Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-09T20:18:48.387Z Has data issue: false hasContentIssue false

Chapter 3 - Immunological basis of endocrine diseases

from Section I - Clinical approaches

Published online by Cambridge University Press:  13 April 2017

Ozgur Mete
Affiliation:
University of Toronto
Sylvia L. Asa
Affiliation:
University of Toronto
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Janeway, CA Jr., Medzhitov, R (2002) Innate immune recognition. Annu Rev Immunol 20: 197216.Google Scholar
Nemazee, D (2000) Receptor selection in B and T lymphocytes. Annu Rev Immunol 18: 1951.CrossRefGoogle ScholarPubMed
Zinkernagel, RM, Bachmann, MF, Kundig, TM, Oehen, S, Pirchet, H, Hengartner, H (1996) On immunological memory. Annu Rev Immunol 14: 333367.Google Scholar
Merad, M, Sathe, P, Helft, J, Miller, J, Mortha, A (2013) The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol 31: 563604.Google Scholar
Kanno, Y, Vahedi, G, Hirahara, K, Singleton, K, O'Shea, JJ (2012) Transcriptional and epigenetic control of T helper cell specification: molecular mechanisms underlying commitment and plasticity. Annu Rev Immunol 30: 707731.CrossRefGoogle ScholarPubMed
Josefowicz, SZ, Lu, LF, Rudensky, AY (2012) Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 30: 531564.Google Scholar
Muranski, P, Restifo, NP (2013) Essentials of Th17 cell commitment and plasticity. Blood 121: 24022414.CrossRefGoogle ScholarPubMed
Bailes, BK (2002) Diabetes mellitus and its chronic complications. AORN J 76: 266276, 278–282; quiz 283–266.CrossRefGoogle ScholarPubMed
Forbes, JM, Cooper, ME (2013) Mechanisms of diabetic complications. Physiol Rev 93: 137188.CrossRefGoogle ScholarPubMed
Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329: 977986.CrossRefGoogle Scholar
Todd, JA, Wicker, LS (2001) Genetic protection from the inflammatory disease type 1 diabetes in humans and animal models. Immunity 15: 387395.Google Scholar
Notkins, AL, Lernmark, A (2001) Autoimmune type 1 diabetes: resolved and unresolved issues. J Clin Invest 108: 12471252.Google Scholar
Forrest, JM, Menser, MA, Burgess, JA (1971) High frequency of diabetes mellitus in young adults with congenital rubella. Lancet ii: 332334.Google Scholar
Pak, CY, Eun, HM, McArthur, RG, Yoon, JW (1988) Association of cytomegalovirus infection with autoimmune type 1 diabetes. Lancet ii: 14.Google Scholar
Yoon, JW, Austin, M, Onodera, T, Notkins, AL (1979) Isolation of a virus from the pancreas of a child with diabetic ketoacidosis. N Engl J Med 300: 11731179.CrossRefGoogle ScholarPubMed
Knip, M, Virtanen, SM, Seppa, K, et al. (2010) Dietary intervention in infancy and later signs of beta-cell autoimmunity. N Engl J Med 363: 19001908.Google Scholar
Zimmet, PZ, Tuomi, T, Mackay, IR, et al. (1994) Latent autoimmune diabetes mellitus in adults (LADA): the role of antibodies to glutamic acid decarboxylase in diagnosis and prediction of insulin dependency. Diabet Med 11: 299303.Google Scholar
Nerup, J, Platz, P, Andersen, OO, et al. (1974) HL-A antigens and diabetes mellitus. Lancet ii: 864866.CrossRefGoogle Scholar
She, JX (1996) Susceptibility to type I diabetes: HLA-DQ and DR revisited. Immunol Today 17: 323329.Google Scholar
Nejentsev, S, Howson, JM, Walker, NM, et al. (2007) Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A. Nature 450: 887892.CrossRefGoogle Scholar
Todd, JA, Bell, JI, McDevitt, HO (1987) HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature 329: 599604.Google Scholar
