
1 Introduction

1.1 Information Theory and Cryptography

Information theory is a close cousin of probability theory. While probability
allows us to model what it means to accurately know or estimate an unknown,
information theory allows us to exactly capture the amount of uncertainty. The
foremost exponent of this notion is Shannon’s entropy H(X) for a random vari-
able X. Without knowing anything else about X, there is an “uncertainty” of
H(X) about X. When we know a correlated random variable Y , this uncertainty
reduces to H(X | Y ), the conditional Shannon entropy of X given Y . Shannon
defined this reduction in uncertainty I(X ∧ Y ) := H(X) − H(X | Y ) as the
measure of information revealed by Y about X. Over the years, Shannon theory
has evolved to provide a comprehensive justification for these measures being
appropriate measures of information. These measures of information are now
gainfully and regularly applied across areas such as biology, control, economics,
machine learning, and statistics.

Cryptography theory, the science of maintaining secrets and honesty in pro-
tocols, adopted these notions at the outset. Indeed, it was Shannon himself who
wrote the first paper to mathematically model secure encryption, and he natu-
rally adopted his notions of information in modeling security. Encryption requires
us to send a message M over a public communication channel in such a manner
that only the legitimate receiver, and no one else, gets to know M from the
communication C. Shannon considered I(M ∧C) as the measure of information
about M leaked by the communication.1 Thus, at the outset information theory
provided a way to measure secrecy in cryptography. The two theories were joined
at birth!

But a major development took place in cryptography in the late 1970s. Diffie
and Hellman invented an interesting key exchange scheme which was not
information-theoretically secure, but was secure in practice. Specifically, their
scheme relied on the fact that discrete exponentiation is easy to compute, but
(computationally) very difficult to invert. This insight led to the quick devel-
opment of many fascinating and practical cryptography protocols, all seemingly

1 To be precise, Shannon’s original paper did not consider partial information leakage and

did not talk about I(M ∧ C), but the notion was clear and was picked up in subsequent
works.
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2 Introduction

difficult to break in practice but clearly not secure in the information-theoretic
sense of Shannon. This was the birth of the field of computational cryptography.

In another remarkable insight, Goldwasser and Micali formulated the notion
of semantic security for formally analyzing computational security. This new
formulation related security of encryption to the ability to test certain hypothe-
ses about messages by looking at the communication. Over the years this idea
evolved, in particular to handle the challenge of formalizing security for an adver-
sary that can deviate from the protocol. The modern framework defines security
in terms of the difference in the ability of the adversary in an ideal (secure)
system and a system under attack. If every adversarial behavior for a protocol
can be “simulated” in the ideal system, the protocol is deemed to be secure.

This modern formulation is very flexible: it can be applied to both information-
theoretic and computational settings. In the computational setting, the adversary
is restricted to using polynomial-time algorithms; in the information-theoretic
setting, there is no computational restriction on the adversary. It is a subtle
point, but there is no strict hierarchy between the two notions. They should
be viewed as two different assumption classes under which one can analyze the
security of various cryptographic primitives.

Specifically, computational cryptography assumes the availability of certain
computational primitives such as one-way functions which are easy to com-
pute but computationally hard to invert. Using such primitives, we design cryp-
tographic protocols that remain secure as long as the adversary is computa-
tionally restricted to using polynomial-time algorithms. On the other hand,
information-theoretic cryptography seeks to establish cryptographic protocols
that are information-theoretically secure. Often this requires additional resources;
for instance, encryption is possible only when the parties share secret keys and
two-party secure computation requires the availability of nontrivial correlated
observations (such as oblivious transfer).

This book is a comprehensive presentation of information-theoretically secure
cryptographic primitives, with emphasis on formal security analysis.

1.2 Overview of Covered Topics

As mentioned in the previous section, a systematic study of cryptography with
security analysis in mind was initiated in Shannon’s landmark paper. The focus of
Shannon’s paper was enabling secure communication between legitimate parties
over a public communication channel that may not be secure. This is an impor-
tant problem which cryptography has solved since then, and has enabled secure
banking and communication over the Internet. Among other things, Shannon’s
focus in the paper was the secret key encryption system described in Figure 1.1.
In this system, Party 1 (sender) sends a secret message to Party 2 (receiver).
To secure their message, the parties encrypt and decrypt the message using a
shared secret key (a sequence of random bits). One of Shannon’s contributions is
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Figure 1.1 A description of secret key encryption. We depict a common anecdotal
motivation where a General wants to command their officer to “attack at dawn” over
an insecure channel.

