Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-09T14:13:37.188Z Has data issue: false hasContentIssue false

Chapter 29 - Bone in endocrine disease

from Section III - Anatomical endocrine pathology

Published online by Cambridge University Press:  13 April 2017

Ozgur Mete
Affiliation:
University of Toronto
Sylvia L. Asa
Affiliation:
University of Toronto
Get access
Type
Chapter
Information
Endocrine Pathology , pp. 992 - 1027
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Karsenty, G. The complexities of skeletal biology. Nature 2003;423:316318.Google Scholar
Lee, NK, Karsenty, G. Reciprocal regulation of bone and energy metabolism. Trends Endocrinol Metab 2008;19:161166.CrossRefGoogle ScholarPubMed
Karsenty, G, Ferron, M. The contribution of bone to whole-organism physiology. Nature 2012;481:314320.CrossRefGoogle ScholarPubMed
Bilezikian, JP, Raisz, LG, Martin, TJ. Principles of Bone Biology, Vols. 1 and 2. San Diego, FL: Academic Press, 2008.Google Scholar
Ducy, P, Zhang, R, Geoffroy, V, Ridall, AL, Karsenty, G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 1997;89:747754.Google Scholar
Karsenty, G, Kronenberg, HM, Settembre, C. Genetic control of bone formation. Annu Rev Cell Dev Biol 2009;25:629648.Google Scholar
Glorieux, FH, Pettifor, JM, Jüppner, H. Pediatric Bone Biology and Diseases. Amsterdam: Elsevier/Academic Press, 2012.Google Scholar
Thakker, RV. Genetics of Bone Biology and Skeletal Disease. London: Academic Press, 2013.Google Scholar
Yang, Y. Skeletal morphogenesis during embryonic development. Crit Rev Eukaryot Gene Express 2009;19:197218.Google Scholar
Chung, UI, Kawaguchi, H, Takato, T, Nakamura, K. Distinct osteogenic mechanisms of bones of distinct origins. J Orthopaed Sci 2004;9:410414.Google Scholar
Riminucci, M, Bradbeer, JN, Corsi, A, Gentili, C, Descalzi, F, Cancedda, R, et al. Vis-a-vis cells and the priming of bone formation. J Bone Miner Res 1998;13:18521861.CrossRefGoogle ScholarPubMed
Provot, S, Schipani, E. Molecular mechanisms of endochondral bone development. Biochem Biophys Res Commun 2005;328:658665.CrossRefGoogle ScholarPubMed
Klein, M, Bonar, SG, Freemont, T, Vinh, T, Lopez-Ben, R, Siegel, H, et al. Atlas of Non-neoplastic Pathology: Non-Neoplastic Diseases of Bones and Joints. Bethesda, MD: ARP Press, 2011.Google Scholar
Eames, BF, Helms, JA. Conserved molecular program regulating cranial and appendicular skeletogenesis. Dev Dyn 2004;231:413.CrossRefGoogle ScholarPubMed
Hall, BK, Miyake, T. All for one and one for all: condensations and the initiation of skeletal development. BioEssays 2000;22:138147.Google Scholar
Mills, SE. Histology for Pathologists. Philadelphia PA: Lippincott Williams & Wilkins; 2007.Google Scholar
Karsenty, G, Wagner, EF. Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2002;2:389406.Google Scholar
Carroll, SH, Ravid, K. Differentiation of mesenchymal stem cells to osteoblasts and chondrocytes: a focus on adenosine receptors. Exp Rev Mol Med 2013;15:e1.CrossRefGoogle ScholarPubMed
Edwards, JR, Mundy, GR. Advances in osteoclast biology: old findings and new insights from mouse models. Nature Rev Rheumatol 2011;7:235243.CrossRefGoogle ScholarPubMed
Nakashima, K, Zhou, X, Kunkel, G, Zhang, Z, Deng, JM, Behringer, RR, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 2002;108:1729.Google Scholar
Hu, H, Hilton, MJ, Tu, X, Yu, K, Ornitz, DM, Long, F. Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development 2005;132:4960.Google Scholar
Thompson, JS, Akesson, EJ, Loeb, JA, Wilson-Pauwels, L. Thompson’s Core Textbook of Anatomy, 2nd edn. Philadelphia PA: Lippincott, 1990.Google Scholar
Enlow, DH. Wolff’s law and the factor of architectonic circumstance. Am J Orthodont 1968;54:803822.CrossRefGoogle ScholarPubMed
Kizilkanat, E, Boyan, N, Ozsahin, ET, Soames, R, Oguz, O. Location, number and clinical significance of nutrient foramina in human long bones. Ann Anat 2007;189:8795.Google Scholar
Edwards, JR, Williams, K, Kindblom, LG, Meis-Kindblom, JM, Hogendoorn, PC, Hughes, D, et al. Lymphatics and bone. Hum Pathol 2008;39:4955.Google Scholar
Webber, RH, DeFelice, R, Ferguson, RJ, Powell, JP. Bone marrow response to stimulation of the sympathetic trunks in rats. Acta Anat 1970;77:9297.CrossRefGoogle ScholarPubMed
Ji-Ye, H, Xin-Feng, Z, Lei-Sheng, J. Autonomic control of bone formation: its clinical relevance. Handbook Clin Neurol 2013;117:161171.CrossRefGoogle ScholarPubMed
Khor, EC, Baldock, P. The NPY system and its neural and neuroendocrine regulation of bone. Curr Osteopor Rep 2012;10:160168.CrossRefGoogle ScholarPubMed
Elefteriou, F, Campbell, P, Ma, Y. Control of bone remodeling by the peripheral sympathetic nervous system. Calcif Tissue Int 2014;94:140151.Google Scholar
Bullough, PG. Orthopaedic Pathology, 5th edn. Philadelphia, PA: Mosby-Elsevier, 2009.Google Scholar
Franz-Odendaal, TA, Hall, BK, Witten, PE. Buried alive: how osteoblasts become osteocytes. Dev Dyn 2006;235:176190.Google Scholar
Neve, A, Corrado, A, Cantatore, FP. Osteoblast physiology in normal and pathological conditions. Cell Tissue Res 2011;343:289302.Google Scholar
Everts, V, Delaisse, JM, Korper, W, Jansen, DC, Tigchelaar-Gutter, W, Saftig, P, et al. The bone lining cell: its role in cleaning Howship’s lacunae and initiating bone formation. J Bone Miner Res 2002;17:7790.CrossRefGoogle ScholarPubMed
Li, Y, Aparicio, C. Discerning the subfibrillar structure of mineralized collagen fibrils: a model for the ultrastructure of bone. PLOS ONE 2013;8:e76782.Google Scholar
Boivin, G, Anthoine-Terrier, C, Obrant, KJ. Transmission electron microscopy of bone tissue. A review. Acta Orthopaed Scand 1990;61:170180.CrossRefGoogle ScholarPubMed
Miller, SC, Jee, WS. The bone lining cell: a distinct phenotype? Calcif Tissue Int 1987;41:15.Google Scholar
Sterchi, D. Bone. In Suvarna, KS, Layton, C, Bancroft, JD, eds. Bancroft’s Theory and Practice of Histological Techniques, 7th edn. Edinburgh: Churchill Livingstone-Elesvier; 2013:317352.Google Scholar
Diamanti-Kandarakis, E, Livadas, S, Tseleni-Balafouta, S, Lyberopoulos, K, Tantalaki, E, Palioura, H, et al. Brown tumor of the fibula: unusual presentation of an uncommon manifestation. Report of a case and review of the literature. Endocrine 2007;32:345349.Google Scholar
Bohlman, ME, Kim, YC, Eagan, J, Spees, EK. Brown tumor in secondary hyperparathyroidism causing acute paraplegia. Am J Med 1986;81:545547.CrossRefGoogle ScholarPubMed
Verlaan, L, van der Wal, B, de Maat, GJ, Walenkamp, G, Nollen-Lopez, L, van Ooij, A. Primary hyperparathyroidism and pathological fractures: a review. Acta Orthopaed Belg 2007;73:300305.Google Scholar
Takeshita, T, Takeshita, K, Abe, S, Takami, H, Imamura, T, Furui, S. Brown tumor with fluid-fluid levels in a patient with primary hyperparathyroidism: radiological findings. Radiat Med 2006;24:631634.Google Scholar