Morel, PA, Dorman, JS, Todd, JA, McDevitt, HO, Trucco, M (1988) Aspartic acid at position 57 of the HLA-DQ beta chain protects against type I diabetes: a family study. Proc Natl Acad Sci USA 85: 81118115.Google Scholar
Dendrou, CA, Plagnol, V, Fung, E, et al. (2009) Cell-specific protein phenotypes for the autoimmune locus IL2RA using a genotype–selectable human bioresource. Nat Genet 41: 10111015.CrossRefGoogle ScholarPubMed
Bennett, ST, Lucassen, AM, Gough, SC, et al. (1995) Susceptibility to human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus. Nat Genet 9: 284292.CrossRefGoogle ScholarPubMed
Vafiadis, P, Bennett, ST, Todd, JA, et al. (1997) Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat Genet 15: 289292.CrossRefGoogle ScholarPubMed
Ueda, H, Howson, JM, Esposito, L, et al. (2003) Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423: 506511.Google Scholar
Bottini, N, Musumeci, L, Alonso, A, et al. (2004) A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet 36: 337338.CrossRefGoogle ScholarPubMed
Driver, JP, Serreze, DV, Chen, YG (2011) Mouse models for the study of autoimmune type 1 diabetes: a NOD to similarities and differences to human disease. Semin Immunopathol 33: 6787.CrossRefGoogle Scholar
Korpos, E, Kadri, N, Kappelhoff, R, et al. (2013) The peri-islet basement membrane, a barrier to infiltrating leukocytes in type 1 diabetes in mouse and human. Diabetes 62: 531542.Google Scholar
Winer, S, Tsui, H, Lau, A, et al. (2003) Autoimmune islet destruction in spontaneous type 1 diabetes is not beta-cell exclusive. Nat Med 9: 198205.Google Scholar
Richardson, SJ, Willcox, A, Bone, AJ, Morgan, NG, Foulis, AK (2011) Immunopathology of the human pancreas in type-I diabetes. Semin Immunopathol 33: 921.CrossRefGoogle ScholarPubMed
Willcox, A, Richardson, SJ, Bone, AJ, Foulis, AK, Morgan, NG (2009) Analysis of islet inflammation in human type 1 diabetes. Clin Exp Immunol 155: 173181.CrossRefGoogle ScholarPubMed
Hanninen, A, Taylor, C, Streeter, PR, et al. (1993) Vascular addressins are induced on islet vessels during insulitis in nonobese diabetic mice and are involved in lymphoid cell binding to islet endothelium. J Clin Invest 92: 25092515.Google Scholar
Cameron, MJ, Arreaza, GA, Grattan, M, et al. (2000) Differential expression of CC chemokines and the CCR5 receptor in the pancreas is associated with progression to type I diabetes. J Immunol 165: 11021110.Google Scholar
Diana, J, Simoni, Y, Furio, L, et al. (2013) Crosstalk between neutrophils, B-1a cells and plasmacytoid dendritic cells initiates autoimmune diabetes. Nat Med 19: 6573.Google Scholar
DiLorenzo, TP (2011) Multiple antigens versus single major antigen in type 1 diabetes: arguing for multiple antigens. Diabetes Metab Res Rev 27: 778783.Google Scholar
Hagopian, WA, Sanjeevi, CB, Kockum, I, et al. (1995) Glutamate decarboxylase-, insulin-, and islet cell-antibodies and HLA typing to detect diabetes in a general population-based study of Swedish children. J Clin Invest 95: 15051511.Google Scholar
Leslie, RD, Atkinson, MA, Notkins, AL (1999) Autoantigens IA-2 and GAD in type I (insulin-dependent) diabetes. Diabetologia 42: 314.CrossRefGoogle ScholarPubMed
Pescovitz, MD, Greenbaum, CJ, Krause-Steinrauf, H, et al. (2009) Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. N Engl J Med 361: 21432152.CrossRefGoogle ScholarPubMed
Keymeulen, B, Vandemeulebroucke, E, Ziegler, AG, et al. (2005) Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N Engl J Med 352: 25982608.CrossRefGoogle ScholarPubMed