to formally describe the notion of security for this secret key encryption system.
In particular, Shannon defined the notion of perfect secrecy which ensures that
an eavesdropper observing all the communication sent over the channel cannot
glean any information about the message the sender wants to send to the receiver.
The main theoretical result Shannon established was the following: in order to
attain perfect secrecy, the length of the shared secret key must be as long as
the length of the message. In Chapter 3, we will cover the definition of perfect
secrecy and Shannon’s result, as well as some other relevant concepts in secret
key encryption. We also define notions of approximate secrecy as a relaxation to
the perfect secrecy requirement, which lays the foundation for security analysis
of modern cryptographic schemes.

As suggested by Shannon’s pessimistic result, one of the most important prob-
lems in cryptography is how to share a secret key among the legitimate parties.
In most current technology, the secret key is exchanged by using so-called public
key cryptography, which guarantees security against a computationally bounded
adversary. However, in certain applications, it is desirable to have a method to
share a secret key even against an adversary who has unlimited computational
power. In fact, utilizing certain physical phenomena, methods to share a secret
key have been proposed, such as quantum key distribution, or key generation
using a wireless communication signal. In Chapter 10, we will cover the data
processing part of those key agreement methods, termed the secret key agree-
ment problem.2 When a secret key is shared using a certain physical carrier, the
secret key observed by the receiver is disturbed by noise; furthermore, a part of
the key may be leaked to the adversary; see Figure. 1.2. Thus, we have to correct
2 Technically speaking, in quantum key distribution, we need to consider the density

operator instead of random variables so that we can take care of an adversary who may
have quantum memory to store eavesdropped signals, which is beyond the scope of this

book. However, apart from mathematical difficulties arising from analysis of the density
operator, most of the cryptographic concepts necessary for quantum key distribution are

covered in this book.
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Figure 1.2 A description of the situation in secret key agreement.

Figure 1.3 A description of authentication. An adversary intercepts the legitimate
“attack at dawn” message and replaces it with a fake “attack at noon” message.

the discrepancy between the keys observed by the parties; also, we have to elim-
inate the information leaked to the adversary. The data processing handling the
former problem is termed information reconciliation, and it will be covered in
Chapter 6. On the other hand, the data processing handling the latter problem
is termed privacy amplification, and it will be covered in Chapter 7. Further-
more, in Chapter 4, we will cover a cryptographic tool termed the universal hash
family, which is used for information reconciliation and privacy amplification.

Along with secret key encryption, the second important problem for enabling
secure communication over a public channel is that of authentication. In this
problem, we would like to prevent an adversary from forging or substituting
a transmitted message; see Figure. 1.3. This topic will be covered in Chapter
8 after the key tool, the strong universal hash family, is presented in Chapter
4. One of the major results in the authentication problem is that a secure au-
thentication scheme can be realized by using a secret key of length that is of
logarithmic order of the message length. This is in contrast to Shannon’s result
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Figure 1.4 A description of multiparty secure computation.

for secure encryption, and suggests that authentication has a much milder secret
key requirement in comparison to encryption.

In the second part of the book, we move beyond secure message transmis-
sion to more modern problems in cryptography, the ones that are fueling the
blockchain and web3.0 applications. Specifically, we present the concepts of se-
cure computation in Chapters 12–19. In secure computation, two or more parties
with their own private data seek to execute a program on their collective data
and ascertain the outcome. However, the parties do not want to reveal their data
to each other beyond the minimal revealed by the outcome. For an anecdotal ex-
ample, the parties may represent employees who want to compute the average of
their salaries without revealing their individual salaries to others; see Figure. 1.4.
An important question in this problem is how many dishonest parties we can
tolerate in order to realize secure computation. It turns out that, depending on
the power of the adversary (whether the adversary can modify the protocol or
not), we can realize secure computation when honest parties form a majority or
a “supermajority.”

For the two-party setting, one dishonest party means a dishonest majority,
and we cannot realize secure computation for any nontrivial function. For in-
stance, the parties cannot compare who is wealthier without leaking the value
of their salaries to each other. However, if we assume that the parties have some
additional resources at their disposal – for instance, they may have access to
correlated observations – then it is possible to realize secure computation; see
Figure 1.5. In contrast to the reliable communication system in which noise is
always troublesome, it turns out that noise can be used as a resource to realize
certain tasks in cryptography; this is covered in Chapter 13 and Chapter 14.