Davies, AM, Pettersson, H, Ostensen, H, World Health Organization., International Society of Radiology. The WHO Manual of Diagnostic Imaging: Radiographic Anatomy and Interpretation of the Musculoskeletal System. Geneva: World Health Organization, 2002.Google Scholar
Jaffe, HL. Hyperparathyroidism. Bull N Y Acad Med 1940;16:291311.Google Scholar
Unni, KK, Inwards, CY, Bridge, JA, Atlas of Tumor Pathology, 4th Series, Fascicle 2: Tumors of Bones and Joints. Bethesda, MD: ARP Press, 2005.Google Scholar
Desai, P, Steiner, GC. Ultrastructure of brown tumor of hyperparathyroidism. Ultrastruct Pathol 1990;14:505511.Google Scholar
Rossi, B, Ferraresi, V, Appetecchia, ML, Novello, M, Zoccali, C. Giant cell tumor of bone in a patient with diagnosis of primary hyperparathyroidism: a challenge in differential diagnosis with brown tumor. Skeletal Radiol 2014;43:693697.CrossRefGoogle Scholar
Siegal, G, Bianco, P, Dal Cin, P. Fibrous dysplasia. In Fletcher, C, Bridge, J, Hogendoorn, P, Mertens, F, eds. World Health Organization Classification of Tumours of Soft Tissue and Bone. Lyon: International Agency for Research on Cancer, 2013:352353.Google Scholar
Ippolito, E, Bray, EW, Corsi, A, De Maio, F, Exner, UG, Robey, PG, et al. Natural history and treatment of fibrous dysplasia of bone: a multicenter clinicopathologic study promoted by the European Pediatric Orthopaedic Society. J Pediatr Orthoped B 2003;12:155177.Google ScholarPubMed
Parekh, SG, Donthineni-Rao, R, Ricchetti, E, Lackman, RD. Fibrous dysplasia. J Am Acad Orthopaed Surg 2004;12:305313.CrossRefGoogle ScholarPubMed
Collins, MT, Chebli, C, Jones, J, Kushner, H, Consugar, M, Rinaldo, P, et al. Renal phosphate wasting in fibrous dysplasia of bone is part of a generalized renal tubular dysfunction similar to that seen in tumor-induced osteomalacia. J Bone Miner Res 2001;16:806813.Google Scholar
Stanton, RP, Ippolito, E, Springfield, D, Lindaman, L, Wientroub, S, Leet, A. The surgical management of fibrous dysplasia of bone. Orphanet J Rare Dis 2012;7(suppl 1):S1.Google Scholar
Utz, JA, Kransdorf, MJ, Jelinek, JS, Moser, RP Jr., Berrey, BH. MR appearance of fibrous dysplasia. J Comput Assist Tomogr 1989;13:845851.CrossRefGoogle ScholarPubMed
Lee, SE, Lee, EH, Park, H, Sung, JY, Lee, HW, Kang, SY, et al. The diagnostic utility of the GNAS mutation in patients with fibrous dysplasia: meta-analysis of 168 sporadic cases. Hum Pathol 2012;43:12341242.Google Scholar
Tabareau-Delalande, F, Collin, C, Gomez-Brouchet, A, Decouvelaere, AV, Bouvier, C, Larousserie, F, et al. Diagnostic value of investigating GNAS mutations in fibro-osseous lesions: a retrospective study of 91 cases of fibrous dysplasia and 40 other fibro-osseous lesions. Mod Pathol 2013;26:911921.Google Scholar
Regard, JB, Cherman, N, Palmer, D, Kuznetsov, SA, Celi, FS, Guettier, JM, et al. Wnt/beta-catenin signaling is differentially regulated by Galpha proteins and contributes to fibrous dysplasia. Proc Natl Acad Sci USA 2011;108:2010120106.Google Scholar
Bhattacharyya, N, Wiench, M, Dumitrescu, C, Connolly, BM, Bugge, TH, Patel, HV, et al. Mechanism of FGF23 processing in fibrous dysplasia. J Bone Miner Res 2012;27:11321141.Google Scholar
Fan, QM, Yue, B, Bian, ZY, Xu, WT, Tu, B, Dai, KR, et al. The CREB–Smad6–Runx2 axis contributes to the impaired osteogenesis potential of bone marrow stromal cells in fibrous dysplasia of bone. J Pathol 2012;228:4555.Google Scholar
Choong, PF, Pritchard, DJ, Rock, MG, Sim, FH, McLeod, RA, Unni, KK. Low grade central osteogenic sarcoma. A long-term followup of 20 patients. Clin Orthopaed Relat Res 1996;198–206.Google Scholar
Lee, JS, FitzGibbon, EJ, Chen, YR, Kim, HJ, Lustig, LR, Akintoye, SO, et al. Clinical guidelines for the management of craniofacial fibrous dysplasia. Orphanet J Rare Dis 2012;7(suppl 1):S2.Google Scholar
Slootweg, P, El Mofty, S. Ossifying fibroma. In Barnes, L, Eveson, J, Reichart, P, Sidransky, D, eds. World Health Organization Classification of Tumours: Pathology and Genetics of Head and Neck Tumours. Lyon: International Agency for Research on Cancer, 2005:430.Google Scholar
Teh, B, Sweet, K, Morrison, C. Pathology and genetics of tumours of endocrine organs. In DeLellis, R, Lloyd, R, Heitz, P, Eng, C, ed. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Endocrine Organs. Lyon: International Agency for Research on Cancer, 2004:320.Google Scholar
Haven, CJ, Wong, FK, van Dam, EW, van der Juijt, R, van Asperen, C, Jansen, J, et al. A genotypic and histopathological study of a large Dutch kindred with hyperparathyroidism-jaw tumor syndrome. J Clin Endocrinol Metab 2000;85:14491454.Google ScholarPubMed
Newey, PJ, Bowl, MR, Cranston, T, Thakker, RV. Cell division cycle protein 73 homolog (CDC73) mutations in the hyperparathyroidism-jaw tumor syndrome (HPT-JT) and parathyroid tumors. Hum Mutat 2010;31:295307.Google Scholar
Jackson, MA, Rich, TA, Hu, MI, Martin, JW, Perrier, ND, Waguespack, SG. CDC73-related disorders. In Pagon, RA, Adam, MP, Bird, TD, Dolan, CR, Fong, CT, Stephens, K, eds. GeneReviews. Seattle, WA: University of Washington, 2015 (http://www.ncbi.nlm.nih.gov/books/NBK3789/, accessed 10 September 2015).Google Scholar
Kennett, S, Pollick, H. Jaw lesions in familial hyperparathyroidism. Oral Surg Oral Med Oral Pathol 1971;31:502510.Google Scholar
Eversole, LR, Leider, AS, Nelson, K. Ossifying fibroma: a clinicopathologic study of sixty-four cases. Oral Surg Oral Med Oral Pathol 1985;60:505511.Google Scholar
Warnakulasuriya, S, Markwell, BD, Williams, DM. Familial hyperparathyroidism associated with cementifying fibromas of the jaws in two siblings. Oral Surg Oral Med Oral Pathol 1985;59:269274.Google Scholar
Carpten, JD, Robbins, CM, Villablanca, A, Forsberg, L, Presciuttini, S, Bailey-Wilson, J, et al. HRPT2, encoding parafibromin, is mutated in hyperparathyroidism-jaw tumor syndrome. Nat Genet 2002;32:676680.Google Scholar
Rozenblatt-Rosen, O, Hughes, CM, Nannepaga, SJ, Shanmugam, KS, Copeland, TD, Guszczynski, T, et al. The parafibromin tumor suppressor protein is part of a human Paf1 complex. Mol Cell Biol 2005;25:612620.CrossRefGoogle ScholarPubMed
Zhang, C, Kong, D, Tan, MH, Pappas, DL Jr., Wang, PF, Chen, J, et al. Parafibromin inhibits cancer cell growth and causes G1 phase arrest. Biochem Biophys Res Commun 2006;350:1724.CrossRefGoogle ScholarPubMed
Woodard, GE, Lin, L, Zhang, JH, Agarwal, SK, Marx, SJ, Simonds, WF. Parafibromin, product of the hyperparathyroidism-jaw tumor syndrome gene HRPT2, regulates cyclin D1/PRAD1 expression. Oncogene 2005;24:12721276.Google Scholar
Yang, YJ, Han, JW, Youn, HD, Cho, EJ. The tumor suppressor, parafibromin, mediates histone H3 K9 methylation for cyclin D1 repression. Nucl Acids Res 2010;38:382390.Google Scholar
Mosimann, C, Hausmann, G, Basler, K. Parafibromin/Hyrax activates Wnt/Wg target gene transcription by direct association with beta-catenin/Armadillo. Cell 2006;125:327341.Google Scholar