Diabetes Prevention Trial--Type 1 Diabetes Study Group (2002) Effects of insulin in relatives of patients with type 1 diabetes mellitus. N Engl J Med 346: 16851691.Google Scholar
Roep, BO, Solvason, N, Gottlieb, PA, et al. (2013) Plasmid-encoded proinsulin preserves C-peptide while specifically reducing proinsulin-specific CD8+ T cells in type 1 diabetes. Sci Transl Med 5: 191182.CrossRefGoogle ScholarPubMed
Shapiro, AM, Lakey, JR, Ryan, EA, et al. (2000) Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 343: 230238.CrossRefGoogle ScholarPubMed
Bergenstal, RM, Tamborlane, WV, Ahmann, A, et al. (2010) Effectiveness of sensor-augmented insulin-pump therapy in type 1 diabetes. N Engl J Med 363: 311320.Google Scholar
Moller, DE, Kaufman, KD (2005) Metabolic syndrome: a clinical and molecular perspective. Annu Rev Med 56: 4562.Google Scholar
Olefsky, JM, Glass, CK (2010) Macrophages, inflammation, and insulin resistance. Annu Rev Physiol 72: 219246.Google Scholar
Hotamisligil, GS, Shargill, NS, Spiegelman, BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259: 8791.Google Scholar
Weisberg, SP, McCann, D, Desai, M, Rosenbaum, M, Leibel, RL, Ferrante, AW Jr. (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112: 17961808.CrossRefGoogle ScholarPubMed
Xu, H, Barnes, GT, Yang, Q, et al. (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112: 18211830.Google Scholar
Osborn, O, Olefsky, JM (2012) The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med 18: 363374.Google Scholar
Winer, S, Chan, Y, Paltser, G, et al. (2009) Normalization of obesity-associated insulin resistance through immunotherapy. Nat Med 15: 921929.Google Scholar
Nishimura, S, Manabe, I, Nagasaki, M, et al. (2009) CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med 15: 914920.Google Scholar
Feuerer, M, Herrero, L, Cipolletta, D, et al. (2009) Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med 15: 930939.Google Scholar
Winer, DA, Winer, S, Shen, L, et al. (2011) B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat Med 17: 610617.CrossRefGoogle ScholarPubMed
Talukdar, S, Oh da, Y, Bandyopadhyay, G, et al. (2012) Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat Med 18: 14071412.Google Scholar
Liu, J, Divoux, A, Sun, J, et al. (2009) Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nat Med 15: 940945.CrossRefGoogle ScholarPubMed
Hotamisligil, GS (2010) Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140: 900917.Google Scholar
Halberg, N, Khan, T, Trujillo, ME, et al. (2009) Hypoxia-inducible factor 1 alpha induces fibrosis and insulin resistance in white adipose tissue. Mol Cell Biol 29: 44674483.Google Scholar
Minamino, T, Orimo, M, Shimizu, I, et al. (2009) A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat Med 15: 10821087.Google Scholar
Cinti, S, Mitchell, G, Barbatelli, G, et al. (2005) Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 46: 23472355.CrossRefGoogle ScholarPubMed
Shi, H, Kokoeva, MV, Inouye, K, Tzameli, I, Yin, H, Flier, JS (2006) TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 116: 30153025.Google Scholar
Pal, D, Dasgupta, S, Kundu, R, et al. (2012) Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat Med 18:12791285.Google Scholar
Mantovani, A, Sozzani, S, Locati, M, Allavena, P, Sica, A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23: 549555.Google Scholar
Duewell, P, Kono, H, Rayner, KJ, et al. (2010) NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464: 13571361.Google Scholar
Franchi, L, Eigenbrod, T, Munoz-Planillo, R, Nunez, G (2009) The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 10: 241247.CrossRefGoogle ScholarPubMed
