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Abstract. I continue the study of the blurry HOD hierarchy. The technically

most involved result is that the theory ZFC + “ℵω is a strong limit cardinal

and ℵω+1 is the least leap” is equiconsistent with the theory ZFC + “there is
a measurable cardinal.”
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1. Introduction

In [6], I began in the study of blurry ordinal definability, and the present article is
the continuation of that study. The basic idea is, given a cardinal κ ≥ 2, to weaken
the notion of ordinal definability of a set a, which can be formulated by saying that
a is the unique set x satisfying φ(x, α), for some formula φ and ordinal α, to the
notion of <κ-blurry ordinal definability, which says that a is one of fewer than κ
many sets x which satisfy φ(x, α). The seeming metamathematical complications in
formalizing this notion can be overcome in much the same way as with traditional
ordinal definability, as is spelled out in detail in Section 2. Precursors to this idea
are Hamkins & Leahy [11], where the case κ = ω is considered, and Tzouvaras [23],
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2 GUNTER FUCHS

where it is argued that the case κ = ω1 is the one to be focused on, whereas I
consider the full spectrum of possible values for κ.

As was observed by Tzouvaras, for every cardinal κ, the class <κ-OD of all <κ-
blurrily ordinal definable sets is uniformly definable (using κ as parameter), and
defining <κ-HOD to consist of all sets x such that TC({x}) ⊆ <κ-OD gives rise
to an inner model. Clearly, increasing κ weakens the notion of <κ-blurry ordinal
definability, so we are dealing with a weakly increasing hierarchy of inner models,
leading from HOD = <2-HOD to V = <∞-HOD =

⋃
2≤κ∈Card<κ-HOD, assuming

the axiom of choice. The main objective of this project is to understand how this
hierarchy grows. Since the concepts involved are highly non-absolute, there are two
kinds of results to be expected: ZFC-provable, general results about the hierarchy
on the one hand, and relative consistency results on the possible behavior of the
hierarchy on the other.

The main results of the first kind are to be found in Section 3, and they concern
the question how close <κ-HOD is to <λ-HOD, for different cardinals κ and λ.
Generalizing results from [6], I show that if κ < λ, then <κ-HOD satisfies the (ex-
ternal) λ-approximation and -cover properties in <λ-HOD, Theorem 3.3. This has
a very useful consequence, Corollary 3.7, which says that if <κ-HOD ⊊ <λ-HOD,
then there are sets a and b such that a ∈ <λ-HOD \ <κ-HOD, a ⊆ b ∈ <κ-HOD
and card(b) < λ. This fact proves useful both in understanding the growth of the
blurry HOD hierarchy in forcing extensions and in obtaining the lower consistency
strength bounds mentioned below.

Most results of the second kind concern the notion of a leap, a central concept
in the analysis of the blurry HOD hierarchy introduced in [6]. A leap is a cardinal
κ > 2 such that <κ-HOD ̸= <κ̄-HOD for every cardinal 2 ≤ κ̄ < κ. The main
result of the article is that the following three statements are equiconsistent (over
ZFC):

(1) The least leap is the cardinal successor of a strong limit cardinal of countable
cofinality.

(2) ℵω is a strong limit cardinal and ℵω+1 is the least leap.
(3) There is an inner model with a measurable cardinal.

This follows by taking together Theorems 5.1 and 9.16.
I will conclude this introduction by giving a section by section overview of the

contents of this work.
In section 2, I give the formal definition of the blurry HOD hierarchy, along with

a definable prewellordering that has not explicitly been introduced in [6], so even
readers familiar with that paper are encouraged to skim this part. I also sum up
the basic facts on leaps.

Section 3 proves the results on the (external) approximation and cover properties
mentioned above, and contains some connections to the question of existence of fresh
sequences. There is also an excursion contrasting this with the effects of Bukovsky’s
approximation property on fresh sets.

In Section 4, I give an overview over Př́ıkrý forcing, Př́ıkrý sequences and their
interactions with inner models and covering. These results will be used in the
subsequent sections.

Section 5 uses these results to establish the lower bound of an inner model with
a measurable cardinal to (a weakening of) the least leap being the successor of a
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MORE ON BLURRY HOD 3

singular strong limit cardinal, and it explores what can be said when the cofinality
of the cardinal in question is uncountable.

Section 6 summarizes the forcing tools that will be used in the subsequent sec-
tions.

Section 7 shows that the statement that the least leap is the successor of a
singular cardinal has no consistency strength; methods for producing models in
which the singular cardinal in question has countable or uncountable cofinality are
developed here. Thus, the assumption that the singular cardinal is a strong limit
is essential in the main equiconsistency result.

Section 8 produces a model where ℵω is a strong limit cardinal which is also a
limit of leaps, and where ℵω+1 is a leap. The basic idea is to add a Př́ıkrý sequence
over L[U ] and to collapse between the Př́ıkrý points with even indices.

In Section 9, this idea is taken further, forcing over L[U ] to produce a model
where ℵω is a strong limit cardinal and ℵω+1 is the least leap. The key idea is
to modify Magidor’s version of Př́ıkrý forcing with integrated collapses so as to
collapse between the Př́ıkrý points with even index, und subsequently coding the
collapsing functions in order to make them ordinal definable. This result provides
the desired equiconsistency.

Section 10 sketches how to achieve the situation where the least leap is the
successor cardinal of ℵλ, for other values of λ.

The article concludes with Section 11, containing some open questions, and
in concluding the introduction, I would like to thank the referee for very useful
feedback.

2. Basics

Definition 2.1. Let ⟨φn | n < ω⟩ be a recursive enumeration of all internal first
order formulas in the language of set theory with two free variables. Let Sat(x, y, z)
be the satisfaction relation, so that for a set u, a natural number n and a pair
⟨a, b⟩ ∈ u2, Sat(u, n, ⟨a, b⟩) holds iff ⟨u,∈ ∩ u2⟩ |= φn(a, b).

Let a be a set. A blurry ordinal definition of a is an OD set A with a ∈ A. Given
a cardinal λ, a <λ-blurry ordinal definition of a is a blurry ordinal definition of a of
cardinality less than λ. Let Σ(a) be the least cardinal κ such that a has <κ+-blurry
ordinal definition (if such a cardinal exists - assuming AC, it always does).

Let D(a) be the least ordinal of the form ≺α, n, β≻ such that the set

{x ∈ Vα | Sat(Vα, φn, ⟨x, β⟩)}

is a <Σ(a)+-blurry ordinal definition of a (if such a triple exists).
For a cardinal λ > 1, define <λ-OD to be the class of sets that have a <λ-blurry

ordinal definition, and define that a ∈ <λ-HOD iff TC({a}) ⊆ <λ-OD.

Observation 2.2. We have the following facts about Σ and D.

(1) The functions Σ and D are definable without parameters. Assuming ZFC,
both are total.

(2) Let a be a set for which Σ(a) is defined. Let D(a) = ρ. Then D−1(ρ) =
{x | D(x) = ρ} is a blurry ordinal definition of a, and card(D−1(ρ)) = Σ(a).

Proof. (1) is obvious.
(2): Since Σ(a) is defined, so is ρ = D(a). The ordinal ρ is of the form ≺α, n, β≻,

and the set A = {x | Vα |= φn(x, β)} is a blurry ordinal definition of a of cardinality
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4 GUNTER FUCHS

Σ(a). Now suppose that b ∈ D−1(ρ) as well. Then A is also a blurry ordinal
definition of b. Thus, D−1(ρ) ⊆ A. Hence, card(D−1(ρ)) ≤ card(A) = Σ(a). By
minimality of Σ(a), we have that Σ(a) ≤ card(D−1(ρ)). □

So we can let R be the prewellordering associated to the norm D, that is, R is
the set-like, well-founded relation on dom(D)× dom(D) defined by setting xRy iff
D(x) < D(y). For every cardinal λ ≥ 2, the restriction of R to <λ-HOD is then a
prewellordering of <λ-HOD such that for every x ∈ <λ-HOD, the set of y that are
incomparable to x is precisely D−1(D(x))∩<λ-HOD, a set of cardinality less than
λ (more precisely, of cardinality Σ(x)).

The following “metatheorem” is sometimes useful. It shows that we may allow
parameters from <κ-OD in <κ-blurry ordinal definitions.