Bricaire, L, Odou, MF, Cardot-Bauters, C, Delemer, B, North, MO, Salenave, S, et al. Frequent large germline HRPT2 deletions in a French National cohort of patients with primary hyperparathyroidism. J Clin Endocrinol Metab 2013;98:E403E408.Google Scholar
Kutcher, MR, Rigby, MH, Bullock, M, Trites, J, Taylor, SM, Hart, RD. Hyperparathyroidism-jaw tumor syndrome. Head Neck 2013;35:E175E177.Google Scholar
Dinnen, JS, Greenwoood, RH, Jones, JH, Walker, DA, Williams, ED. Parathyroid carcinoma in familial hyperparathyroidism. J Clin Pathol 1977;30:966975.Google Scholar

References

ADHR consortium. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 2000;26:345348.Google Scholar
Yamashita, T.. Structural and biochemical properties of fibroblast growth factor 23. Ther Apher Dial 2005;9:313318.Google Scholar
Goetz, R., Nakada, Y., Hu, M.C., et al. Isolated C‐terminal tail of FGF23 alleviates hypophosphatemia by inhibiting FGF23‐FGFR‐Klotho complex formation. Proc Natl Acad Sci USA 2010;107:407441.Google Scholar
Jüppner, H., Wolf, M.. αKlotho: FGF23 coreceptor and FGF23-regulating hormone. J Clin Invest 2012;122:43364339.CrossRefGoogle ScholarPubMed
Kuro, M. , O. Klotho in health and disease. Curr Opin Nephrol Hypertens 2012;21:362368.Google Scholar
Silver, J., Naveh-Many, T.. FGF-23 and secondary hyperparathyroidism in chronic kidney disease. Nat Rev Nephrol 2013;9:641649.Google Scholar
Shimada, T., Hasegawa, H., Yamazaki, Y., et al. FGF‐23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 2004;19:429435.Google Scholar
Rowe, P.S.. The chicken or the egg: PHEX, FGF23 and SIBLINGs unscrambled. Cell Biochem Funct 2012;30:355375.Google Scholar
Feng, J.Q., Ward, L.M., Liu, S., et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet 2006;38:13101315.Google Scholar
Lorenz-Depiereux, B., Bastepe, M., Benet-Pages, A., et al. DMP1mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nat Genet 2006;38:12481250.Google Scholar
Francis, F., Hennig, S., Korn, B., et al. A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. Nat Genet 1995;11:130136.Google Scholar
Quinn, S.J., Thomsen, A.R., Egbuna, O., et al. CaSR-mediated interactions between calcium and magnesium homeostasis in mice. Am J Physiol Endocrinol Metab 2013;304:E724E733.Google Scholar
Saito, H., Maeda, A., Ohtomo, S., et al. Circulating FGF‐23 is regulated by 1α,25-dihydroxyvitamin D3 and phosphorus in vivo. J Biol Chem 2005;280:25432549.Google Scholar
Wolf, M., Koch, T.A., Bregman, D.B.. Effects of iron deficiency anemia and its treatment on fibroblast growth factor 23 and phosphate homeostasis in women. J Bone Miner Res 2013;28:17931803.Google Scholar
Karsenty, G., Ferron, M.. The contribution of bone to whole-organism physiology. Nature 2012;481:314320.Google Scholar
DiGirolamo, D.J., Clemens, T.L., Kousteni, S.. The skeleton as an endocrine organ. Nat Rev Rheumatol 2012;8:674683.Google Scholar
Lian, J.B., Gundberg, C.M.. Osteocalcin. Biochemical considerations and clinical applications. Clin Orthop Relat Res 1988;226:267291.Google Scholar
Ducy, P., Desbois, C., Boyce, B., et al. Increased bone formation in osteocalcin-deficient mice. Nature 1996;382:448452.Google Scholar
Delmas, P.D., Eastell, R., Garnero, P., et al. The use of biochemical markers of bone turnover in osteoporosis. Committee of Scientific Advisors of the International Osteoporosis Foundation. Osteoporos Int 2000;11:S2S17.Google Scholar
Szulc, P., Delmas, P.D.. Biochemical markers of bone turnover: potential use in the investigation and management of postmenopausal osteoporosis. Osteoporos.Int 2008;19:16831704.Google Scholar
Hauschka, P.V., Lian, J.B., Cole, D.E., Gundberg, C.M.. Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev 1989;69:9901047.Google Scholar
Hoang, Q.Q., Sicheri, F., Howard, A.J., Yang, D.S.. Bone recognition mechanism of porcine osteocalcin from crystal structure. Nature 2003;425:977980.Google Scholar
Frazao, C., Simes, D.C., Coelho, R., et al. Structural evidence of a fourth Gla residue in fish osteocalcin: biological implications. Biochemistry 2005;44:12341242.Google Scholar
Rubinacci, A.. Expanding the functional spectrum of vitamin K in bone. Focus on: “vitamin K promotes mineralization, osteoblast to osteocyte transition, and an anti-catabolic phenotype by {gamma}-carboxylation-dependent and-independent mechanisms.” Am J Physiol Cell Physiol 2009;297:C1336C1338.Google Scholar
Sokoll, L.J., Sadowski, J.A.. Comparison of biochemical indexes for assessing vitamin K nutritional status in a healthy adult population. Am J Clin Nutr 1996;63:566573.Google Scholar
Cairns, J.R., Price, P.A.. Direct demonstration that the vitamin K-dependent bone Gla protein is incompletely gamma-carboxylated in humans. J Bone Miner Res 1994;9:19891997.Google Scholar
Gundberg, C.M., Nieman, S.D., Abrams, S., Rosen, H.. Vitamin K status and bone health: an analysis of methods for determination of undercarboxylated osteocalcin. J Clin Endocrinol Metab 1998;83:32583266.Google Scholar
Lee, A.J., Hodges, S., Eastell, R.. Measurement of osteocalcin. Ann Clin Biochem 2000;37:432446.Google Scholar
Rogers, A., Hannon, R.A., Eastell, R.. Biochemical markers as predictors of rates of bone loss after menopause. J Bone Miner Res 2000;15:13981404.Google Scholar
Liu, G., Peacock, M.. Age-related changes in serum undercarboxylated osteocalcin and its relationships with bone density, bone quality, and hip fracture. Calcif Tissue Int 1998;62:286289.CrossRefGoogle ScholarPubMed
Tsugawa, N., Shiraki, M., Suhara, Y., et al. Vitamin K status of healthy Japanese women: age-related vitamin K requirement for gamma-carboxylation of osteocalcin. Am J Clin Nutr 2006;83:380386.Google Scholar
Plantalech, L., Guillaumont, M., Vergnaud, P., et al. Impairment of gamma carboxylation of circulating osteocalcin (bone gla protein) in elderly women. J Bone Miner Res 1991;6:12111216.Google Scholar
Shea, M.K., Benjamin, E.J., Dupuis, J., et al. Genetic and non-genetic correlates of vitamins K and D. Eur J Clin Nutr 2009;63:458464.Google Scholar
Ferron, M., Wei, J, Yoshizawa, T, et al. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 2010;142:296308.CrossRefGoogle ScholarPubMed
Lee, N.K., Sowa, H, Hinoi, E, Ferron, M, et al. Endocrine regulation of energy metabolism by the skeleton. Cell 2007;130:456469.Google Scholar
Ducy, P., Amling, M, Takeda, S, et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 2000;100:197207.Google Scholar
Turner, R.T., Kalra, S.P., Wong, C.P., et al. Peripheral leptin regulates bone formation. J Bone Miner Res 2013;28:2234.Google Scholar
Yip, S.C., Saha, S., Chernoff, J.. PTP1B: a double agent in metabolism and oncogenesis. Trends Biochem Sci 2010;35:442449.Google Scholar
Misra, M., Miller, K.K., Cord, J., et al. Relationships between serum adipokines, insulin levels, and bone density in girls with anorexia nervosa. J Clin Endocrinol Metab 2007;92:20462052.Google Scholar
Pollock, N.K., Bernard, P.J., Gower, B.A.N., et al. Lower uncarboxylated osteocalcin concentrations in children with prediabetes is associated with β-cell function. J Clin Endocrinol Metab 2011;96:E1092E1099.Google Scholar