Vandanmagsar, B, Youm, YH, Ravussin, A, et al. (2011) The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med 17: 179188.Google Scholar
Yang, H, Youm, YH, Vandanmagsar, B, et al. (2010) Obesity increases the production of proinflammatory mediators from adipose tissue T cells and compromises TCR repertoire diversity: implications for systemic inflammation and insulin resistance. J Immunol 185: 18361845.Google Scholar
Qin, J, Li, Y, Cai, Z, et al. (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490: 5560.Google Scholar
Lam, YY, Ha, CW, Campbell, CR, et al. (2012) Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice. PLOS ONE 7: e34233.Google Scholar
Wang, Y, Li, J, Tang, L, Charnigo, R, de Villiers, W, Eckhardt, E (2010) T-lymphocyte responses to intestinally absorbed antigens can contribute to adipose tissue inflammation and glucose intolerance during high fat feeding. PLOS ONE 5: e13951.Google Scholar
Ghoshal, S, Witta, J, Zhong, J, de Villiers, W, Eckhardt, E (2009) Chylomicrons promote intestinal absorption of lipopolysaccharides. J Lipid Res 50: 9097.CrossRefGoogle ScholarPubMed
Cani, PD, Amar, J, Iglesias, MA, et al. (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56: 17611772.Google Scholar
Obstfeld, AE, Sugaru, E, Thearle, M, et al. (2010) C-C chemokine receptor 2 (CCR2) regulates the hepatic recruitment of myeloid cells that promote obesity-induced hepatic steatosis. Diabetes 59: 916925.CrossRefGoogle ScholarPubMed
Fink, LN, Oberbach, A, Costford, SR, et al. (2013) Expression of anti-inflammatory macrophage genes within skeletal muscle correlates with insulin sensitivity in human obesity and type 2 diabetes. Diabetologia 56: 16231628.Google Scholar
Pillon, NJ, Bilan, PJ, Fink, LN, Klip, A (2013) Cross-talk between skeletal muscle and immune cells: muscle-derived mediators and metabolic implications. Am J Physiol Endocrinol Metab 304: E453E465.Google Scholar
Purkayastha, S, Zhang, G, Cai, D (2011) Uncoupling the mechanisms of obesity and hypertension by targeting hypothalamic IKK-beta and NF-kappaB. Nat Med 17: 883887.Google Scholar
Milanski, M, Arruda, AP, Coope, A, et al. (2012) Inhibition of hypothalamic inflammation reverses diet-induced insulin resistance in the liver. Diabetes 61: 14551462.Google Scholar
Shulman, GI (2000) Cellular mechanisms of insulin resistance. J Clin Invest 106: 171176.CrossRefGoogle ScholarPubMed
Samuel, VT, Shulman, GI (2012) Mechanisms for insulin resistance: common threads and missing links. Cell 148: 852871.Google Scholar
Jornayvaz, FR, Shulman, GI (2012) Diacylglycerol activation of protein kinase Cepsilon and hepatic insulin resistance. Cell Metab 15: 574584.Google Scholar
Holland, WL, Bikman, BT, Wang, LP, et al. (2011) Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice. J Clin Invest 121: 18581870.CrossRefGoogle ScholarPubMed
Caturegli, P, Kimura, H, Rocchi, R, Rose, NR (2007) Autoimmune thyroid diseases. Curr Opin Rheumatol 19: 4448.Google Scholar
Canning, MO, Ruwhof, C, Drexhage, HA (2003) Aberrancies in antigen-presenting cells and T cells in autoimmune thyroid disease. A role in faulty tolerance induction. Autoimmunity 36: 429442.CrossRefGoogle Scholar
Klecha, AJ, Barreiro Arcos, ML, Frick, L, Genaro, AM, Cremaschi, G (2008) Immune-endocrine interactions in autoimmune thyroid diseases. Neuroimmunomodulation 15: 6875.Google Scholar