Theorem 2.3. Let κ ≥ ω be a cardinal, and suppose that A is a set of cardinality
less than κ definable using ordinals and parameters which are <κ-OD. Then every
a ∈ A is <κ-OD.

Proof. Let A = {x | φ(x, α⃗, b⃗)}, where card(A) = κ̄ < κ, b⃗ = b0, . . . , bn−1 are
<κ-OD and α⃗ = α0, . . . , αm−1 are ordinals. For i < n, let Bi be a <κ-blurry
ordinal definition of bi. Let

B = {⟨c0, . . . , cn−1⟩ ∈ B0 × · · · ×Bn−1 | card({x | φ(x, α⃗, c⃗)}) = κ̄}.

Then ⟨b0, . . . , bn−1⟩ ∈ B. Let

C =
⋃
c⃗∈B

{x | φ(x, α⃗, c⃗)}.

Then C is OD, A ⊆ C, and card(C) ≤ ω · κ̄ · card(B) < κ, so that C is a <κ-blurry
ordinal definition of any element of A. □

I will need some basic fact on blurry HOD which were established in [6].

Definition 2.4 ([6, Def. 6&7]). A cardinal λ > 2 is a leap if

<δ-HOD ⫋ <λ-HOD,

for every cardinal δ < λ. I write ⟨Λα | α < Θ⟩ for the monotone enumeration of the
leaps (it is the empty sequence, i.e., Λ0 is undefined, if there is no leap). A leap λ
is a successor leap if λ = Λξ+1, for some ξ, and it is a limit leap if it is of the form
λ = Λξ, where ξ is a limit ordinal. A leap γ is a big leap if ⋃

δ<γ,δ∈Card

<δ-HOD

 ⫋ <γ-HOD.

The following facts were shown in [6, Lemma 2 and Thm. 9&10].

Fact 2.5. Leaps have the following properties.

(1) The class of leaps is closed in the ordinals.
(2) Λ0, if defined, is an uncountable successor cardinal.
(3) Successor leaps are successor cardinals.
(4) Every leap is big.
(5) If λ is a limit leap, then <λ-HOD does not satisfy the axiom of choice.
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MORE ON BLURRY HOD 5

3. The closeness between <κ-HOD and <λ-HOD

In the analysis of the consistency strength of certain leap constellations, it is cru-
cial to understand how close <κ-HOD and <λ-HOD are to each other, for cardinals
κ < λ. In [6], the closeness between HOD and <λ-HOD was already investigated.
Let me look at the more general picture now.

3.1. Approximation and cover properties. The following are properties ex-
pressing the closeness between two models, introduced by Hamkins [10], along with
“external” versions thereof, designed to apply in the context where the inner mod-
els in question don’t necessarily satisfy the axiom of choice, but are situated within
an ambient model of ZFC.

Definition 3.1. Let M ⊆ N be transitive classes, and let κ be a cardinal in N .
M satisfies the κ-cover property in N if for every set a ∈ N with a ⊆ M and

card(a)N < κ, there is a set c ∈ M such that a ⊆ c and card(c)M < κ. M satisfies
the external κ-cover property in N if for every a ∈ N with a ⊆M and card(a)V < κ,
there is a c ∈M with a ⊆ c and card(c)V < κ.

Let a ∈ N be a set with a ⊆ M . A set of the form a ∩ c, where c ∈ M and
card(c)M < κ, is called a κ-approximation to a in M . If the set is of the form a∩c,
where c ∈M and card(c)V < κ, then it is called an external κ-approximation to a in
M . The set a is said to be (externally) κ-approximated in M if every (external) κ-
approximation to a inM belongs toM . M satisfies the (external) κ-approximation
property in N if whenever a ∈ N with a ⊆M is (externally) κ-approximated in M ,
then a ∈M .

The external versions of the approximation and cover properties generalize their
original versions.

Observation 3.2. Assume that M,N are transitive models of ZFC, and let κ be a
cardinal. Then M satisfies the κ-approximation property in N iff M satisfies the
external κ-approximation property in N .

Similarly for the external κ-cover property.

Proof. The point is that if b ∈M , then card(b)M < κ iff card(b)V < κ, and similarly
for N , since κ is a cardinal. In detail, sinceM satisfies the axiom of choice, card(b)M

exists, and hence, card(b)V exists. Clearly, card(b)V ≤ card(b)M . Suppose we had
that κ̄ = card(b)V < κ while card(b)M ≥ κ. Let f ∈M be a surjection from b onto
κ, and let g : b −→ κ̄ be a bijection. Then f ◦ g−1 : κ̄ −→ κ is a surjection, so κ is
not a cardinal, a contradiction. □

In the context in which I want to apply these properties, the ambient universe
satisfies ZFC, but the two models, being of the form <κ-HOD and <λ-HOD, are
merely models of ZF.

Theorem 3.3 (ZFC). Let 2 ≤ κ ≤ λ be infinite cardinals. Then <κ-HOD sat-
isfies the external λ-cover property and the external λ-approximation property in
<λ-HOD.

Proof. The case κ = 2 was shown in [6, Theorem 3], and it was pointed out there
that this case implies directly that <ω-HOD = HOD, which was first shown in [11].
Because of this, we may assume that ω ≤ κ < λ.

To verify the external λ-cover property, let a ∈ <λ-HOD be such that a ⊆
<κ-HOD and γ = card(a)V < λ. Let A be a <λ-blurry ordinal definition of a. Since
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a ⊆ <κ-HOD and card(a) = γ, we may assume that for all b ∈ A, b ⊆ <κ-HOD
and card(b) = γ, since these requirements may be added to the definition of A if
necessary. Set c =

⋃
A. By the axiom of choice in V, card(c)V ≤ γ · card(A) < λ, c

is OD, and c ⊆ <κ-HOD. Thus, c ∈ <κ-HOD, and clearly, a ⊆ c.
Turning to the external λ-approximation property, let a ∈ <λ-HOD, a ⊆ <κ-HOD

be externally λ-approximated in <κ-HOD. Let A be a <λ-blurry ordinal definition
of a. As before, we may assume that every b ∈ A is a subset of <κ-HOD that’s
externally λ-approximated in <κ-HOD.

I will now use the functions D and Σ of Definition 2.1, definable without param-
eters. Given distinct sets b0, b1 ∈ A, it follows that b0△b1 ⊆ <κ-HOD, so for every
x ∈ b0△b1, Σ(x) < κ. So, letting

µb0,b1 = minD[b0△b1]
it follows that D−1(µb0,b1) is a subset of <κ-OD of cardinality less than κ; see
Observation 2.2. Let

∆ = <κ-HOD ∩
⋃

{D−1(µb0,b1) | {b0, b1} ∈ [A]2}.

Then ∆ has cardinality less than λ. Moreover, ∆ is OD, as the function D is
definable without parameters, A is OD, and so is the function mapping b0, b1 ∈ A
to µb0,b1 . Moreover, ∆ ⊆ <κ-HOD, so ∆ ∈ <κ-HOD.

Letting a0 = a ∩ ∆, we have that a0 ∈ <κ-HOD, since a is λ-approximated in
<κ-HOD and ∆ ∈ <κ-HOD has size less than λ. But note that if b0, b1 ∈ A are
distinct, then b0 ∩ ∆ ̸= b1 ∩ ∆. In other words, a is the unique c ∈ A such that
c ∩∆ = a0. Thus, a is ordinal definable from the parameters c and a0, which are
<κ-OD, so by Theorem 2.3, a is <κ-OD. Since a is contained in <κ-HOD, it follows
that a ∈ <κ-HOD, as wished. □

Definition 3.4 (Hamkins). Let M ⊆ N be inner models, and let θ be an ordinal.
A sequence a : θ −→ M is a fresh sequence in N over M if a ∈ N , a /∈ M , but for
all ξ < θ, a↾ξ ∈M .

Lemma 3.5 (ZFC). Let λ be an infinite cardinal, and suppose M ⊆ N are inner
models with M ⫋ N .

(1) Suppose that M satisfies the external λ-approximation property in N . If N
has a fresh sequence over M of length θ, then cf(θ) < λ.

(2) Suppose thatM satisfies the external λ-approximation and -cover properties
in N . Then there are sets a, b such that a ∈ N \ M , a ⊆ b ∈ M and
card(b) < λ.