Iglesias, P., Arrieta, F, Piñera, M, et al. Serum concentrations of osteocalcin, procollagen type 1 N-terminal propeptide and β-Crosslaps in obese subjects with varying degrees of glucose tolerance. Clin Endocrinol 2011;75:184188.Google Scholar
Fernández-Real, J.M., Izquierdo, M., Ortega, F, et al. The relationship of serum osteocalcin concentration to insulin secretion, sensitivity, and disposal with hypocaloric diet and resistance training. J Clin Endocrinol Metab 2009;94:237245.Google Scholar
Bulló, M., Moreno-Navarrete, J.M., Fernández-Real, J.M., et al. Total and undercarboxylated osteocalcin predict changes in insulin sensitivity and β cell function in elderly men at high cardiovascular risk. Am J Clin Nutr 2012;95:249255.CrossRefGoogle ScholarPubMed
Pittas, A.G., Harris, S.S., Eliades, M., et al. Association between serum osteocalcin and markers of metabolic phenotype. J Clin Endocrinol Metab 2009;94:827832.CrossRefGoogle ScholarPubMed
Kanazawa, I., Yamaguchi, T, Yamauchi, M., et al. T 2011 serum undercarboxylated osteocalcin was inversely associated with plasma glucose level and fat mass in type 2 diabetes mellitus. Osteoporos Int 2011;22:187194.CrossRefGoogle Scholar
Lihn, A.S., Pedersen, S.B., Richelsen, B.. Adiponectin: action, regulation and association to insulin sensitivity. Obes Rev 2005;6:1321.Google Scholar
Yoshida, M., Jacques, P.F., Meigs, J.B., et al. Effect of vitamin K supplementation on insulin resistance in older men and women. Diabetes Care 2008;31:20922096.Google Scholar
Dane, C., Dane, B., Cetin, A., et al. Comparison of the effects of raloxifene and low-dose hormone replacement therapy on bone mineral density and bone turnover in the treatment of postmenopausal osteoporosis. Gynecol Endocrinol 2007;23:398403.Google Scholar
Yasui, T., Uemura, H., Umino, Y., et al. Undercarboxylated osteocalcin concentration in postmenopausal women receiving hormone therapy daily and on alternate days. Menopause 2006;13:314322.Google Scholar
Kanaya, A.M., Herrington, D., Vittinghoff, E., et al. Glycemic effects of postmenopausal hormone therapy: the Heart and Estrogen/Progestin Replacement Study. A randomized, double-blind, placebo-controlled trial. Ann Intern Med 2003;138:19.Google Scholar
Margolis, K.L., Bonds, D.E., Rodabough, R.J., et al. Effect of oestrogen plus progestin on the incidence of diabetes in postmenopausal women: results from the Women’s Health Initiative Hormone Trial. Diabetologia 2004;47:11751187.Google Scholar
Aonuma, H., Miyakoshi, N., Hongo, M., et al. Low serum levels of undercarboxylated osteocalcin in postmenopausal osteoporotic women receiving an inhibitor of bone resorption. Tohoku J Exp Med 2009;218:201205.Google Scholar
Vestergaard, P.. Risk of newly diagnosed type 2 diabetes is reduced in users of alendronate. Calcif Tissue Int 2011;89:265270.Google Scholar
Schwartz, A.V., Schafer, A.L., Grey, A., et al. Effects of antiresorptive therapies on glucose metabolism: results from the FIT, HORIZON-PFT, and FREEDOM trials. J Bone Miner Res 2013;28:13481354.Google Scholar
Anastasilakis, A.D., Efstathiadou, Z., Plevraki, E., et al. Effect of exogenous intermittent recombinant human PTH 1–34 administration and chronic endogenous parathyroid hormone excess on glucose homeostasis and insulin sensitivity. Horm Metab Res 2008;40:702707.CrossRefGoogle ScholarPubMed
Schafer, A.L., Sellmeyer, D.E., Schwartz, A.V., et al. Change in undercarboxylated osteocalcin is associated with changes in body weight, fat mass, and adiponectin: parathyroid hormone (1–84) or alendronate therapy in postmenopausal women with osteoporosis (the PaTH Study). J Clin Endocrinol Metab 2011;96:E19821989.Google Scholar
Kanazawa, I., Yamaguchi, T., Yamamoto, M., et al. Serum osteocalcin level is associated with glucose metabolism and atherosclerosis parameters in type 2 diabetes mellitus. J Clin Endocrinol Metab 2009;94:4549.Google Scholar
Song, H.J., Lee, J., Kim, Y.J., et al. β1-Selectivity of β-blockers and reduced risk of fractures in elderly hypertension patients. Bone 2012;51:10081015.Google Scholar
Rejnmark, L., Vestergaard, P., Mosekilde, L.. Treatment with beta-blockers, ACE inhibitors, and calcium-channel blockers is associated with a reduced fracture risk: a nationwide case–control study. J Hypertens 2006;24:581589.Google Scholar
Yang, S., Nguyen, N.D., Center, J.R., et al. Association between beta-blocker use and fracture risk: the Dubbo Osteoporosis Epidemiology Study. Bone 2011;48:451455.CrossRefGoogle ScholarPubMed
Yang, S., Nguyen, N.D., Eisman, J.A., et al. Association between beta-blockers and fracture risk: a Bayesian meta-analysis. Bone 2012;51:969974.Google Scholar
Karsenty, G.. The mutual dependence between bone and gonads. J Endocrinol 2012;213:107114.Google Scholar
Oury, F., Ferron, M., Huizhen, W., et al. Osteocalcin regulates murine and human fertility through a pancreas-bone-testis axis. J Clin Invest 2013;123:24212433.Google Scholar
Oury, F., Khrimian, L., Denny, C.A. CA, et al. Maternal and offspring pools of osteocalcin influence brain development and functions. Cell 2013;155:228241.Google Scholar
Kobayashi, S., Takahashi, H.E., Ito, A., et al. Trabecular minimodeling in human iliac bone. Bone 2003;32:163169.Google Scholar
Lauretani, F., Bandinelli, S., Griswold, M.E., et al. Longitudinal changes in BMD and bone geometry in a population-based study. J Bone Miner Res 2008;23:400408.Google Scholar
Macdonald, H.M., Nishiyama, K.K., Kang, J., et al. Age-related patterns of trabecular and cortical bone loss differ between sexes and skeletal sites: a population-based HR-pQCT study. J Bone Miner Res 2011;26:5062.Google Scholar
Ruda, J.M., Hollenbeak, C.S., Stack, B.C. Jr. A systematic review of the diagnosis and treatment of primary hyperparathyroidism from 1995 to 2003. Otolaryngol Head Neck Surg 2005;132:359372.Google Scholar
Rodgers, S.E., Lew, J.I., Solórzano, C.C.. Primary hyperparathyroidism. Curr Opin Oncol 2008;20:5258.Google Scholar
Boehm, B.O., Rosinger, S., Belyi, D., et al. The parathyroid as a target for radiation damage. N Engl J Med 2011;365:676678.Google Scholar
Broome, J.T., Solorzano, C.C.. Lithium use and primary hyperparathyroidism. Endocr Pract 2011;17(suppl 1):3135.Google Scholar
Hemmer, S., Wasenius, V.M., Haglund, C.. Deletion of 11q23 and cyclin D1 overexpression are frequent aberrations in parathyroid adenomas. Am J Pathol 2001;158:13551362.Google Scholar
Rao, D.S., Honasoge, M., Divine, G.W., et al. Effect of vitamin D nutrition on parathyroid adenoma weight: pathogenetic and clinical implications. J Clin Endocrinol Metab 2000;85:10541058.Google Scholar
Björklund, P., Lindberg, D., Akerström, G., Westin, G.. Stabilizing mutation of CTNNB1/beta-catenin and protein accumulation analyzed in a large series of parathyroid tumors of Swedish patients. Mol Cancer 2008;7:53.Google Scholar