Phenekos, C, Vryonidou, A, Gritzapis, AD, Baxevanis, CN, Goula, M, Papamichail, M (2004) Th1 and Th2 serum cytokine profiles characterize patients with Hashimoto's thyroiditis (Th1) and Graves disease (Th2). Neuroimmunomodulation 11: 209213.Google Scholar
Weetman, AP (2003) Autoimmune thyroid disease: propagation and progression. Eur J Endocrinol 148: 19.Google Scholar
Saranac, L, Zivanovic, S, Bjelakovic, B, Stamenkovic, H, Novak, M, Kamenov, B (2011) Why is the thyroid so prone to autoimmune disease? Horm Res Paediatr 75: 157165.Google Scholar
Carayanniotis, G, Rao, VP (1997) Searching for pathogenic epitopes in thyroglobulin: parameters and caveats. Immunol Today 18: 8388.Google Scholar
Hasham, A, Tomer, Y (2012) Genetic and epigenetic mechanisms in thyroid autoimmunity. Immunol Res 54: 204213.CrossRefGoogle ScholarPubMed
Eschler, DC, Hasham, A, Tomer, Y (2011) Cutting edge: the etiology of autoimmune thyroid diseases. Clin Rev Allergy Immunol 41: 190197.Google Scholar
Golden, B, Levin, L, Ban, Y, Concepcion, E, Greenberg, DA, Tomer, Y (2005) Genetic analysis of families with autoimmune diabetes and thyroiditis: evidence for common and unique genes. J Clin Endocrinol Metab 90: 49044911.Google Scholar
Ban, Y, Davies, TF, Greenberg, DA, et al. (2004) Arginine at position 74 of the HLA-DR beta1 chain is associated with Graves' disease. Genes Immun 5: 203208.Google Scholar
Tomer, Y, Concepcion, E, Greenberg, DA (2002) A C/T single-nucleotide polymorphism in the region of the CD40 gene is associated with Graves' disease. Thyroid 12: 11291135.Google Scholar
Ban, Y, Greenberg, DA, Concepcion, E, Skrabanek, L, Villanueva, R, Tomer, Y (2003) Amino acid substitutions in the thyroglobulin gene are associated with susceptibility to human and murine autoimmune thyroid disease. Proc Natl Acad Sci USA 100: 1511915124.CrossRefGoogle ScholarPubMed
Hodge, SE, Ban, Y, Strug, LJ, et al. (2006) Possible interaction between HLA-DRbeta1 and thyroglobulin variants in Graves' disease. Thyroid 16: 351355.CrossRefGoogle ScholarPubMed
Brent, GA (2010) Environmental exposures and autoimmune thyroid disease. Thyroid 20: 755761.Google Scholar
Doufas, AG, Mastorakos, G, Chatziioannou, S, et al. (1999) The predominant form of non-toxic goiter in Greece is now autoimmune thyroiditis. Eur J Endocrinol 140: 505511.CrossRefGoogle ScholarPubMed
Papanastasiou, L, Vatalas, IA, Koutras, DA, Mastorakos, G (2007) Thyroid autoimmunity in the current iodine environment. Thyroid 17: 729739.Google Scholar
Bagnasco, M, Bossert, I, Pesce, G (2006) Stress and autoimmune thyroid diseases. Neuroimmunomodulation 13: 309317.Google Scholar
Matos-Santos, A, Nobre, EL, Costa, JG, et al. (2001) Relationship between the number and impact of stressful life events and the onset of Graves' disease and toxic nodular goitre. Clin Endocrinol (Oxf) 55: 1519.Google Scholar
Tsatsoulis, A (2006) The role of stress in the clinical expression of thyroid autoimmunity. Ann N Y Acad Sci 1088: 382395.Google Scholar
Elenkov, IJ, Wilder, RL, Bakalov, VK, et al. (2001) IL-12, TNF-alpha, and hormonal changes during late pregnancy and early postpartum: implications for autoimmune disease activity during these times. J Clin Endocrinol Metab 86: 49334938.Google Scholar
Bogazzi, F, Bartalena, L, Martino, E (2010) Approach to the patient with amiodarone-induced thyrotoxicosis. J Clin Endocrinol Metab 95: 25292535.Google Scholar
Antonelli, A, Ferri, C, Pampana, A, et al. (2004) Thyroid disorders in chronic hepatitis C. Am J Med 117: 1013.Google Scholar
Tomer, Y, Huber, A (2009) The etiology of autoimmune thyroid disease: a story of genes and environment. J Autoimmun 32: 231239.Google Scholar
