CrossRefGoogle ScholarPubMed
Lee, J. J., Wedow, R., Okbay, A., Kong, E., Maghzian, O., Zacher, M., … Cesarini, D. (2018). Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nature Genetics, 50(8), 11121121. doi: 10.1038/s41588-018-0147-3.CrossRefGoogle ScholarPubMed
Lello, L., Avery, S. G., Tellier, L., Vazquez, A. I., de los Campos, G., & Hsu, S. D. H. (2018). Accurate genomic prediction of human height. Genetics, 210(2), 477497. doi: 10.1534/genetics.118.301267.Google Scholar
Li, Y., Liu, Y., Li, J., Qin, W., Li, K., Yu, C., & Jiang, T. (2009). Brain anatomical network and intelligence. PLoS Computational Biology, 5(5), e1000395. doi: 10.1371/journal.pcbi.1000395.CrossRefGoogle ScholarPubMed
Liu, H. (2018). Social and genetic pathways in multigenerational transmission of educational attainment. American Sociological Review, 83(2), 278304. doi: 10.1177/0003122418759651.CrossRefGoogle Scholar
Mak, T. S. H., Porsch, R. M., Choi, S. W., Zhou, X., & Sham, P. C. (2017). Polygenic scores via penalized regression on summary statistics. Genetic Epidemiology, 41(6), 469480. doi: 10.1002/gepi.22050.Google Scholar
Meuwissen, T. H. E., Hayes, B. J., & Goddard, M. E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157(4), 18191829.Google Scholar
Neubauer, A. C., & Fink, A. (2009). Intelligence and neural efficiency. Neuroscience and Biobehavioral Reviews, 33(7), 10041023. doi: 10.1016/j.neubiorev.2009.04.001.Google Scholar
Okbay, A., Beauchamp, J. P., Fontana, M. A., Lee, J. J., Pers, T. H., Rietveld, C. A., … Benjamin, D. J. (2016). Genome-wide association study identifies 74 loci associated with educational attainment. Nature, 533(7604), 539542. doi: 10.1038/nature17671.arXiv:NIHMS150003.Google Scholar
Park, G., Lubinski, D., & Benbow, C. P. (2007). Contrasting intellectual patterns predict creativity in the arts and sciences: Tracking intellectually precocious youth over 25 years. Psychological Science, 18(11), 948952. doi: 10.1111/j.1467-9280.2007.02007.x.CrossRefGoogle ScholarPubMed
Pietschnig, J., Penke, L., Wicherts, J. M., Zeiler, M., & Voracek, M. (2015). Meta-analysis of associations between human brain volume and intelligence differences: How strong are they and what do they mean? Neuroscience and Biobehavioral Reviews, 57, 411432. doi: 10.1016/j.neubiorev.2015.09.017.CrossRefGoogle ScholarPubMed
Plomin, R., DeFries, J. C., & Loehlin, J. C. (1977). Genotype-environment interaction and correlation in the analysis of human behavior. Psychological Bulletin, 84(2), 309322. doi: 10.1037/0033-2909.84.2.309.Google Scholar
Purcell, S. M., Pato, M. T., Williams, N. M., Scolnick, E. M., Van Beck, M., O’Donovan, M. C., … Holmans, P. A. (2009). Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature, 460(August), 748752. doi: 10.1038/nature08185.Google ScholarPubMed
Rietveld, C. A., Medland, S. E., Derringer, J., Yang, J., Esko, T., Martin, N. W., … Koellinger, P. D. (2013). GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. Science, 25(4), 5782. doi: 10.1257/jep.25.4.57.Google Scholar
Robertson, A. (1966). A mathematical model of the culling process in dairy cattle. Animal Production, 8(1), 95108. doi: 10.1017/S0003356100037752.Google Scholar
