No CrossRef data available.
Published online by Cambridge University Press: 11 August 2023
A delayed reaction-diffusion system with free boundaries is investigated in this paper to understand how the bacteria spread spatially to larger area from the initial infected habitat. Under the assumptions that the nonlinearities are of monostable type and the initial values satisfy some compatible condition, we show that the free boundary problem is well-posed and discuss the long-time behaviour of solution (including spreading and vanishing) in terms of the spatial-temporal risk index. Furthermore, to determine the spreading speed of free boundaries when spreading occurs, we first study the distribution of roots of a transcendental equation containing a polynomial of degree four and then establish the existence and uniqueness of monotone solution to a delay-induced nonlocal semi-wave problem by employing the approximation method, lower-upper solutions technique and Schauder fixed point theorem. It is shown that time delays slow down the spreading of bacteria.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.