When parties in a peer-to-peer network do not trust each other, it is difficult to
get consensus among the parties. This is one of the major problems that must be
addressed when we consider more than two parties. An important example is the
broadcast problem where one party wants to send the same message to multiple
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Figure 1.5 A description of two-party secure computation using noisy correlation.

Figure 1.6 A description of broadcast.

parties. But the first party can cheat and send different messages to different
parties; see Figure 1.6. In order to detect such an attack, other parties need
additional communication to confirm that the message from Party 1 is consistent.
Broadcast is a fundamental primitive for multiparty secure computation and is
covered in Chapter 18. A key result of this problem is that, if honest parties in
the network form a “supermajority,” it is possible to realize a secure broadcast.
The main secure function computation results are given in Chapters 12, ,17, and
19: two-party secure computing with passive adversary is in Chapter 12, with
active adversary in Chapter 17, and multiparty secure computing in Chapter 19.

1.3 Overview of the Technical Framework

Our technical agenda in this book is two-fold. First, we want to lay founda-
tions for a “resource theory” of cryptography, explaining how the availability of
different kinds of correlation makes different cryptographic primitives feasible
even under information-theoretic security. Second, we want to bring out through
examples how various notions of information-theoretic security have evolved in
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cryptography, culminating in the composable security framework for an active
adversary. We elaborate on each of these items below.

1.3.1 A Resource Theory for Cryptography

Right at the outset, Shannon established a result showing that information-theore
tically secure encryption requires the legitimate parties to share a secret key that
is as large as the length of the messages they want to transmit. For authenticating
a message (showing that the message is indeed sent by a legitimate user), parties
need to share secret keys of logarithmic length in the message. Thus, if one has
secret shared randomness, secret keys, then both authentication and encryption
are possible. In fact, this secret shared randomness can itself be extracted from
any nontrivial correlated observations (of appropriate amount) that the parties
share. So, we can update the observation above and claim that any correlated ob-
servations which can give secret keys of appropriate size are a sufficient resource
for both encryption and authentication, two primitives which alone account for
most cryptographic applications used by industry today.

Interestingly, this shared secret key resource is not sufficient for two-party se-
cure computing (beyond that for trivial functions). We will see that we need a
more interesting correlation for secure computing, where either party has some
part of the correlation left to itself. A prototypical example is oblivious transfer
where one party gets two random bits (K0,K1) and the second gets a random
bit B and KB . In this correlation, both parties have some randomness that is
not available to the other, and yet there is reasonable correlation between their
observations. For multiparty secure computing, we actually do not need any ad-
ditional resources beyond shared secret keys if a sufficiently large fraction of
parties is honest. But the availability of primitives such as digital signatures,
Byzantine agreement, and secure broadcast allow more efficient implementation.
Indeed, recent progress in blockchains uses these primitives to enable very com-
plex secure multiparty consensus.

An important point to note here is that enabling different cryptographic prim-
itives requires different amounts of resources. For example, to extract a secret
key of length equal to the message (which is needed for secure encryption), we
need a sufficient amount of a specific type of correlation. The understanding of
such tight results is not very mature, but there is a lot of clarity in some set-
tings. For instance, we know exactly how long a secret key can be extracted using
independent copies of given correlated random variables. However, such results
are not well understood for general secure computing problems. For instance,
we do not know what is the most efficient manner of using oblivious transfer to
securely compute a given function.

We provide tools to tackle such questions as well. There are two parts to such
results. The first part is a scheme which efficiently converts one type of resource
into another. As an example, the leftover hash lemma shows that a random
hash of length ` applied to a random variable X will produce an output that is
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uniform and independent of another random variable Y as long as ` is less than
roughly the conditional minimum entropy of X given Y . The second part is the
so-called converse result in information theory, an impossibility result showing
that nothing better will be possible. Most of our converse results in this book
rely on a very general result relating the cryptographic task to the difficulty of
a statistical problem involving testing the correlation in the resource.

When implementing secure computing of a function using simpler primitives,
we view the function using its Boolean circuit. The problem then reduces to
computing each binary gate, say NAND, securely, but without revealing inter-
mediate outputs. For this latter requirement, we need a scheme called secret
sharing which allows multiple parties to get parts of a secret in such a manner
that they can reconstruct it only when they come together. It turns out that
this secret sharing can be implemented without any additional resources. Thus,
the only additional resource needed is a secure implementation of gates such as
NAND.