Proof. For (1), suppose f : θ −→M , f ∈ N is such that for every α < θ, f↾α ∈M ,
and cf(θ) ≥ λ. I will show that f ∈M . As a set, f is a subset of M , and the point
is that f is externally λ-approximated in M . To see this, let a ∈M , card(a)V < λ.
Since cf(θ) ≥ λ, it follows that {ξ < θ | ⟨ξ, f(ξ)⟩ ∈ a} is bounded in θ, say by α.
Then f ∩a = (f↾α)∩a ∈M , as f↾α ∈M . So f is externally λ-approximated inM ,
which implies that f ∈M , since M satisfies the external λ-approximation property
in N .

For (2), Let ∆ be the class of ∈-minimal elements of N \M . Clearly, a ∈ ∆ iff
a has the following properties:

(a) a ∈ N .
(b) a ⊆M .
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(c) a /∈M .

Let µ = min{card(b) | b ∈ ∆}, and let a ∈ ∆ be of cardinality µ. It follows that
a is externally µ-approximated in M , because if b ∈M has cardinality less than µ,
then card(a ∩ b) < µ, a ∩ b ∈ N and a ∩ b ⊆ M . So it must me that a ∩ b ∈ M ,
because otherwise, a ∩ b would be in ∆, but of cardinality less than µ, which is
impossible. It follows that µ < λ, because if µ ≥ λ, then it would follow that a is
λ-approximated in M , but this in turn would imply that a ∈ M , since M has the
external λ-approximation property in N , a contradiction.

Hence, card(a) = µ < λ. Since a ⊆M and M has the external λ-cover property
in N , there is a b ∈M with a ⊆ b and card(b) < λ, so a and b are as wished. □

Corollary 3.6 (ZFC). Let 2 ≤ κ < λ be a infinite cardinals. If θ is a limit ordinal
with cf(θ) ≥ λ, then <λ-HOD has no length θ sequence that’s fresh over <κ-HOD.

Corollary 3.7 (ZFC). Let 2 ≤ κ < λ be cardinals such that <κ-HOD ⫋ <λ-HOD.
Then there are sets a and b such that a ∈ <λ-HOD \ <κ-HOD, a ⊆ b ∈ <κ-HOD
and card(b) < λ.

This last corollary simplifies some arguments of [6], and will be used frequently
in what follows.

3.2. Bukovsky’s approximation property. In this subsection, I would like to
explore a second notion of closeness, originally introduced by Bukovsky. This ma-
terial is not going to be used in the following sections and may be skipped without
loss.

Definition 3.8 ([1, (1.6)]). Let M1 ⊆ M2 be transitive models, and let κ be a
cardinal in M2. Then AprM1,M2

(κ) says that whenever f ∈ M2 is a function from
an ordinal α to an ordinal β, then there is a function g : α −→ P(β) in M1 such
that for every ξ < α, f(ξ) ∈ g(ξ) and card(g(ξ))M1 < κ.

It was shown in [6] that for any cardinal λ, AprHOD,<λ-HOD(λ) holds. In the
present context, I would like to extend this to <κ-HOD instead of HOD, where
κ < λ. Since <κ-HOD may not satisfy the axiom of choice, it is useful to devise
a variation of Bukovsky’s property, similar to the “external” versions of Hamkins’
approximation and cover properties. In fact, a slight strengthening of the obvious
external version of the condition holds, formulated below.

Definition 3.9. Let M1 ⊆ M2 be inner models, and let κ be a cardinal in M2.
Then Apr+M1,M2

(κ) says that whenever f ∈ M2 is a function from an ordinal α
to M1, then there is a function g : α −→ M1 in M1 such that for every ξ < α,
f(ξ) ∈ g(ξ) and card(g(ξ))V < κ.

In this definition, one could have allowed α to be any set a ∈ M1, and the
following lemma would still hold, but I won’t need that version of the condition.
Let us check that in the situation where Bukovsky’s original condition is usually
applied, it follows from its “external” version.

Observation 3.10. Let M1 ⊆ M2 be inner models, κ a cardinal. Suppose that
M1 |= AC. Then Apr+M1,M2

(κ) implies AprM1,M2
(κ).

Proof. Let f : α −→ β, f ∈ M2. By Apr+M1,M2
(κ), let g : α −→ P(β), g ∈ M1

be such that for all ξ < α, f(ξ) ∈ g(ξ) and card(f(ξ)) < κ. Fixing ξ < α, since
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M1 |= AC, we may let κ′ = card(f(ξ)). It follows that κ′ < κ, or else, there would
be in V a bijection between card(f(ξ)) < κ and κ′ ≥ κ, so that κ couldn’t have
been a cardinal. □

Observation 3.11. Let κ < λ be cardinals. Then Apr+<κ-HOD,<λ-HOD(λ) holds.

Proof. Let f : α −→ <κ-HOD, f ∈ <λ-HOD. Let F be a <λ-blurry ordinal
definition of f . We may assume that for all f ′ ∈ F , f ′ : α −→ <κ-HOD. Define
g : α −→ <κ-HOD by g(ξ) = {f ′(ξ) | f ′ ∈ F}. Then g ∈ <κ-HOD, since g is OD
and g ⊆ <κ-HOD, and for all ξ < α, f(ξ) ∈ g(ξ) and card(g(ξ)) < λ, as wished. □

Let me now show that the external version of Bukovsky’s approximation property
also limits the existence fresh sequences, but not as strongly as the external version
of Hamkins’ approximation property. First, I need a version of Kurepa’s theorem
on the existence of branches through trees. If T is a tree, I will write T (α) for the
collection of its nodes on level α, and I will denote the tree ordering by <T . The
height of T , ht(T ), is the least α such that T (α) = ∅, and T is well-pruned if for
every α < β < ht(T ) and every x ∈ T (α) there is a y ∈ T (β) such that x <T y.

Theorem 3.12 (after Kurepa). Let κ < λ be cardinals, λ regular. Let T be a
well-pruned tree of height λ all of whose levels have size less than κ. Then there
is an α < λ such that for all x ∈ T (α) and all β ∈ (α, λ), there is a unique
y = y(x, β) ∈ T (β) with x <T y.

Proof. For x ∈ T , let s(x) be the least β < λ such that there are distinct y0, y1 ∈
T (β) such that x <T y0 and x <T y1, if there is such a β - otherwise, let s(x) = 0.
Say that x is splitting if s(x) > 0. I have to show that there is an α such that no
x ∈ T (α) is splitting.

Define, for α < λ,

f(α) = sup{s(x) | x ∈ T (α)}.
Since card(T (α)) < κ < λ = cf(λ), f(α) < λ. Since λ is regular, the set C = {γ <
λ | f [γ] ⊆ γ} is club in λ. Let ⟨ξi | i < λ⟩ be the monotone enumeration of C, and
let α = ξκ be the κ-th element of C. I claim that α is as wished.

Namely, let x ∈ T (α). Suppose towards a contradiction that x is splitting. Let
b = {y | y <T x}. Then every y ∈ b is splitting. Let, for i < κ, yi be the unique
element of b∩ T (ξi). Then s(yi) < ξi+1 < α. So there is a zi >T yi in T (ξi+1) such
that zi /∈ b. And since T is well-pruned, zi has a successor ui in T (α). For i < j, it
follows that ui ̸= uj , because otherwise, we’d have: yi <T zi <T ui and xj <T ui,
so zi <T xj , that is, zi ∈ b, a contradiction. But then, {ui | i < κ} ⊆ T (α), so
card(T (α)) ≥ κ, a contradiction. □

Observation 3.13. Let λ be a cardinal, M ⊆ N inner models such that Apr+M,N (λ)

holds, and let θ be a limit ordinal with cf(θ) > λ. Then N has no length θ sequence
fresh over M .

Note:

(1) By Lemma 3.5, if M has the external λ-approximation property in N , then
the same conclusion can be drawn just assuming that cf(θ) ≥ λ.

(2) This observation cannot be improved in general. For example, if S is a
Souslin tree and b is a generic branch for S, then Apr+V,V[b](ℵ1) holds, since

S is ccc. But of course, b is a fresh ω1-sequence over V.
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Proof. Assume the contrary. Let θ be the least counterexample. It is easy to see
that θ must be regular. So θ = cf(θ) > λ.