Chandrasekharappa, S.C., Guru, S.C., Manickam, P., et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science 1997;276:404407.Google Scholar
Pausova, Z., Soliman, E., Amizuka, N., et al. Role of the RET proto-oncogene in sporadic hyperparathyroidism and in hyperparathyroidism of multiple endocrine neoplasia type 2. J Clin Endocrinol Metab 1996;81:27112718.Google Scholar
Chen, J.D., Morrison, C., Zhang, C., et al. Hyperparathyroidism-jaw tumour syndrome. J Intern Med 2003;253:634642.Google Scholar
Pollak, M.R., Brown, E.M., Chou, Y.H., et al. Mutations in the human Ca2+-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell 1993;75:1297.Google Scholar
Nesbit, M.A., Hannan, F.M., Howles, S.A., et al. Mutations affecting G-Protein Subunit a11 in Hypercalcemia and Hypocalcemia N Engl J Med 2013;368:24762486.Google Scholar
Potts, J.T. Jr. A short history of parathyroid hormone, its biological role, and pathophysiology of hormone excess. J Clin Densitom 2013;16:47.Google Scholar
Tregear, G.W., Van Rietschoten, J., Greene, E., et al. Bovine parathyroid hormone: minimum chain length of synthetic peptide required for biological activity. Endocrinology 1973;93:13491353.Google Scholar
Goltzman, D., Peytremann, A., Callahan, E., et al. Analysis of the requirements for parathyroid hormone action in renal membranes with the use of inhibiting analogues. J Biol Chem 1975;250:31993203.Google Scholar
Jüppner, H., Abou-Samra, A.B., Freeman, M., et al. A G protein-linked receptor for parathyroid hormone and parathyroid hormone-related peptide. Science 1991;254:10241991.Google Scholar
Vilardaga, J.P., Romero, G., Friedman, P.A., et al. Molecular basis of parathyroid hormone receptor signaling and trafficking: a family B GPCR paradigm. Cell Mol Life Sci 2011;68:113.Google Scholar
Rouleau, M.F., Mitchell, J., Goltzman, D.. In vivo distribution of parathyroid hormone receptors in bone: evidence that a predominant osseous target cell is not the mature osteoblast. Endocrinology 1988;123:187191.Google Scholar
Boyle, W.J., Simonet, W.S., Lacey, D.L.. Osteoclast differentiation and activation. Nature 2003;423:337342.Google Scholar
Lee, S-K, Lorenzo, J.. Parathyroid hormone stimulates TRANCE and inhibits osteoprotegerin messenger ribonucleic acid expression in murine bone marrow cultures: correlation with osteoclast-like cell formation. Endocrinology 1999;140:35523561.Google Scholar
Locklin, R.M., Khosla, S., Turner, R.T., et al. Mediators of the biphasic responses of bone to intermittent and continuously administered parathyroid hormone. J Cell Biochem 2003;89:180189.Google Scholar
Silverberg, S.J., Shane, E., De LaCruz, L., et al. Skeletal disease in primary hyperparathyroidism. J.Bone Miner Res 1989;4:283.Google Scholar
Silva, B.C., Costa, A.G., Cusano, N.E., et al. Catabolic and anabolic actions of parathyroid hormone on the skeleton. Endocrinol Invest 2011;34:801810.Google Scholar
Silverberg, S.J., Locker, F.G., Bilezikian, J.P.. Vertebral osteopenia: a new indication for surgery in primary hyperparathyroidism. J Clin Endocrinol Metab 1996;81:40074012.Google Scholar
Hansen, S., Beck Jensen, J.E., Rasmussen, L., et al. Effects on bone geometry, density, and microarchitecture in the distal radius but not the tibia in women with primary hyperparathyroidism: a case–control study using HR-pQCT. J Bone Miner Res 2010;25:19411947.Google Scholar
Hedback, G., Oden, A., Tisell, L.E.. The influence of surgery on the risk of death in patients with primary hyperparathyroidism. World J Surg 1991;15:399407.Google Scholar
Wermers, R.A., Khosla, S., Atkinson, E.J., et al. Survival after the diagnosis of hyperparathyroidism: a population-based study. Am J Med 1998;104:115122.Google Scholar
Marx, S.J.. Hyperparathyroid and hypoparathyroid disorders. N Engl J Med 2000;343:18631875.Google Scholar
Brandi, M.L., Gagel, R.F., Angeli, A., et al. Guidelines for diagnosis and therapy of MEN type 1 and type 2. J Clin Endocrinol Metab 2001;86:56585671.Google Scholar
Brandi, M.L., Falchetti, A.. Genetics of primary hyperparathyroidism. Urol Int 2004;72(suppl 1): 1116.Google Scholar
Nissen, P.H., Christensen, S.E., Heickendorff, L., et al. Molecular genetic analysis of the calcium sensing receptor gene in patients clinically suspected to have familial hypocalciuric hypercalcemia: phenotypic variation and mutation spectrum in a Danish population. J Clin Endocrinol Metab 2007;92:43734379.Google Scholar
Carling, T., Udelsman, R.. Parathyroid surgery in familial hyperparathyroid disorders. J Intern Med 2005;257:2737.Google Scholar
Hannan, F.M., Nesbit, M.A., Christie, P.T., et al. A homozygous inactivating calcium-sensing receptor mutation, Pro339Thr, is associated with isolated primary hyperparathyroidism: correlation between location of mutations and severity of hypercalcaemia. Clin Endocrinol (Oxf) 2010;73:715722.Google Scholar
Simonds, W.F., James-Newton, L.A., Agarwal, S.K., et al. Familial isolated hyperparathyroidism: clinical and genetic characteristics of thirty-six kindreds. Medicine (Baltimore) 2002;81:126.Google Scholar
Eastell, R., Arnold, A., Brandi, M.L., et al. Diagnosis of asymptomatic primary hyperparathyroidism: proceedings of the third international workshop. J Clin Endocrinol Metab 2009;94:340350.Google Scholar
Silverberg, S.J., Lewiecki, E.M., Mosekilde, L., et al. Presentation of asymptomatic primary hyperparathyroidism:proceedings of the Third International Workshop. J Clin Endocrinol Metab 2009;94:351365.Google Scholar
Bilezikian, J.P., Brandi, M.L., Rubin, M., et al. Primary hyperparathyroidism:new concepts in clinical, densitometric and biochemical features. J Intern Med 2005;257:617.Google Scholar
Christensen, S., Nissen, P.H., Vestergaard, P., et al. Discriminative power of three indices of renal calcium excretion for the distinction between familial hypocalciuric hypercalcaemia and primary hyperparathyroidism: a follow-up study on methods. Clin Endocrinol (Oxf) 2008;69:713720.Google Scholar
Khan, A., Bilezikian, J.P.. Primary hyperparathyroidism: pathophysiology and impact on bone. CMAJ 2000;163:184187.Google Scholar
Siilin, H., Lundgren, E., Mallmin, H., et al. Prevalence of primary hyperparathyroidism and impact on bone mineral density in elderly men: MrOs Sweden. World J Surg 2011;35:12661272.Google Scholar
Miller, P.D., Bilezikian, J.P.. Bone densitometry in asymptomatic primary hyperparathyroidism. J Bone Miner Res 2002;17(suppl 2):N98N102.Google Scholar
Tamura, Y., Araki, A., Chiba, Y., et al. Remarkable increase in lumbar spine bone mineral density and amelioration in biochemical markers of bone turnover after parathyroidectomy in elderly patients with primary hyperparathyroidism: a 5-year follow-up study. J Bone Miner Metab 2007;25:226231.Google Scholar
Rejnmark, L., Vestergaard, P., Mosekilde, L.. Nephrolithiasis and renal calcifications in primary hyperparathyroidism. J Clin Endocrinol Metab 2011;96:23772385.Google Scholar