There is subtlety when handling an active adversary. The protocol above re-
quires each party to complete some computations locally, and an active adversary
can modify these computations to its advantage. To overcome this difficulty, we
introduce a very interesting primitive called zero-knowledge proofs, which allow
one party to establish that it has indeed completed the desired calculation with-
out revealing the input or output. Almost the same setup extends to multiple
parties as well. In fact, as mentioned earlier, if there are sufficiently many hon-
est parties, we can compute any function securely. At a high level, this works
out because now there are multiple honest players holding shares of inputs or
outputs, and they can have a majority over dishonest players. One extra prim-
itive needed here is verifiable secret sharing, which we build using interesting
polynomial constructions over finite fields.

1.3.2 Formal Security Definitions

We have already outlined earlier in the chapter how initial security definitions
were formulated using information theory. If we want to ensure that a commu-
nication C does not reveal any information about a message M , we will require
that the mutual information I(M ∧C) is small. Similarly, with some more care,
we can capture the low leakage requirements for secure computing using different
mutual information quantities. Note that here we already assume a distribution
on M , or on inputs in secure computing. This distribution need not be fixed,
and we can consider the worst-case distribution. It is an interesting philosophical
exercise to consider what this distribution represents, but we will simply take
this distribution as the prior knowledge the adversary has about the unknown.

Instead of using mutual information quantities, an alternative approach (which
is perhaps more popular in cryptography) is to define security operationally. For
instance, indistinguishable security requires that for any two messages of the
adversary’s choice, by looking at the communication the probability of error for

https://doi.org/10.1017/9781108670203.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108670203.002


1.4 Possible Course Plans 9

the adversary to find out which message was sent remains close to 1/2 (which
corresponds to a random guess). These operational notions can be shown to be
roughly equivalent to notions using information quantities. It is important to
note that this equivalence is valid for the information-theoretic security setting,
but for the computational setting there is no closed form information quantity
available. An advantage of having these closed form quantities is that when
analyzing security for specific protocols, these quantities can be broken down
into smaller components using so-called “chain rules,” allowing simpler anal-
ysis. Of course, even the operational notions can be broken down into such
smaller components using so-called “hybrid arguments.” We will see all this in the
book.

Both the notions of security mentioned above are great for curtailing leaked
information, namely information revealed beyond what is expected. This suffices
for handling a passive adversary who does not deviate from the protocol, but
may try to get information it is not entitled to. However, these notions are not
sufficient for handling an active adversary who may not even follow the proto-
col. A major achievement of cryptography theory is to have a sound method for
analyzing security in the presence of an active adversary. To formalize security
in this setting, the first thing to realize is that we must moderate our expecta-
tions: some attacks are unavoidable. For instance, if a party modifies its input
to the protocol, there is nothing much that we can do about it. To formalize
this, we can at the outset think of an ideal protocol to which parties give inputs
and receive outputs as expected, allowing for the unavoidable (admissible) at-
tacks. Security can then be defined as how different can information extracted
by an adversary be when using an ideal protocol versus the protocol that we are
analyzing.

This formulation is profound, but tedious to use in practice. In fact, most
proofs in the literature omit many details, and perhaps writing all the details
will make them very long. It is a fascinating story that the most basic result in
two-party secure computation, namely the fact that the availability of oblivious
transfer allows one to compute any function securely, has been proved several
times over a span of roughly 30 years, and each time for a more powerful adver-
sary. We believe this is because these arguments are so delicate. In this book, we
make an attempt to collect many of these examples in one place, slowly building
concepts to handle security analysis for an active adversary.

1.4 Possible Course Plans

With a few exceptions, the dependency of chapters in this book is depicted
in Figure 1.7. Even though later chapters tend to depend on earlier chapters,
dependencies are partial. For instance, the information-theoretic tools provided
in Chapters 5–7 are not necessary to understand most parts of Chapters 15–19;
knowledge of the secret key agreement in Chapter 10 is only necessary to derive
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Figure 1.7 Dependence graph of the book; the numbers refer to the corresponding
chapters.

the impossibility results of oblivious transfer and bit commitment in Chapter
13 and Chapter 14. Keeping in mind these partial dependencies, we suggest the
following three possible course plans.