Let f : θ −→M be fresh overM , f ∈ N . By applying AprM,N (λ) to the function
ξ 7→ f↾ξ, it follows that there is a function g : θ −→ M , g ∈ M , so that for all
ξ < θ, f↾ξ ∈ g(ξ) and card(g(ξ)) < λ. We may assume that for all ξ < θ, g(ξ)
consists of functions with domain ξ.

Working in M , define an ordinal ρ and a sequence ⟨gα | α < ρ⟩ of functions with
domain θ recursively as follows:

(1) g0 = g.
(2) If gα has already been defined, then define g′α : θ −→M by setting

g′α+1(ξ) = {h ∈ gα(ξ) | ∀ζ ∈ (ξ, θ)∃h′ ∈ gα(ζ) h′↾ξ = h

and ∀ζ < ξ h↾ζ ∈ gα(ζ)}.
If g′α+1 = gα, then let ρ = α+1, ending the construction. Otherwise, define
gα+1 = g′α+1.

(3) If α is a limit ordinal and gζ has been defined for all ζ < α, then define
gα : θ −→M by

gα(ξ) =
⋂
ζ<α

gζ(ξ).

Since gα+1(ξ) ⊆ gα(ξ) when defined, the sequence has to stabilize, and it has a
last element, say gρ̄, so that ρ = ρ̄+1. Note that inductively, f↾ξ ∈ gα(ξ), for every
ξ < θ, α < ρ.

Now let T = ⟨
⋃
ran(gρ̄),⫋⟩. By construction, it is a well-pruned tree of height θ

each of whose levels has cardinality less than λ in V. Since λ < θ and θ is regular,
Theorem 3.12 applies. So let α < θ be such that for every ξ ∈ (α, θ), every node in
T (α) has a unique successor in T (ξ). Then

f =
⋃ ⋃

ξ∈(α,θ)

{h ∈ T (ξ) | f↾α ⊆ h}

 ∈M

since T ∈M . □

4. Canonical inner models and Př́ıkrý sequences

Př́ıkrý forcing and its interactions with canonical inner models will play a major
role in the arguments to follow, so it seems appropriate to give an overview of the
results I am going to use.

The starting point for Př́ıkrý forcing is a measurable cardinal, and I will actually
begin a little bit below this assumption. A crucial tool I will use is the Dodd-Jensen
covering lemma for their core model KDJ , which was introduced in [2].

An inner model W is said to have the covering property if for every uncountable
set of ordinals X, there is a set Y ∈ W of the same cardinality as X, such that
X ⊆ Y .

Theorem 4.1 (Dodd-Jensen [3, Theorem 5.17]). If there is no inner model with a
measurable cardinal, then KDJ has the covering property.

I will also use some basic properties of the core model, such as the fact that
it is forcing invariant (i.e., KV = KV[G], when G is set generic over V) and that
K ⊆ HOD. For more background, I refer the reader to [21]. Let’s now move into
the realm of measurable cardinals.

https://doi.org/10.1017/jsl.2023.91 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.91


10 GUNTER FUCHS

Definition 4.2 (Př́ıkrý [20]). Given a measurable cardinal κ and a normal ultra-
filter U on κ, the Př́ıkrý forcing for U , denoted PU consists of all pairs of the form
⟨s, T ⟩ such that s is a finite subset of κ, T ∈ U and s ⊆ min(T ). The partial
ordering of PU is defined by ⟨s′, T ′⟩ ≤PU

⟨s, T ⟩ iff s ⊆ s′, T ′ ⊆ T and s′ \ s ⊆ T .

Definition 4.3. Let W be an inner model, κ̄ a measurable cardinal in the sense
of W , and Ū a normal ultrafilter on κ̄ in W . Then a set C ⊆ κ̄ of order type ω is
a Př́ıkrý sequence for Ū iff for every A ∈ Ū , C \A is finite. Such a C is a maximal
Př́ıkrý sequence for Ū if for every Př́ıkrý sequence D for Ū , D \ C is finite.

Fact 4.4. Let κ be measurable, U a normal ultrafilter on κ, and G be PU -generic
over V.

• The set C =
⋃
{a | ∃B ∈ U ⟨a,B⟩ ∈ G} is a Př́ıkrý sequence for U .

• Vκ = V
V[G]
κ .

• V[G] = V[C], that is, G = GC can be recovered from C, as
GC = {⟨a,B⟩ ∈ PU | a is an initial segment of C and C \ a ⊆ B}.

• Mathias [17] characterizes when D ⊆ κ of order type ω gives rise to a
PU -generic filter GD: this is the case iff D is a Př́ıkrý sequence for U .

• In V[C], C is a maximal Př́ıkrý sequence over V. See Fuchs [5] for a proof
of (a generalization of) this, and Gitik-Kanovei-Koepke [9] for much more
information in this direction.

A lot more information on Př́ıkrý forcing and its variations can be found in [8].
I will use the minimal inner model for a measurable cardinal, L[U ], which orig-

inated in work of Solovay, Silver and Kunen (see Kunen [15]). There is a crucial
connection to Př́ıkrý sequences, which is why I include it in the present section.

When I write L[U ], I mean to say that U ∈ L[U ] is a normal ultrafilter on an
ordinal κ in the sense of L[U ], where for no κ̄ < κ is there a Ū such that Ū ∈ L[Ū ]
and Ū is a normal ultrafilter on κ̄ in L[Ū ] – Kunen [15] showed that this L[U ] is
unique, and that κ is the unique measurable cardinal in L[U ]; in his terminology,
it is the minimal ρ-model. For more on the history, Kanamori [13, Chapter 4, §20]
is a good source. By the uniqueness of U , it is definable, and hence every element
of L[U ] is ordinal definable, so L[U ] ⊆ HOD.

Later, I will also need the Dodd-Jensen covering lemma for L[U ], stated below.
The statement “0† does not exist,” which occurs in its formulation, may be taken to
to mean that there is no elementary embedding j : L[U ] −→ L[U ] with critical point
greater than κ, the measurable cardinal of L[U ]. From a more modern perspective,
if 0† does not exist and there is an inner model with a measurable cardinal, then
L[U ] is the core model K; see Mitchell [18] for a nice introduction to the general
theory.

Theorem 4.5 (Dodd-Jensen [4]). Suppose there is an inner model with a measur-
able cardinal, i.e., L[U ] exists. Assume that 0† does not exist. Then either L[U ]
has the covering property, or there is a maximal Př́ıkrý sequence C for U such that
L[U ][C] has the covering property.

The maximality of C is not explicitly stated in the formulation of the theorem in
[4], but it is implicit in the proof. It is made more explicit in the excellent overview
article Mitchell [19, pp. 1547-1548].
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5. Obtaining consistency strength lower bounds

Having generalized the salient facts about HOD and <λ-HOD (section 3), and
having the necessary inner model theoretic tools (section 4) at our disposal, the
next goal is to derive strength from the statement “there is a non-leap, singular
strong limit cardinal whose successor cardinal is a leap.”

Theorem 5.1 (ZFC). Suppose λ is a singular strong limit cardinal, λ is not a leap,
but λ+ is a leap. Then there is an inner model with a measurable cardinal.

Proof. Assume towards a contradiction that there is no inner model with a mea-
surable cardinal.

Since λ is a limit cardinal which is not a leap, the leaps below λ must be bounded
in λ, since the class of leaps is closed, by Fact 2.5. Let λ̄ < λ be a cardinal which
is greater than all the leaps below λ. It follows that <λ-HOD = <λ̄-HOD.

Let κ be the least cardinal such that there is a set a ∈ <λ+-HOD \ <λ-HOD
with a ⊆ <λ-HOD of cardinality κ, and let a0 be such a set. By Corollary 3.7,
κ = card(a0) ≤ λ.

I will now use the functionsD and Σ introduced in Definition 2.1. Let P = D[a0],
π = otp(P ), and let e : π −→ P be the monotone enumeration of P . Since
card(a0) ≤ λ, it follows that π < λ+. For ξ ≤ π, let

a0↾ξ = {x ∈ a0 | e−1(D(x)) < ξ} = a0 ∩D−1[e[ξ]].