Bartolome, J, Rodriguez-Inigo, E, Quadros, P, et al. (2008) Detection of hepatitis C virus in thyroid tissue from patients with chronic HCV infection. J Med Virol 80: 15881594.Google Scholar
Laureti, S, Vecchi, L, Santeusanio, F, Falorni, A (1999) Is the prevalence of Addison's disease underestimated? J Clin Endocrinol Metab 84: 1762.Google Scholar
Kong, MF, Jeffcoate, W (1994) Eighty-six cases of Addison's disease. Clin Endocrinol (Oxf) 41: 757761.Google Scholar
Winqvist, O, Karlsson, FA, Kampe, O (1992) 21-Hydroxylase, a major autoantigen in idiopathic Addison's disease. Lancet 339: 15591562.Google Scholar
Krohn, K, Uibo, R, Aavik, E, Peterson, P, Savilahti, K (1992) Identification by molecular cloning of an autoantigen associated with Addison's disease as steroid 17 alpha-hydroxylase. Lancet 339: 770773.Google Scholar
Winqvist, O, Gustafsson, J, Rorsman, F, Karlsson, FA, Kampe, O (1993) Two different cytochrome P450 enzymes are the adrenal antigens in autoimmune polyendocrine syndrome type I and Addison's disease. J Clin Invest 92: 23772385.Google Scholar
Nikfarjam, L, Kominami, S, Yamazaki, T, et al. (2005) Mechanism of inhibition of cytochrome P450 C21 enzyme activity by autoantibodies from patients with Addison's disease. Eur J Endocrinol 152: 95101.Google Scholar
Furmaniak, J, Kominami, S, Asawa, T, Wedlock, N, Colls, J, Smith, BR (1994) Autoimmune Addison's disease–evidence for a role of steroid 21-hydroxylase autoantibodies in adrenal insufficiency. J Clin Endocrinol Metab 79: 15171521.Google Scholar
Mitchell, AL, Pearce, SH (2012) Autoimmune Addison disease: pathophysiology and genetic complexity. Nat Rev Endocrinol 8: 306316.Google Scholar
Betterle, C, Dal Pra, C, Mantero, F, Zanchetta, R (2002) Autoimmune adrenal insufficiency and autoimmune polyendocrine syndromes: autoantibodies, autoantigens, and their applicability in diagnosis and disease prediction. Endocr Rev 23: 327364.Google Scholar
Franchimont, D, Galon, J, Gadina, M, et al. (2000) Inhibition of Th1 immune response by glucocorticoids: dexamethasone selectively inhibits IL-12-induced Stat4 phosphorylation in T lymphocytes. J Immunol 164: 17681774.Google Scholar
Hayashi, Y, Hiyoshi, T, Takemura, T, Kurashima, C, Hirokawa, K (1989) Focal lymphocytic infiltration in the adrenal cortex of the elderly: immunohistological analysis of infiltrating lymphocytes. Clin Exp Immunol 77: 101105.Google ScholarPubMed
Zelissen, PM, Bast, EJ, Croughs, RJ (1995) Associated autoimmunity in Addison's disease. J Autoimmun 8: 121130.Google Scholar
Finnish-German APECED Consortium (1997) An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat Genet 17: 399403.CrossRefGoogle Scholar
Anderson, MS, Venanzi, ES, Klein, L, et al. (2002) Projection of an immunological self shadow within the thymus by the aire protein. Science 298: 13951401.Google Scholar
Neufeld, M, Maclaren, NK, Blizzard, RM (1981) Two types of autoimmune Addison's disease associated with different polyglandular autoimmune (PGA) syndromes. Medicine (Baltimore) 60: 355362.Google Scholar
Vyse, TJ, Todd, JA (1996) Genetic analysis of autoimmune disease. Cell 85: 311318.Google Scholar
Myhre, AG, Undlien, DE, Lovas, K, et al. (2002) Autoimmune adrenocortical failure in Norway autoantibodies and human leukocyte antigen class II associations related to clinical features. J Clin Endocrinol Metab 87: 618623.Google Scholar
Gombos, Z, Hermann, R, Kiviniemi, M, et al. (2007) Analysis of extended human leukocyte antigen haplotype association with Addison's disease in three populations. Eur J Endocrinol 157: 757761.Google Scholar