Vestergaard, P., Mosekilde, L.. Fractures in patients with primary hyperparathyroidism: nationwide follow-up study of 1201 patients. World J Surg 2003;27:343349.Google Scholar
Vestergaard, P., Mosekilde, L.. Parathyroid surgery is associated with a decreased risk of hip and upper arm fractures in primary hyperparathyroidism: a controlled cohort study. J Int Med 2004;255:108114.Google Scholar
Frokjaer, V.G., Mollerup, C.L.. Primary hyperparathyroidism: renal calcium excretion in patients with and without renal stone disease before and after parathyroidectomy. World J Surg 2002;26:532535.Google Scholar
Vestergaard, P., Mosekilde, L.. Cohort study on effects of parathyroid surgery on multiple outcomes in primary hyperparathyroidism. Br Med J 2003;327:530534.Google Scholar
Vestergaard, P., Mollerup, C.L., Frokjaer, V.G., et al. Cardiovascular events before and after surgery for primary hyperparathyroidism. World J Surg 2003;27:216222.Google Scholar
Bilezikian, J.P., Khan, A.A., Potts, J.T. Jr. Guidelines for the management of asymptomatic primary hyperparathyroidism: summary statement from the third international workshop. J Clin Endocrinol Metab 2009;94:335339.Google Scholar
Cupisti, K., Raffel, A., Dotzenrath, C., et al. Primary hyperparathyroidism in the young age group: particularities of diagnostic and therapeutic schemes. World J Surg 2004;28:11531156.Google Scholar
Nakajima, K., Tamai, M., Okaniwa, S., et al. Humoral hypercalcemia associated with gastric carcinoma secreting parathyroid hormone: a case report and review of the literature. Endocr J 2013;60:557562.Google Scholar
Mizobuchi, M., Towler, D., Slatopolsky, E.. Vascular calcification:the killer of patients with chronic kidney disease. J Am Soc Nephrol 2009;20:14531464.Google Scholar
Moe, S., Drüeke, T., Cunningham, J., et al. Kidney Disease: Improving Global Outcomes (KDIGO). Definition, evaluation, and classification of renal osteodystrophy:a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 2006;69:19451953.Google Scholar
Shore, R.M., Chesney, R.W.. Rickets: part I. Pediatr Radiol 2013;43:140151.Google Scholar
Shore, R.M., Chesney, R.W.. Rickets: part II. Pediatr Radiol 2013;43:152172.Google Scholar
Greene-Finestone, L.S., Berger, C., de Groh, M., et al. 25-Hydroxyvitamin D in Canadian adults: biological, environmental, and behavioral correlates. Osteoporos Int 2011;22:13891399.Google Scholar
Berger, C., Greene-Finestone, L.S., Langsetmo, L., et al. Temporal trends and determinants of longitudinal change in 25-hydroxyvitamin D and parathyroid hormone levels. J Bone Miner Res 2012;27:13811389.Google Scholar
Prentice, A.. Nutritional rickets around the world. J Steroid Biochem Mol Biol 2013;136:201206.Google Scholar
Hahn, T.J., Halstead, L.R.. Anticonvulsant drug-induced osteomalacia: alterations in mineral metabolism and response to vitamin D3 administration Calcif Tissue.Int 1979;27:1318.Google Scholar
Drezner, M.K.. Treatment of anticonvulsant drug-induced bone disease. Epilepsy Behav 2004;5(suppl 2):S41S47.Google Scholar
Glorieux, F.H., Edouard, T., St-Arnaud, R.. Pseudo-vitamin D deficiency. In Feldman, D, ed. Vitamin D, 3rd edn. London: Elsevier, 2011:11871195.Google Scholar
Liberman, U.A., Marx, S.J.. Vitamin D-dependent rickets. In Favus, MJ, ed. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, 5th edn. Washington, DC: American Society for Bone and Mineral Research, 2003:407413.Google Scholar
Marx, S.J., Bliziotes, M.M., Nanes, M.. Analysis of the relation between alopecia and resistance to 1,25-dihydroxyvitamin D. Clin Endocrinol (Oxf) 1986;25:373381.Google Scholar
Thacher, D., Fischer, P.R., Strand, M.A., Pettifor, J.M. Nutritional rickets around the world: causes and future directions Ann Trop Paediatr 2006;26:116.Google Scholar
Bai, X., Miao, D., Goltzman, D., Karaplis, A.C.. Early lethality in Hyp mice with targeted deletion of Pth gene. Endocrinology 2007;148:49744983.Google Scholar
Lorenz-Depiereux, B., Schnabel, D., Tiosano, D., et al. Loss-of-function ENPP1 mutations cause both generalized arterial calcification of infancy and autosomal-recessive hypophosphatemic rickets. Am J Hum Genet 2010;86:267272.Google Scholar
Shimada, T., Mizutani, S., Muto, T., et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad. Sci USA 2001;98:65006505.Google Scholar
Weidner, N., Cruz, D. Santa. Phosphaturic mesenchymal tumors. A polymorphous group causing osteomalacia or rickets. Cancer 1987;59:144154.Google Scholar
Konishi, K., Nakamura, M., Yamakawa, H., et al. Hypophosphatemic osteomalacia in von Recklinghausen neurofibromatosis. Am J Med Sci 1991;301:322328.Google Scholar
White, K.E.. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 2000;26:345348.Google Scholar
Izzedine, H., Launay-Vacher, V., Isnard-Bagnis, C., Deray, G.. Drug-induced Fanconi’s syndrome. Am J Kidney Dis 2003;41:292309.Google Scholar
Fraser, W.D.. Hyperparathyroidism. Lancet 2009;374:145158.Google Scholar
Gavalas, N.G., Kemp, E.H., Krohn, K.J.E., et al. The calcium-sensing receptor is a target of autoantibodies in patients with autoimmune polyendocrine syndrome type 1. J Clin Endocrinol Metab 2007;92:21072114.Google Scholar
Ahonen, P., Myllarniemi, S., Sipila, I., Perheentupa, J.. Clinical variation of autoimmune polyendocrinopathy-candidiadis-ectodermal dystrophy (APECED) in a series of 68 patients. N Engl J Med 1990;322:18291836.Google Scholar
Eisenbarth, G.S., Gottlieb, P.A.. Autoimmune polyendocrine syndromes. N Engl J Med 2004;350:20682079.Google Scholar
de Sèze, S., Solnica, J., Mitrovic, D., et al. Joint and bone disorders and hypoparathyroidism in hemochromatosis. Semin Arthritis Rheum 1972;2:7194.Google Scholar
Toumba, M., Sergis, A., Kanaris, C., et al. Endocrine complications in patients with thalassemia major. Pediatr Endocrinol Rev 2007;5:642648.Google Scholar
Carpenter, T.O., Carnes, D.L. Jr., Anast, C.S.. Hypoparathyroidism in Wilson’s disease. N Engl J Med 1983;309:873877.Google Scholar
Badell, A., Servitje, O., Graells, J., et al. Hypoparathyroidism and sarcoidosis. Br J Dermatol 1998;138:915917.Google Scholar
Winer, K.K., Zhang, B., Shrader, J.A., et al. Synthetic human parathyroid hormone 1–34 replacement therapy: a randomized crossover trial comparing pump versus injections in the treatment of chronic hypoparathyroidism. J Clin Endocrinol Metab 2012;97:391399.Google Scholar
Miao, D., He, B., Lanske, B., et al. Skeletal abnormalities in Pth-null mice are influenced by dietary calcium. Endocrinology 2004;145:20462053.Google Scholar
Miao, D., Li, J., Xue, Y., et al. Parathyroid hormone-related peptide is required for increased trabecular bone volume in parathyroid hormone-null mice. Endocrinology 2004;145:35543562.Google Scholar
Cohen, A., Dempster, D.W., Muller, R. R, et al. Assessment of trabecular and cortical architecture and mechanical competence of bone by high-resolution peripheral computed tomography: comparison with transiliac bone biopsy. Osteoporos Int 2010;21:263273.Google Scholar