So a0↾π = a0. Let Ω ≤ π be least such that a0↾Ω /∈ <λ-HOD. Note that a0↾ξ ∈
<λ+-HOD, for all ξ ≤ π - the question is when a0↾ξ stops being in <λ-HOD; this
is clearly true for ξ = 0 but false for ξ = π.

(1) Ω is a limit ordinal.

Proof of (1). Otherwise, say Ω = Ω̄ + 1. Let a′0 = a0 ∩D−1(e(Ω̄)). Then a0↾Ω =
a↾Ω̄ ∪ a′0. Let κ̄ = card(D−1(e(Ω̄))). Then κ̄ < λ. This is because e(Ω̄) = D(x) for
some x ∈ a0 ⊆ <λ-HOD, so that Σ(x) < λ – see Observation 2.2. So P(D−1(e(Ω̄)))
is OD (using e(Ω̄) as a parameter), has cardinality less than λ, and contains a′0,
making it a <λ-blurry ordinal definition of a′0. Since a

′
0 ⊆ <λ-HOD, it follows that

a′0 ∈ <λ-HOD. But also, by minimality of Ω, a0↾Ω̄ ∈ <λ-HOD. Hence,

a0↾Ω = (a0↾Ω̄) ∪ a′0 ∈ <λ-HOD,

a contradiction. □

(2) κ < λ.

Proof of (2). Since Ω is a limit ordinal, it makes sense to consider its cofinality. As
Ω ≤ π < λ+ and λ is singular, it follows that cf(Ω) < λ. And since K ⊆ <λ+-HOD

and K has the covering property, Ω̄ = cf<λ+-HOD(Ω) < λ.
So let c : Ω̄ −→ Ω be monotone and cofinal, c ∈ <λ+-HOD. Let a′0 =

{a0↾c(ξ) | ξ < Ω̄}. Then a′0 ∈ <λ+-HOD, a′0 ⊆ <λ-HOD and a′0 /∈ <λ-HOD.
So by minimality of κ, κ ≤ card(a′0) ≤ Ω̄ < λ, as wished. □

So we have κ = card(a0) < λ, and hence, card(D[a0]) < λ. By the Dodd-
Jensen Covering Lemma, there is a set c ∈ K such that D[a0] ⊆ c and card(c) ≤
ℵ1 + card(D[a0]) < λ. Let c′ = {ξ ∈ c | card(D−1(ξ)) < λ̄}. Then c′ is OD,
and we still have that D[a0] ⊆ c′, since for every x ∈ a0, x ∈ <λ̄-HOD, so
Σ(x) < λ̄, so card(D−1(D(x))) < λ̄, again by Observation 2.2. It then follows
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12 GUNTER FUCHS

that card(D−1[c′]) ≤ λ̄ · card(c′) < λ, and that a0 ⊆ D−1[c′]. But P(D−1[c′]) is an

OD set of cardinality 2card(D
−1[c′]) < λ, and it contains a0, so a0 has a <λ-blurry

ordinal definition and a0 ⊆ <λ-HOD. This means that a0 ∈ <λ-HOD. This is a
contradiction. □

The assumptions of the previous lemma are satisfied in particular in the focal
case that the least leap, Λ0, is the successor cardinal of the singular strong limit
cardinal λ. In the remainder of this section, I will show that assuming the cofinality
of λ to be uncountable increases the consistency strength of this constellation. The
results presented here are merely a first step; a much higher consistency strength
can be obtained, as I will show in a follow-up paper.

Observation 5.2. If λ is a strong limit cardinal, then Hλ ⊆ <λ-HOD.

Proof. Since every member of Hλ is coded by a bounded subset of λ, it suffices to
show that every bounded subset of λ is in <λ-HOD. But if α < λ, then P(α) is an
OD set of cardinality less than λ, so P(α) ⊆ <λ-HOD. □

Lemma 5.3. Suppose λ is a singular strong limit cardinal, and that the following
conditions all hold true:

(1) λ+ = Λ0.
(2) (λ+)HOD = λ+.
(3) λ is singular in HOD.

Then there is a set in <λ+-HOD \ HOD which is a subset of λ of cardinality less
than λ.

Proof. By Corollary 3.7, there are an a ∈ <λ+-HOD \ HOD and a set b with
card(b) ≤ λ such that a ⊆ b ∈ HOD. Since HOD satisfies the axiom of choice and
λ+ = (λ+)HOD, it follows that θ = card(b)HOD ≤ λ. So let f ∈ HOD, f : θ −→ b
a bijection. Let ā = f−1[a]. Then ā ⊆ θ ≤ λ, and ā /∈ HOD (or else a = f [ā] ∈
HOD), but ā ∈ <λ+-HOD. By Observation 5.2, ā must be unbounded in λ, since
HOD = <λ-HOD contains all bounded subsets of λ. That is, θ = λ.

Let λ̄ = cfHOD(λ). By assumption, λ̄ < λ. Let g : λ̄ −→ λ be cofinal, g ∈ HOD.
Then the set ā′ = {ā∩g(ξ) | ξ < λ̄} is in <λ+-HOD\HOD. Clearly, card(ā′) ≤ λ̄ < λ
and ā′ ⊆ HOD (the latter again since HOD = <λ-HOD contains all bounded subsets
of λ, by Observation 5.2.)

By that same observation again, Hλ = HHOD
λ . Since λ is a strong limit cardinal,

we have thatHλ has cardinality λ. But since (λ+)HOD = λ+, Hλ also has cardinality
λ in HOD. So let h : λ −→ Hλ, h ∈ HOD. Note that ā′ ⊆ Hλ. Let ã = h−1[ā′].
Then ã ⊆ λ and card(ã) < λ. Moreover, ã ∈ <λ+-HOD\HOD. So ã is as wished. □

Theorem 5.4. If Λ0 is the successor of a singular strong limit cardinal λ of un-
countable cofinality, then 0† exists.

Proof. Assume 0† does not exist. By Theorem 5.1, there is an inner model with a
measurable cardinal. By the Dodd-Jensen covering lemma for L[U ], either L[U ] has
the covering property, or there is a maximal Př́ıkrý sequence C for U and L[U ][C]
has the covering property. It cannot be that L[U ] has the covering property, because
if so, we could run the argument of Theorem 5.1 with L[U ] in place of KDJ , getting
a contradiction to the covering property of L[U ]. So let C be a maximal Př́ıkrý
sequence for U , so that L[U ][C] has the covering property. Let κ be the measurable
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cardinal of L[U ]. The existence of C implies that cf(κ) = ω. Since cf(λ) ≥ ω1,
κ ̸= λ.
Case 1: κ < λ

There are only κ many maximal Př́ıkrý sequences over U , and C is one of them.
This is because if D is a maximal Př́ıkrý sequence over U , then both C \ D and
D \ C are finite, so D is obtained from C by removing some finite number of
elements of C and adding some finite number of ordinals less than κ, and there
are only κ ways of choosing these finite sets. Since U is OD, this shows that
C ∈ <κ+-HOD ⊆ <λ-HOD. So L[U ][C] ⊆ <λ-HOD = HOD. This allows us again
to run the argument of the proof of Theorem 5.1 with L[U ][C] in place of KDJ ,
getting a contradiction to the covering property of L[U ][C].
Case 2: λ < κ.

The conditions of Lemma 5.3 are all satisfied: λ+ = Λ0 by assumption, (λ+)HOD =
λ+ because 0† does not exist, so (λ+)K = λ+, and K ⊆ HOD, and λ is singular in
HOD, because there is a cofinal subset of λ of order type less than λ in V, which is
covered by such a subset in L[U ][C], but as λ < κ, P(λ)L[U ][C] = P(λ)L[U ] ⊆ HOD,
so such a subset exists in HOD as well. So by Lemma 5.3, there is an a ⊆ λ of
cardinality less than λ such that a ∈ <λ+-HOD \ HOD.

But by the covering property of L[U ][C], let b ∈ L[U ][C] be such that a ⊆ b,
card(b) ≤ card(a) + ℵ1, b ⊆ λ. Then card(b) < λ, and since b ∈ P(λ)L[U ][C] =
P(λ)L[U ], b ∈ L[U ] ⊆ HOD. But then a ∈ P(b), and card(P(b)) < λ, since λ
is a strong limit cardinal. So P(b) is a <λ-blurry ordinal definition of a, and
a ∈ <λ-HOD = HOD. This is a contradiction. □

6. Forcing basics

In this section, I will collect some facts on the interaction between forcing and
blurry ordinal definability. Most of these were established in Fuchs [6].