Basic Cryptography
Starting with Chapter 2, this course will cover two basic problems of cryptography:
encryption (Chapter 3) and authentication (Chapter 8). Also, as preparatory
tools for authentication, we will cover the basic concepts of universal hash fam-
ily (Chapter 4) and hypothesis testing (Chapter 5, but Sections 5.5 and 5.6
may be skipped). Then, we will introduce computationally secure encryption
and authentication (Chapter 9), in order to highlight how information-theoretic
cryptography is related to computationally secure cryptography. If time permits,
secret sharing (Chapter 11) may be covered as well since it does not require any
other prerequisites from earlier chapters.

Cryptography from Correlated Randomness
This is an advanced course which will start in the same manner as the pre-
vious basic course, but will focus on the role of correlated randomness in en-
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abling cryptographic primitives. In addition to the topics above, we will cover
secret key agreement (Chapter 10), oblivious transfer (Chapter 13), and bit
commitment (Chapter 14). As preparatory tools for these problems, we will cover
the universal hash family (Chapter 4), hypothesis testing (Chapter 5), informa-
tion reconciliation (Chapter 6), and random number generation (Chapter 9). In
order to motivate the oblivious transfer problem, we can cover some material
from Chapter 12. This course will be suitable for graduate students working
in cryptography, information theory, or quantum information theory. It high-
lights the main theme of this book: the use of information-theoretic tools in
cryptography.

Secure Computation
This course will cover basic results on secure computation. Starting with Chap-
ter 2, we will first cover secret sharing (Chapter 11), which is a basic tool for
secure computation. Then, we will proceed to the two-party secure computation
problem (Chapter 12). We will move then to the oblivious transfer (Chapter
13) and the bit commitment (Chapter 14) problems, but will not cover construc-
tions as that would require prerequisites from earlier chapters. After that, we will
cover some selected topics from Chapters 15–19. There are two possible paths.
In the first one, we will highlight the completeness of oblivious transfer (Chapter
17) after covering the notions of active adversary, composability (Chapter 15),
and zero-knowledge proofs (Chapter 16). In the second one, we will highlight
the honest majority/supermajority threshold of multiparty secure computation
(Chapter 19). This requires as prerequisites the notions of active adversary and
composability (Chapter 15, if the active adversary is discussed) and broadcast
(Chapter 18, which may be omitted if we assume existence of the broadcast).
Selection of topics depends on the preference of the instructor; however, multi-
party secure computation (Chapter 19) may be easier to digest compared to the
completeness of oblivious transfer (Chapter 17).

Each chapter is supplemented by several problems. Some of these are just
exercises to confirm results provided in the chapter or to fill omitted steps of
proofs. Others are meant to be pointers to interesting results that are beyond
the scope of the book. For some selected problems (mainly for those that are
used in later chapters), answers are provided in the Appendix.

1.5 References and Additional Reading

The topic of cryptography is as classic as it is popular. There are already several
excellent textbooks that provide a review of different aspects of this vast area.
We review some of them below. For a historical perspective of cryptography and
information theory, see [310, 313].

Most existing textbooks on cryptography are based on computational com-
plexity theory. A thorough exposition can be found in the two volume textbook
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by Goldreich [141, 142]. A more introductory but rigorous treatment can be
found in the textbook by Katz and Lindell [187]. In addition to these general
textbooks, there are textbooks specializing in specific topics, such as two-party
secure computation by Hazay and Lindell [166] or digital signatures by Katz
[185].

Another important topic of cryptography is algebraic construction and practical
implementation of cryptographic primitives. Textbooks covering these topics in-
clude those by Blahut [34] and Stinson [318]. In particular, the former is written
by an information theorist with engineers in mind.

Some topics of information-theoretic cryptography, such as encryption or the
secret key agreement, are treated in information theory textbooks. For instance,
see the textbooks by Csiszár and Körner [88] and El Gamal and Kim [131].
A popular application of information theoretic-cryptography is physical layer
security; a good resource on this topic is the textbook by Bloch and Barros
[37]. In a different flavor, the book by Cramer, Damg̊ard, and Nielsen contains a
thorough treatment of information-theoretically secure multiparty computation
and secret sharing [77].

Recent development of information-theoretic cryptography is closely tied to
quantum information science. The classic textbook by Nielsen and Chuang broadly
covers quantum computation, quantum cryptography, and quantum information
theory [261]. For a more thorough treatment of quantum information theory, see
the textbooks by Hayashi [161] and Wilde [348]. These books also treat problems
related to converting one type of randomness to another.
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