Duan, Y., De Luca, V., Seeman, E.. Parathyroid hormone deficiency and excess; similar effects on trabecular bone but differing effects on cortical bones. J Clin Endocr Metab 1999;84:718722.Google Scholar
Mendonça, M.L., Pereira, F.A., Nogueira-Barbosa, M.H., et al. Increased vertebral morphometric fracture in patients with postsurgical hypoparathyroidism despite normal bone mineral density. BMC Endocr Disord 2013;13:1.Google Scholar
Pollak, M.R., Brown, E.M., Estep, H.L., et al. Autosomal dominant hypocalcemia caused by a calcium-sensing receptor gene mutation. Nat Genet 1994;8:303307.Google Scholar
Chase, R.L., Melson, G.L., Aurbach, G.D.. Pseudohypoparathyroidism: defective excretion of 3′,5′-AMP in response to parathyroid hormone. J Clin Invest 1969;48:18321844.Google Scholar
Weinstein, L.S., ShuHua, Y., Warner, D.R., et al. Endocrine manifestations of stimulatory G protein alpha-subunit mutations and the role of genomic imprinting. Endocr Rev 2001;22:675705.Google Scholar
Mantovani, G., de Sanctis, L., Barbieri, A.M., et al. Pseudohypoparathyroidism and GNAS epigenetic defects: clinical evaluation of Albright hereditary osteodystrophy and molecular analysis in 40 patients. J Clin Endocrinol Metab 2010;95:651658.Google Scholar
Drezner, M., Neelon, F.A., Lebovitz, H.E.. Pseudohypoparathyroidism type II: a possible defect in the reception of the cyclic AMP signal. N Engl J Med 1973;289:1056.Google Scholar
Karaplis, A.C., He, B., Nguyen, M.T., et al. Inactivating mutation in the human parathyroid hormone receptor type I gene in Blomstrand’s chondrodysplasia. Endocrinology 1998;139:52555258.Google Scholar
Duchatelet, S., Ostergaard, E., Cortes, D., et al. Recessive mutations in PTHR1 cause contrasting skeletal dysplasias in Eiken and Blomstrand syndromes. Hum Mol Genet 2005;14:15.Google Scholar
Couvineau, A., Wouters, V., Bertrand, G., et al. PTHR1 mutations associated with Ollier disease result in receptor loss of function Hum Mol Genet 2008;17:27662775.Google Scholar
Silve, C., Jüppner, H.. Ollier disease Orphanet J Rare Dis 2006;1:37.Google Scholar
Kanis, J.A., Johnell, O., Oden, A., et al. Ten year probabilities of osteoporotic fractures according to BMD and diagnostic thresholds. Osteoporos Int 2001;12:989995.CrossRefGoogle ScholarPubMed
Seeman, E., Bianchi, G., Khosla, S., et al. Bone fragility in men: where are we? Osteoporos Int 2006;17:15771583.Google Scholar
Berger, C., Langsetmo, L., Joseph, L., et al. Change in bone mineral density as a function of age in women and men and association with the use of antiresorptive agents. CMAJ 2008;178:16601668.Google Scholar
Srivastava, S., Toraldo, G., Weitzmann, M.N., et al. Estrogen decreases osteoclast formation by down-regulating receptor activator of NF-kappa B ligand (RANKL)-induced JNK activation. J Biol Chem 2001;276:88368840.Google Scholar
Robinson, L.J., Yaroslavskiy, B.B., Griswold, R.D., et al. Estrogen inhibits RANKL-stimulated osteoclastic differentiation of human monocytes through estrogen and RANKL-regulated interaction of estrogen receptor-α with BCAR1 and Traf6. Exp Cell Res 2009;315:12871301.Google Scholar
Eghbali-Fatourechi, G., Khosla, S., Sanyal, A., et al. Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest 2003;111:12211230.Google Scholar
Hofbauer, L.C., Khosla, S., Dunstan, C.R., et al. Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells. Endocrinology 1999;140:43674370.Google Scholar
Manolagas, S.C., Jilka, R.L.. Mechanisms of disease: bone marrow, cytokines, and bone remodeling: emerging insights into the pathophysiology of osteoporosis. N Engl J Med 1995;332:305311.Google Scholar
Tanaka, S., Takahashi, N., Udagawa, N., et al. Macrophage colony-stimulating factor is indispensable for both proliferation and differentiation of osteoclast progenitors. J Clin Invest 1993;91:257263.Google Scholar
Kimble, R.B., Vannice, J.L., Bloedow, D.C., et al. Interleukin-1 receptor antagonist decreases bone loss and bone resorption in ovariectomized rats. J Clin Invest 1994;93:19591967.Google Scholar
Ammann, P., Rizzoli, R., Bonjour, J.P., et al. Transgenic mice expressing soluble tumor necrosis factor-receptor are protected against bone loss caused by estrogen deficiency. J Clin Invest 1997;99:16991703.Google Scholar
Kimble, R.B., Srivastava, S., Ross, F.P., et al. Estrogen deficiency increases the ability of stromal cells to support murine osteoclastogenesis via an interleukin-1- and tumor necrosis factor-mediated stimulation of macrophage colony-stimulating factor production. J Biol Chem 1996;271:2889028897.Google Scholar
Kousteni, S., Bellido, T., Plotkini, L.I., et al. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 2001;104:719730.Google Scholar
Manolagas, S.C., O’Brien, C.A., Almeida, M. The role of estrogen and androgen receptors in bone health and disease. Nat Rev Endocrinol 2013;9:699712.Google Scholar
Di Gregorio, G.B., Yamamoto, M., Ali, A.A., et al. Attenuation of the self-renewal of transit-amplifying osteoblast progenitors in the murine bone marrow by 17β-estradiol J Clin Invest 2001;107:803812.Google Scholar
Jilka, R.L., Takahashi, K., Munshi, M., et al. Loss of estrogen upregulates osteoblastogenesis in the murine bone marrow evidence for autonomy from factors released during bone resorption. J Clin Invest 1998;101:19421950.Google Scholar
Kousteni, S., Han, L., Chen, J.R., et al. Kinase-mediated regulation of common transcription factors accounts for the bone-protective effects of sex steroids. J Clin Invest 2003;111:16511664.Google Scholar
Kim, B.J., Bae, S.J., Lee, S.Y., et al. TNF-αmediates the stimulation of sclerostin expression in an estrogen-deficient condition. Biochem Biophys Res Commun 2012;424:170175.Google Scholar
Tyagi, A.M., Srivastava, K., Mansoori, M.N., et al. Estrogen deficiency induces the differentiation of IL-17 secreting Th17 cells: a new candidate in the pathogenesis of osteoporosis. PLOS ONE 2012;7:e44552.Google Scholar
Roussouw, J.E., Anderson, G.L., Prentice, R.L., et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA 2002;288:321333.Google Scholar
Stevenson, J.C., Panay, N., Pexman-Fieth, C.. Oral estradiol and dydrogesterone combination therapy in postmenopausal women: review of efficacy and safety, Maturitas 2013;76:1021.Google Scholar
Kanis, J.A., Oden, A., Johnell, O., et al. The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int 2007;18:10331046.Google Scholar
Kanis, J.A., Oden, A., Johansson, H., et al. FRAX and its applications to clinical practice. Bone 2009;44:734743.Google Scholar
Finkelstein, J.S., Klibanski, A., Neer, R.M., et al. Osteoporosis in men with idiopathic hypogonadotropic hypogonadism. Ann Intern. Med 1987;106:354361.Google Scholar
Marcus, R., Leary, D., Schneider, D.L., et al. The contribution of testosterone to skeletal development and maintenance: lessons from the androgen insensitivity syndrome. J Clin Endocrinol Metab 2000;85:10321037.Google Scholar