Schmitt, J. E., Neale, M. C., Clasen, L. S., Liu, S., Seidlitz, J., Pritikin, J. N., … Raznahan, A. (2019). A comprehensive quantitative genetic analysis of cerebral surface area in youth. Journal of Neuroscience, 13(16), 30283040. doi: 10.1523/JNEUROSCI.2248-18.2019.Google Scholar
Schnack, H. G., Van Haren, N. E. M., Brouwer, R. M., Evans, A., Durston, S., Boomsma, D. I., … Hulshoff Pol, H. E. (2015). Changes in thickness and surface area of the human cortex and their relationship with intelligence. Cerebral Cortex, 25(6), 16081617. doi: 10.1093/cercor/bht357.Google Scholar
Shulman, C., & Bostrom, N. (2014). Embryo selection for cognitive enhancement: Curiosity or game-changer? Global Policy, 5(1), 8592. doi: 10.1111/1758-5899.12123.CrossRefGoogle Scholar
Spindel, J. E., & McCouch, S. R. (2016). When more is better: How data sharing would accelerate genomic selection of crop plants. New Phytologist, 212(4), 814826. doi: 10.1111/nph.14174.CrossRefGoogle ScholarPubMed
van den Heuvel, M. P., Stam, C. J., Kahn, R. S., & Hulshoff Pol, H. E. (2009). Efficiency of functional brain networks and intellectual performance. Journal of Neuroscience, 29(23), 76197624. doi: 10.1523/jneurosci.1443-09.2009.Google Scholar
Vattikuti, S., Lee, J. J., Chang, C. C., Hsu, S. D. H., & Chow, C. C. (2014). Applying compressed sensing to genome-wide association studies. GigaScience, 3(1), 10. doi: 10.1186/2047-217X-3-10.Google Scholar
Vilhjálmsson, B. J., Yang, J., Finucane, H. K., Gusev, A., Lindström, S., Ripke, S., … Price, A. L. (2015). Modeling linkage disequilibrium increases accuracy of polygenic risk scores. American Journal of Human Genetics, 97(4), 576592. doi: 10.1016/j.ajhg.2015.09.001.Google Scholar
Vuoksimaa, E., Panizzon, M. S., Chen, C.-H., Fiecas, M., Eyler, L. T., Fennema-Notestine, C., … Kremen, W. S. (2015). The genetic association between neocortical volume and general cognitive ability is driven by global surface area rather than thickness. Cerebral Cortex, 25(8), 21272137. doi: 10.1093/cercor/bhu018.Google Scholar
Walhovd, K. B., Krogsrud, S. K., Amlien, I. K., Bartsch, H., Bjørnerud, A., Due-Tønnessen, P., … Fjell, A. M. (2016). Neurodevelopmental origins of lifespan changes in brain and cognition. Proceedings of the National Academy of Sciences, 113(33), 93579362. doi: 10.1073/pnas.1524259113.Google Scholar
Willoughby, E. A., McGue, M., Iacono, W. G., Rustichini, A., & Lee, J. J. (2019). The role of parental genotype in predicting offspring years of education: Evidence for genetic nurture. Molecular Psychiatry. Online first. doi: 10.1038/s41380-019-0494-1.CrossRefGoogle Scholar
Wray, N. R., Goddard, M. E., & Visscher, P. M. (2007). Prediction of individual genetic risk to disease from genome-wide association studies. Genome Research, 17(10), 15201528. doi: 10.1101/gr.6665407.Google Scholar
Wray, N. R., Kemper, K. E., Hayes, B. J., Goddard, M. E., & Visscher, P. M. (2019). Complex trait prediction from genome data: Contrasting EBV in livestock to PRS in humans. Genetics, 211(4), 11311141. doi: 10.1534/genetics.119.301859.Google Scholar
Yengo, L., Robinson, M. R., Keller, M. C., Kemper, K. E., Yang, Y., Trzaskowski, M., … Visscher, P. M. (2018). Imprint of assortative mating on the human genome. Nature Human Behaviour, 2(12), 948954. doi: 10.1038/s41562-018-0476-3.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×