Skinningsrud, B, Lie, BA, Lavant, E, et al. (2011) Multiple loci in the HLA complex are associated with Addison's disease. J Clin Endocrinol Metab 96: E17031708.CrossRefGoogle ScholarPubMed
Gambelunghe, G, Falorni, A, Ghaderi, M, et al. (1999) Microsatellite polymorphism of the MHC class I chain-related (MIC-A and MIC-B) genes marks the risk for autoimmune Addison's disease. J Clin Endocrinol Metab 84: 37013707.Google Scholar
Blomhoff, A, Lie, BA, Myhre, AG, et al. (2004) Polymorphisms in the cytotoxic T lymphocyte antigen-4 gene region confer susceptibility to Addison's disease. J Clin Endocrinol Metab 89: 34743476.CrossRefGoogle ScholarPubMed
Roycroft, M, Fichna, M, McDonald, D, et al. (2009) The tryptophan 620 allele of the lymphoid tyrosine phosphatase (PTPN22) gene predisposes to autoimmune Addison's disease. Clin Endocrinol (Oxf) 70: 358362.Google Scholar
Kochi, Y, Yamada, R, Suzuki, A, et al. (2005) A functional variant in FCRL3, encoding Fc receptor-like 3, is associated with rheumatoid arthritis and several autoimmunities. Nat Genet 37: 478485.Google Scholar
Magitta, NF, Boe Wolff, AS, Johansson, S, et al. (2009) A coding polymorphism in NALP1 confers risk for autoimmune Addison's disease and type 1 diabetes. Genes Immun 10: 120124.Google Scholar
Zurawek, M, Fichna, M, Januszkiewicz-Lewandowska, D, Gryczynska, M, Fichna, P, Nowak, J (2010) A coding variant in NLRP1 is associated with autoimmune Addison's disease. Hum Immunol 71: 530534.Google Scholar
Pani, MA, Regulla, K, Segni, M, et al. (2002) A polymorphism within the vitamin D-binding protein gene is associated with Graves' disease but not with Hashimoto's thyroiditis. J Clin Endocrinol Metab 87: 25642567.Google Scholar
Lopez, ER, Zwermann, O, Segni, M, et al. (2004) A promoter polymorphism of the CYP27B1 gene is associated with Addison's disease, Hashimoto's thyroiditis, Graves' disease and type 1 diabetes mellitus in Germans. Eur J Endocrinol 151: 193197.Google Scholar
Glezer, A, Bronstein, MD (2012) Pituitary autoimmune disease: nuances in clinical presentation. Endocrine 42: 7479.Google Scholar
Carpinteri, R, Patelli, I, Casanueva, FF, Giustina, A (2009) Pituitary tumours: inflammatory and granulomatous expansive lesions of the pituitary. Best Pract Res Clin Endocrinol Metab 23: 639650.CrossRefGoogle ScholarPubMed
Wong, S, Lam, WY, Wong, WK, Lee, KC (2007) Hypophysitis presented as inflammatory pseudotumor in immunoglobulin G4-related systemic disease. Hum Pathol 38: 17201723.Google Scholar
Molitch, ME, Gillam, MP (2007) Lymphocytic hypophysitis. Horm Res 68(suppl 5): 145150.Google Scholar
Caturegli, P, Newschaffer, C, Olivi, A, Pomper, MG, Burger, PC, Rose, NR (2005) Autoimmune hypophysitis. Endocr Rev 26: 599614.Google Scholar
Gutenberg, A, Buslei, R, Fahlbusch, R, Buchfelder, M, Bruck, W (2005) Immunopathology of primary hypophysitis: implications for pathogenesis. Am J Surg Pathol 29: 329338.Google Scholar
Crock, PA (1998) Cytosolic autoantigens in lymphocytic hypophysitis. J Clin Endocrinol Metab 83: 609618.Google Scholar
O'Dwyer, DT, Smith, AI, Matthew, ML, et al. (2002) Identification of the 49-kDa autoantigen associated with lymphocytic hypophysitis as alpha-enolase. J Clin Endocrinol Metab 87: 752757.Google Scholar
Llera, AS, Cardoso, AI, Stumpo, RR, Martinez, AS, Heinrich, JJ, Poskus, E (1993) Detection of autoantibodies against hGH in sera of idiopathic hypopituitary children. Clin Immunol Immunopathol 66: 114119.Google Scholar