Rochira, V., Balestrieri, A., Madeo, B., et al. Osteoporosis and male age related hypogonadism: role of sex steroids on bone (patho)physiology. Eur J Endocr 2006;154:175185.Google Scholar
Carani, C., Qin, K., Simoni, M., et al. Effect of testosterone and estradiol in a man with aromatase deficiency. N Engl J Med 1997;337:9195.Google Scholar
Bilezikian, J.P., Morishima, A., Bell, J., et al. Increased bone mass as a result of estrogen therapy in a man with aromatase deficiency. N Engl J Med 1998;339:599603.Google Scholar
Rochira, V., Faustini-Fustini, M., Balestrieri, A., Carani, C.. Estrogen replacement therapy in a man with congenital aromatase deficiency: effects of different doses of transdermal estradiol on bone mineral density and hormonal parameters. J Clin Endocrinol Metab 2000;85:18411845.Google Scholar
Herrmann, B.L., Saller, B., Janssen, O.E., et al. Impact of estrogen replacement therapy in a male with congenital aromatase deficiency caused by a novel mutation in the CYP19 gene. J Clin Endocrinol Metab 2002;87:54765484.Google Scholar
Maffei, L., Murata, Y., Rochira, V., et al. Dysmetabolic syndrome in a man with a novel mutation of the aromatase gene: effects of testosterone, alendronate, and estradiol treatment. J Clin Endocrinol Metab 2004;89:6170.Google Scholar
Bouillon, R., Bex, M., Vanderschueren, D., Boonen, S.. Estrogens are essential for male pubertal periosteal bone expansion. J Clin Endocrinol Metab 2004;89:60256029.Google Scholar
Falahati-Nini, A., Riggs, B.L., Atkinson, E.J., et al. Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men. J Clin Invest 2000;106:15531560.Google Scholar
Vandenput, L., Ohlsson, C.. Estrogens as regulators of bone health in men. Nat Rev Endocrinol 2009;5:437443.Google Scholar
Mosekilde, L., Vestergaard, P., Rejnmark, L.. The pathogenesis, treatment and prevention of osteoporosis in men. Drugs 2013;73:1529.Google Scholar
Angeli, A., Guglielmi, G., Dovio, A., et al. High prevalence of asymptomatic vertebral fractures in post-menopausal women receiving chronic glucocorticoid therapy: a cross-sectional outpatient study. Bone 2006;39:253259.Google Scholar
Jia, D., O’Brien, C.A., Stewart, S.A., et al. Glucocorticoids act directly on osteoclasts to increase their life span and reduce bone density. Endocrinology 2006;147:55925599.Google Scholar
Weinstein, R.S., Jilka, R.L., Parfitt, A.M., Manolagas, S.C.. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids: potential mechanisms of their deleterious effects on bone. J Clin Invest 1998;102:274282.Google Scholar
Seeman, E., Delmas, P.D.. Bone quality: the material and structural basis of bone strength and fragility. N Engl J Med 2006;354:22502261.Google Scholar
Mazziotti, C.A.G., Angeli, A., Bilezikian, J.P., et al. Glucocorticoid-induced osteoporosis: an update, Trends Endocrinol Metab 2006;17:144149.Google Scholar
O’Brien, C.A., Jia, D., Plotkin, L.I., et al. Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength. Endocrinology 2004;145:18351841.Google Scholar
Van Staa, T.P., Laan, R.F., Barton, I.P., et al. Bone density threshold and other predictors of vertebral fracture in patients receiving oral glucocorticoid therapy. Arthritis Rheum 2003;48:32243229.Google Scholar
van Staa, T.P.. The pathogenesis, epidemiology and management of glucocorticoid induced osteoporosis. Calcif Tissue Int 2006;79:129137.Google Scholar
Cooper, M.S. Sensitivity of bone to glucocorticoids Clin Sci 2004;107:111123.Google Scholar
Blalock, S.J., Norton, L.L., Patel, R.A., Dooley, M.A.. Patient knowledge, beliefs, and behavior concerning the prevention and treatment of glucocorticoid-induced osteoporosis Arthritis Rheum 2005;53:732739.Google Scholar
Steinbuch, M., Youket, T.E., Cohen, S.. Oral glucocorticoid use is associated with an increased risk of fracture. Osteoporos Int 2004;15:323328.Google Scholar
Kanis, J.A., Johansson, H., Oden, A., et al. A meta-analysis of prior corticosteroid use and fracture risk. J Bone Miner Res 2004;19:893899.Google Scholar
Buehring, B., Viswanathan, R., Binkley, N., Busse, W.. Glucocorticoid-induced osteoporosis: an update on effects and management. J Allergy Clin Immunol 2013;132:10191030.Google Scholar
Vestergaard, P., Mosekild, L.. Hyperthyroidism, bone mineral, fracture risk-a meta-analysis. Thyroid, 2003;13:585593.Google Scholar
Bassett, J.H.D., Williams, G.R.. The molecular actions of thyroid hormone in bone. Trends Endocrinol Metab 2003;14:356364.Google Scholar
Bianco, A.C., Salvatore, D., Gereben, B., et al. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases, Endocrine Rev 2002;23:3889.Google Scholar
Wexler, J.A., Sharretts, J., Thyroid and bone. Endocrinol Metab Clin 2007;36:673705.Google Scholar
O’Shea, P.J., Harvey, C.B., Suzuki, H., et al. A thyrotoxic skeletal phenotype of advanced bone formation in mice with resistance to thyroid hormone. Mol Endocrinol 2003;17:14101424.Google Scholar
O’Shea, P.J., Bassett, J.H.D., Sriskantharajah, S., et al. Contrasting skeletal phenotypes in mice with an identical mutation targeted to thyroid hormone receptor α1 or β. Mol Endocrinol 2005;19:30453059.Google Scholar
Bassett, J.H.D., Williams, G.R.. The skeletal phenotypes of TRα and TBβ mutant mice. J Mol Endocrinol 2009;42:269282.Google Scholar
Bassett, J.H.D., Nordstrom, K., Boyde, A., et al. Thyroid status during skeletal development determines adult bone structure and mineralization. Mol Endocrinol 2007;21:18931904.Google Scholar
Grimnes, G., Emaus, N., Joakimsen, R.M., et al. The relationship between serum TSH and bone mineral density inmen and postmenopausalwomen: the Tromsø study. Thyroid 2008;vol. 18:11471155.Google Scholar
Abe, E., Marians, R.C., Yu, W., et al. TSH is a negative regulator of skeletal remodeling. Cell 2003 115:151162.Google Scholar
Davies, T., Marians, R., Latif, R., The TSH receptor reveals itself. J Clin Invest 2002;110:161164.Google Scholar
Sun, L., Davies, T.F., Blair, H.C., et al. TSH and bone loss. Ann N Y Acad Sci 2006;1068:309318.Google Scholar
Morimura, T., Tsunekawa, K., Kasahara, T., et al. Expression of type 2 iodothyronine deiodinase in human osteoblast is stimulated by thyrotropin. Endocrinolog, 2005; 146:20772084.Google Scholar
Mosekilde, L., Eriksen, E.F., Charles, P.. Effects of thyroid hormones on bone and mineral metabolism. Endocrinol Metab Clin North Am 1990;19:3563.Google Scholar
Greenspan, S.L., Greenspan, F.S.. The effect of thyroid hormone on skeletal integrity. Ann Intern Med 1999;130:750758.Google Scholar
Allain, T.J., McGregor, A.M.. Thyroid hormones and bone. J Endocrinol 1993;139:918.Google Scholar
Langdahl, B.L., Loft, A.G.R., Eriksen, E.F., et al. Bone mass, bone turnover and body composition in former hypothyroid patients receiving replacement therapy. Eur J Endocrinol, 1996; 134:702709.Google Scholar
Karga, H., Papapetrou, P.D., Korakovouni, A., et al. Bone mineral density in hyperthyroidism. Clin Endocrinol, 2004;61:466472Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×