Observation 6.1 (ZFC, [6, Proposition 10]). Suppose that P is a notion of forcing,
G is generic for P over V, κ is a cardinal in V[G], and V is definable in V[G] from

a parameter in <κ-ODV[G]. Then

<κ-ODV ⊆ <κ-ODV[G]

and so, <κ-HODV ⊆ <κ-HODV[G] as well.

The following observation will complement this fact. In order to formulate it,
I’ll introduce some terminology.

Definition 6.2. Let P be a forcing notion. For p ∈ P, let the cone below p in P be
the set

P≤p = {q ∈ P | q ≤ p}
equipped with the restriction of the ordering of P.

P is called cone homogeneous if for any two conditions p, q ∈ P, there are p′ ≤ p
and q′ ≤ q such that P≤p′ and P≤q′ are isomorphic.

Observation 6.3 (ZFC). Suppose that P is an ordinal definable, cone homogeneous
notion of forcing, G is generic for P over V, and κ is a cardinal in V[G].

If a ∈ V is not <κ-OD in V, then a is not <κ-OD in V[G]. (So if a ∈ V is not
<κ-HOD in V, then it is not <κ-HOD in V[G] either.)

https://doi.org/10.1017/jsl.2023.91 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.91


14 GUNTER FUCHS

Proof. Suppose A = {x | φ(x, α)}V[G] were a <κ-blurry ordinal definition of a. Let
δ = card(A)V[G] < κ.

Since P is cone homogeneous, every condition in P forces with respect to P that
φ(ǎ, α̌) holds and that the cardinality of {x | φ(x, α̌)} is δ̌.

Working in V, let

B = {x | every p ∈ P forces φ(x̌, α̌)}.
Clearly, a ∈ B ⊆ A. It follows that card(B)V < κ, because otherwise, κ would be
collapsed as a cardinal in V[G] (there would be an injection from κ into B in V,
and an injection from B into δ < κ in V[G] - the composition of these would inject
κ into δ, making κ not a cardinal in V[G]). □

It is easy to see that the argument goes through even if it is only assumed that
P is <κ-OD.

Lemma 6.4 ([6, Lemma 3]). Let κ be a regular cardinal, P a cone homogeneous,
<κ-closed forcing notion, and let G ⊆ P be P-generic over V. Then

<κ-HODV[G] ⊆ V.

7. Making the least leap the successor of a singular without large
cardinals

It was shown in [6, Theorem 16] that if one adds a Př́ıkrý sequence to the
measurable cardinal κ of L[U ], then in the forcing extension, κ+ is the least leap,
so it is the successor of a singular cardinal in that model. We have seen that the
consistency strength of a measurable cardinal cannot be dropped in this result.
Let me show that no large cardinals are needed to produce a model in which the
least leap is the successor of a singular (not strong limit) cardinal. First, let’s
achieve this just using Cohen forcing. I’ll begin by establishing some terminology
and observations on products of forcing notions.

Definition 7.1. Let P be a forcing poset, and let κ, λ be cardinals. Then Pλ with
<κ support is the poset consisting of functions p : λ −→ P such that for all but less
than κ many i < λ, p(i) = 1P. The support of p ∈ Pλ, denoted support(p), is the
set of i < λ such that p(a) ̸= 1P. Finite support means <ω support. The ordering
on Pλ is the ordering of P in each coordinate, that is, for p, q ∈ Pλ, p ≤Pλ q iff for
each i < λ, p(i) ≤P q(i).

In this situation, let g : λ −→ λ be a bijection. Then g induces an automorphism
πg of Pλ, defined by

πg(p) = p ◦ g−1

Note that the support of πg(p) is the pointwise image of the support of p under g.
For i < λ, let Γi be the canonical Pλ-name for the i-th slice of the Pλ-generic

filter. Any automorphism of Pλ induces a transformation of Pλ-names, and I will
make no notational difference between the automorphism and the induced trans-
formation. Clearly, πg(Γi) = Γg(i).

Now suppose a, b ⊆ λ are disjoint sets of the same cardinality, and let f : a −→ b
be a bijection. Then f determines a bijection f+ : λ −→ λ defined by letting
f+↾a = f , f+↾b = f−1, and f+↾(λ\(a∪b)) is the identity. Note that f+ = (f+)−1.
The coordinate-swapping automorphism of Pλ induced by f is the automorphism
πf+ . I will also denote it by πf . This automorphism swaps the coordinates in a
with the coordinates in b, as prescribed by f .
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Lemma 7.2. Let P be a forcing poset, κ ≤ λ infinite cardinals, and let Q = Pλ

with <κ support. Let G be generic for Q. Let p ∈ Q be some fixed condition with
support a, and let I ⊆ λ be a subset of cardinality at least κ in V. Then there is a
coordinate swapping automorphism π = πf of Q, where f : a −→ b is a bijection,
a ∩ b = ∅, π ∈ V, π(p) ∈ G, b ⊆ I.

Proof. Let D be the set of conditions q in Pλ such that there are a b ⊆ I, b disjoint
from a, and a bijection f : a −→ b such that q ≤ πf (p). Then D is dense in Pλ,
because given a condition r, say with support c, we can find b ⊆ I with b∩(a∪c) = ∅
and card(b) = card(a), as card(a), card(c) < κ ≤ card(I). Letting f be any bijection
between a and b, it follows that the support of πf (p) is b, hence disjoint from c, the
support of r. Hence, πf (p) and r are compatible. Any common extension q is in
D and below r, as wished. By genericity, there is a q ∈ G ∩D. Letting f : a −→ b
witness this, π = πf is as wished. □

Theorem 7.3. Assume V = L, say, and let λ be a singular limit cardinal of
uncountable cofinality. Let G be generic for P = Add(ω, λ), the forcing to add λ
Cohen reals. Then V[G] has the same cardinals as V, and in V[G], λ is a singular
limit cardinal and the least leap is λ+.

Proof. Since P is ccc, it preserves cardinals and cofinalities, so λ is a singular limit
cardinal in L[G], and since P is weakly homogeneous and ordinal definable in L,

HODL[G] = L.
Let’s show that <λ-HODL[G] = HODL[G], that is, that there are no leaps less

than or equal to λ in L[G]. Assume towards a contradiction that HODL[G] ⫋
<λ-HODL[G]. By Lemma 3.7, let a, b be such that a ∈ <λ-HODL[G] \ HODL[G],

a ⊆ b ∈ HODL[G] and β = card(b) < λ. We may assume that β ≥ ω. By replacing

a and b with their pointwise images under a bijection in HODL[G] between b and

β = card(b), we may also assume that a ⊆ β = b (using that L = HODL[G] and
L[G] have the same cardinals).

Now let ȧ ∈ V be such that ȧG = a and ȧ is a nice name for a subset of β. Say
⟨Aα | α < β⟩ is a sequence of antichains in P such that ȧ =

⋃
α<β{α̌} × Aα. Since

P has the c.c.c., each Aα is countable. Let us view P as the finite support product
of λ copies of the Cohen forcing Add(ω, 1). For α < β, let Iα =

⋃
p∈Aα

support(p),

and let I =
⋃

α<β Iα. Each Iα is a countable union of finite sets, hence countable,
so that I has cardinality at most β.

Since a ∈ <λ-HODL[G], we may fix a <λ-blurry ordinal definition A of a, say
A = {x | ψ(x, ρ)}L[G]. We may also fix a condition p ∈ G which forces that ȧ ⊆ β̌
is not in L, and that ψ(ȧ, ρ̌) holds.

Working in L, let λ =
⋃

α<λ Tα be a partition, with I ∪ support(p) ⊆ T0, and
each Tα of the same cardinality as T0, but at least ω.

Now, for every α < λ, α > 0, there is a coordinate-swapping isomorphism πα of
Pλ that’s based on a bijection fα : T0 −→ Tα and such that πα(p) ∈ G: since Tα is
infinite, Lemma 7.2 applies, showing that there is such an isomorphism based on a
bijection between support(p) and some subset of Tα of the same size as support(p),
but if one expands this bijection to a bijection between T0 and Tα, then it will still
have the desired property.