Lupi, I, Broman, KW, Tzou, SC, Gutenberg, A, Martino, E, Caturegli, P (2008) Novel autoantigens in autoimmune hypophysitis. Clin Endocrinol (Oxf) 69: 269278.Google Scholar
Michels, AW, Gottlieb, PA (2010) Autoimmune polyglandular syndromes. Nat Rev Endocrinol 6: 270277.Google Scholar
Ahonen, P, Myllarniemi, S, Sipila, I, Perheentupa, J (1990) Clinical variation of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) in a series of 68 patients. N Engl J Med 322: 18291836.Google Scholar
Betterle, C, Greggio, NA, Volpato, M (1998) Clinical review 93: autoimmune polyglandular syndrome type 1. J Clin Endocrinol Metab 83: 10491055.Google Scholar
Zlotogora, J, Shapiro, MS (1992) Polyglandular autoimmune syndrome type I among Iranian Jews. J Med Genet 29: 824826.Google Scholar
Dittmar, M, Kahaly, GJ (2003) Polyglandular autoimmune syndromes: immunogenetics and long-term follow-up. J Clin Endocrinol Metab 88: 29832992.Google Scholar
Lankisch, TO, Jaeckel, E, Strassburg, CP (2009) The autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy or autoimmune polyglandular syndrome type 1. Semin Liver Dis 29: 307314.Google Scholar
Nagamine, K, Peterson, P, Scott, HS, et al. (1997) Positional cloning of the APECED gene. Nat Genet 17: 393398.Google Scholar
Venanzi, ES, Melamed, R, Mathis, D, Benoist, C (2008) The variable immunological self: genetic variation and nongenetic noise in Aire-regulated transcription. Proc Natl Acad Sci USA 105: 1586015865.Google Scholar
Perheentupa, J (2006) Autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy. J Clin Endocrinol Metab 91: 28432850.Google Scholar
Scott, HS, Heino, M, Peterson, P, et al. (1998) Common mutations in autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy patients of different origins. Mol Endocrinol 12: 11121119.Google Scholar
Zumer, K, Saksela, K, Peterlin, BM (2013) The mechanism of tissue-restricted antigen gene expression by AIRE. J Immunol 190: 24792482.Google Scholar
Gallo, V, Giardino, G, Capalbo, D, et al. (2013) Alterations of the autoimmune regulator transcription factor and failure of central tolerance: APECED as a model. Expert Rev Clin Immunol 9: 4351.Google Scholar
Akirav, EM, Ruddle, NH, Herold, KC (2011) The role of AIRE in human autoimmune disease. Nat Rev Endocrinol 7: 2533.Google Scholar
Halonen, M, Eskelin, P, Myhre, AG, et al. (2002) AIRE mutations and human leukocyte antigen genotypes as determinants of the autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy phenotype. J Clin Endocrinol Metab 87: 25682574.CrossRefGoogle ScholarPubMed
Ten, S, New, M, Maclaren, N (2001) Clinical review 130: Addison's disease 2001. J Clin Endocrinol Metab 86: 29092922.Google Scholar
Betterle, C, Lazzarotto, F, Presotto, F (2004) Autoimmune polyglandular syndrome type 2: the tip of an iceberg? Clin Exp Immunol 137: 225233.Google Scholar
Wolff, AS, Erichsen, MM, Meager, A, et al. (2007) Autoimmune polyendocrine syndrome type 1 in Norway: phenotypic variation, autoantibodies, and novel mutations in the autoimmune regulator gene. J Clin Endocrinol Metab 92: 595603.Google Scholar
Kahaly, GJ (2012) Polyglandular autoimmune syndrome type II. Presse Med 41: e663e670.Google Scholar
Robles, DT, Fain, PR, Gottlieb, PA, Eisenbarth, GS (2002) The genetics of autoimmune polyendocrine syndrome type II. Endocrinol Metab Clin North Am 31: 353368, vi–vii.Google Scholar
Dittmar, M, Libich, C, Brenzel, T, Kahaly, GJ (2011) Increased familial clustering of autoimmune thyroid diseases. Horm Metab Res 43: 200204.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×