Writing PTα for the restriction of Pλ to the coordinates in Tα, clearly these posets
are isomorphic, and GTα

, the restriction of G to those coordinates, is PTα -generic.
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Since πα(p) ∈ G, it follows that aα = πα(ȧ)
G = πα(ȧ)

GTα is a subset of β not in
L and that ψ(aα, ρ) holds in L[G], because this was forced by p about ȧ.

If α < β < λ, then aα ̸= aβ , because if we had that c = aα = aβ , then we’d
get that c ∈ L[GTα

] ∩ L[GTβ
] ⊆ L, as GTα

and GTβ
are mutually generic (see [22,

Lemma 2.5 + the following remark]), a contradiction.
But since {aα | α < λ} ⊆ A, this means that A has cardinality at least λ in

L[G]. This is a contradiction.
To complete the proof, it remains to see that λ+ is a leap in L[G]. But in L[G],

the cardinality of P(ω) is λ (it is crucial here that cf(λ) is uncountable). So in
L[G], the OD set P(ω) can serve as a <λ+-blurry ordinal definition of every real.

It follows that P(ω)L[G] ⊆ <λ+-HODL[G]. Since there clearly are reals in L[G] that

don’t belong to L = HODL[G], this shows that in L[G], Λ0 = λ+. □

This theorem raises the question whether it is possible to arrange that the least
leap is the successor of a singular cardinal with countable cofinality. It turns out
that this can be done by a very similar technique, but using as the base forcing
a poset constructed in L by Jensen [12], and subsequently slightly modified by
Kanovei and Lyubetsky [14]. Following [14, p. 346], let’s call this forcing P. The
forcing P is ccc, but the crucial realization of Kanovei and Lyubetsky was that P<ω,
the product of ω copies of P with finite support, is also ccc. Moreover, another
property of P carries over to P<ω as well: Jensen had shown that his forcing adds
a real number which is the unique generic real for the forcing in its extension. The
same is true of P<ω in a sense made precise below. If G ⊆ P<ω is a generic filter,
then Gi denotes the set of i-th components of conditions in G. The forcing P
consists of perfect subtrees of <ω2, ordered by inclusion, and the filter Gi, generic
for P, corresponds to a real number xGi , the binary sequence of length ω which is a
branch through every perfect tree in Gi, or

⋃
(
⋂
Gi). Such a real number is called

a P-generic real.

Theorem 7.4 (Kanovei & Lyubetsky [14, Lemma 29]). If G ⊆ P is P-generic over
L, then in L[G], the set of P-generic reals over L is exactly {xGi | i < ω}.

This can be used to solve our problem.

Theorem 7.5. Assume V = L, and let λ be any infinite cardinal. Let P<λ be the
finite support product of λ copies of P. If G ⊆ P<λ is generic over L, then L[G]
has the same cardinals and cofinalities as L, and in L[G], Λ0 = λ+.

Proof. First, it is easy to see that P<λ is ccc: suppose A ⊆ P<λ is an antichain of
size ℵ1. Find a subset Ā ⊆ A of size ℵ1 such that the set of supports of conditions
in Ā forms a ∆-system with some root r ∈ [λ]n, for some n < ω. Then the set
of restrictions of conditions in Ā to r gives rise to an uncountable antichain in the
n-fold product of P, contradicting the fact shown by Kanovei and Lyubetsky that
P<ω is ccc.

So P<λ preserves cardinals and cofinalities.

Next, the argument of the proof of Theorem 7.3 shows that <λ-HODL[G] =

HODL[G] = L.
Now let’s show that λ+ is a leap (and hence the least leap) in L[G]. This will

be achieved by showing that xGi is in <λ+-HODL[G], for each i < λ.
The main point is that {xGi | i < λ} is exactly the set of P-generic reals in

L[G]. To see this, let y be a P-generic real in L[G]. Let y = ẏG, where ẏ is a nice
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name for a subset of ω. Since P<λ is ccc, the set I ⊆ λ of coordinates ẏ refers to
is countable. If I is finite, let’s add some coordinates to make it countably infinite.
Letting GI be the restriction of G to coordinates in I, and letting PI be the finite
support product of P over I, y = ẏG = ẏGI ∈ L[GI ]. But since GI is generic for PI ,
which is isomorphic to P<ω, Theorem 7.4 applies, showing that y = xGi , for some
i ∈ I.

Since P ∈ L, P is ordinal definable in L[G], and thus

{x ∈ ω2 | x is P-generic over L}
is a <λ+-blurry ordinal definition of xGi , for every i < λ. Thus, {xGi | i < λ} ⊆
<λ+-HODL[G].

So λ+ is a leap in L[G], and it is the least one. □

8. Making ℵω a strong limit leap whose successor is a leap

I turn now to the problem of making ℵω a strong limit cardinal whose successor
cardinal is a leap. As a warm-up, I’ll arrange that ℵω is also a limit of leaps. The
method will be refined in the next section to arrange that there are no leaps below
ℵω.

Definition 8.1. Let κ be a regular cardinal, and let α be an ordinal. By Col(κ, α),
I denote the poset consisting of partial functions from κ to α of cardinality less than
κ, ordered by inclusion. For a cardinal λ, Col(κ,<λ) is the product

∏
α<λ Col(κ, α),

taken with <κ support.
For concreteness, Col(κ,<λ) consists of all functions f with card(f) < κ, dom(f) ⊆

{⟨α, β⟩ | β < κ ≤ α < λ}, such that for all ⟨α, β⟩ ∈ dom(f), f(α, β) < α. The
ordering is reverse inclusion.

Thus, Col(κ,<λ) adds surjections from κ onto α, for each α < λ. If λ is in-
accessible, then after forcing with this poset, λ will be the cardinal successor of
κ.

Theorem 8.2. Assume V = L[U ], U the normal ultrafilter on κ. There is a forcing
poset that forces that ℵω is a strong limit cardinal, a limit of leaps, and ℵω+1 is a
leap.

Proof. Let C = {cn | n < ω} be PU -generic, such that c0 = ω1 and for every n > 0,
cn is inaccessible. In V[C], consider the full support product

Q =
∏
n<ω

Col(c2n, <c2n+2)

Let Q̇ be a canonical PU -name for Q, so that the trivial condition of PU forces that
Q̇ satisfies the definition given, and Q = Q̇C . Let G be Q-generic over V[C].

Then V[C][G] is our model. In V[C][G], ℵω = κ, and (κ+)V = (κ+)V[C][G].

(1) In V[C][G], κ+ = ℵω+1 is a leap.

Proof of (1). We know that C is, in V[C], one of κ many Př́ıkrý sequences over
L[U ]. Since G does not add new ω-sequences, this <κ+-blurry ordinal definition
of C still works in V[C][G]. So C ∈ (<κ+-HOD)V[C][G]. We have to show that
C /∈ (<κ-HOD)V[C][G]. Assume the contrary. In V[C][G], let A and γ < κ be such
that C ∈ A, where A = {x | φ(x, ξ)} and card(A) = γ. Arguing in V[C], Q is

cone-homogeneous, so that the statement “φ(Č, ξ̌)” is forced by 1Q. Let Ċ be the
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canonical name for the Př́ıkrý sequence. So there is a condition p0 = ⟨s0, A0⟩ ∈ GC

(the PU -generic filter corresponding to C) such that p0 forces over V that in every

further forcing extension by Q̇, φ(Ċ, ξ̌) holds. We may assume that A0 consists of
inaccessible cardinals.

Let A∗
0 = A0 ∩ {α < κ | α is a limit point of A0}. Then A∗

0 ∈ U . Let D be a
Př́ıkrý sequence over V with p∗0 = ⟨s0, A∗

0⟩ ∈ GD. Everything said about C above
is true of D now.

For ν < κ with ν ∈ A∗ \ {d2n | n < ω}, ν > d0, let n(ν) be such that d2n(ν) <
ν < d2n(ν)+2, and define dν(m) = d(m) for m < ω unless m = 2n(ν) + 1, in which
case we let dν(m) = ν. Observe that Dν = {dνm | m < ω} is a Př́ıkrý sequence over
V and V[D] = V[Dν ]. Moreover,

Q̇GD = Q̇GDν .

Fix G′ generic over V[D] for this forcing. Since p0 ∈ GDν we have that

V[D][G′] = V[Dν ][G′] |= φ(Dν , ξ).

This is true for every ν as above, so for κ many ν < κ. This is a contradiction,
since the forcing PU ∗ Q̇ preserves κ as a cardinal. □

(2) In V[C][G], ℵω is a limit of leaps.

Proof of (2). For every n ∈ ω, the n-th coordinate of G, let’s call it Gn, codes a
sequence ⟨Fn

α | α < c2n+2⟩ such that Fn
α : c2n −→ α is surjective. This sequence

can clearly be coded by a subset of c2n+2, (which is ℵV[C][G]
n+2 ). Thus, Gn is in

(<c++
2n+2-HOD)

V[C][G] (that is, (<ℵn+4-HOD)
V[C][G]. Now if in V[C][G], the leaps

were bounded below ℵω = κ, say by γ, then for every n < ω, Gn would be in

<γ-HODV[C][G]. Now pick n so that c2n > γ. Since Q↾[n, ω] is c2n-closed in

V[C] and cone-homogeneous, it follows that <γ-HODV[C][G↾[n,ω)] ⊆ V[C]. So Gn /∈
<γ-HODV[C][G↾[n,ω)]. But then, Gn cannot be in <γ-HODV[C][G↾[n,ω)][G↾[0,n)] either,
by applying Observation 6.3 in V[C][G↾[n, ω)] to the forcing Q↾n. Note here that
Q↾n is definable in V[C][G↾[n, ω)] from a finite set of ordinals. It is important
here that for γ < δ < c2n, Col(γ,<δ)

V[C] = Col(γ,<δ)V[C][G↾[n,ω)], and that γ is
preserved as a cardinal by Q↾n. □

□

9. Making ℵω a strong limit cardinal and ℵω+1 the least leap

Fix a measurable cardinal κ and a normal ultrafilter U on κ. The strategy is
going to be similar to that of the previous subsection: add a Př́ıkrý sequence, then
collapse between the even indexed Př́ıkrý points. Unfortunately, this introduces
leaps below κ. So as a last step, I will encode the collapsing functions into the
continuum function above κ.

To have better control over the collapsing functions, I will use Magidor’s idea
from [16] of adding a Př́ıkrý sequence while simultaneously collapsing between the
Př́ıkrý points. But the forcing needs to be adjusted so that it collapses between the
even indexed Př́ıkrý points only.

Another difference is that I merely work with a measurable cardinal, while Magi-
dor’s construction was designed to work with cardinals with potentially higher de-
grees of supercompactness. Namely, the use of Magidor’s original forcing was to
produce a model where ℵω is a strong limit cardinal and 2ℵω = ℵω+k, for a fixed

https://doi.org/10.1017/jsl.2023.91 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.91


MORE ON BLURRY HOD 19

k < ω with k ≥ 2, thus violating the singular cardinal hypothesis. The starting
assumption in the original setting was a cardinal κ that’s κ+(k−1)-supercompact.

9.1. Př́ıkrý forcing with interleaving alternating collapses á la Magidor.
The development follows Magidor’s exposition [16] very closely. See Definition 8.1
for the meaning of Col(κ,<λ).

Definition 9.1. For a set A ⊆ On, denote by [A]2 the collection of two-element
subsets of A. When I write {α, β} ∈ [A]2, it is understood that α < β.

M is the forcing notion consisting of conditions of the form

π = ⟨⟨κi | i < l⟩, ⟨fi | i < l, i is even⟩, A, F ⟩
with the following properties:

(1) 2 ≤ l ∈ ω is an even number, the length of π, denoted lh(π).
(2) The sequence ⟨κi | i < l⟩ is strictly increasing, κ0 = ω, and for 0 < i < l,

κi is inaccessible. Note that l− 1, the largest index for which κi is defined,
is odd.

(3) For even i with i+ 2 < l,

fi ∈ Col(κ+i , <κi+2).

(4) fl−2 ∈ Col(κl−2, <min(A)).
(5) A ∈ U , and for all α ∈ A, α is inaccessible.
(6) For i < l, κi < min(A).
(7) F is a function with domain [A]2, and if α < β < γ and α, β, γ ∈ A, then

F ({α, β}) ∈ Col(α+, <γ). I will often write F (α, β) instead of F ({α, β}).
I write κ⃗π = ⟨κi | i < lh(π)⟩, f⃗π = ⟨fi | i < lh(π) is even⟩, Aπ = A, Fπ = F .

For future reference, if j ≤ l is even, then I write

π↾j = ⟨⟨κi | i < j⟩, ⟨fi | i < j, i even⟩⟩(= ⟨κ⃗π↾j, f⃗π↾j⟩).
Note that π↾j is not in M.

The ordering of M is defined as follows. Let π be as above, and let

π′ = ⟨⟨κ′i | i < l′⟩, ⟨f ′i | i < l′ is even⟩, A′, F ′⟩ ∈ M.

Then π′ ≤ π if:

(1) l ≤ l′.
(2) For i < l, κi = κ′i.
(3) For l ≤ i < l′, κ′i ∈ A.
(4) For all even i < l, fi ⊆ f ′i .
(5) For all even i ∈ [l, l′), F (κ′i, κ

′
i+1) ⊆ f ′i .

(6) A′ ⊆ A.
(7) For all {α, β} ∈ [A′]2, F (α, β) ⊆ F ′(α, β).

In this situation, if j ≤ l, then π′ is a j-direct extension of π (π′ ≤j π) if π′ ≤ π
and

(1) For all even i ∈ [j, l), f ′i = fi.
(2) For all even i ∈ [l, l′), f ′i = F (κ′i, κ

′
i+1).

(3) A′ = A \ (κ′l′−1 + 1) and F ′ = F ↾[A′]2.

And π′ is a j-length preserving extension of π (π′ ≤j π) if π
′ ≤ π and

(1) j ≤ l = l′.
(2) For all even i < j, f ′i = fi.
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The poset M, as defined, has no weakest condition. One could of course add
such a condition, but I chose not to, because it seemed to introduce notational
complications.

Note that if π′ ≤ π, where the components of π and π′ are named as in the
previous definition, and if j ≤ l, then there is a unique “interpolant” π̃ such that

π′ ≤j π̃ ≤j π.

Namely,

π̃ = ⟨⟨κ̃i | i < l̃⟩, ⟨f̃i | i < l̃ is even⟩, Ã, F̃ ⟩
where

(1) l̃ = l′.

(2) κ̃i = κ′i for i < l̃.

(3) f̃i = f ′i for even i < j.
[this all to ensure that π′ ≤j π̃]

(4) Ã = A \ (κ̃l̃−1 + 1) and F̃ = f↾[Ã]2.

(5) For all even i ∈ [j, l), f̃i = fi.

(6) For all even i ∈ [l, l̃), f̃i = F (κ̃i, κ̃i+1).
[these least three points to ensure that π̃ ≤j π]

Let’s introduce some convenient notation.

Definition 9.2. Let π, π̃ ∈ M with π̃ ≤ π. Let λ⃗ be such that κ⃗π̃ = κ⃗π⌢λ⃗ (that is,

the sequence κ⃗π̃ is the sequence κ⃗π extended by λ⃗). Let m = lh(λ⃗), noting that m

is even. Then there is a weakest extension π′ of π such that κ⃗π
′
= κ⃗π⌢λ⃗. I write

π⌢λ⃗ for this condition. It is defined by

• lh(π′) = lh(π) +m.

• κ⃗π⃗
′
= κ⃗π⌢λ⃗.

• f⃗π
′
↾lh(π) = f⃗π

′
.

• For i < m even, fπ
′

lh(π)+i = Fπ(λi, λi+1).

• Aπ′
= Aπ \ (λm−1 + 1) if m > 0, Aπ′

= Aπ otherwise.

• Fπ′
= Fπ↾[Aπ′

]2.

Further, if g⃗ = f⃗ π̃↾j, where j ≤ lh(π) is even, then I write π[⃗g] for the condition
σ such that

• lh(σ) = lh(π).
• κ⃗σ = κ⃗π.
• f⃗σ↾j = g⃗.

• f⃗σ↾[j, lh(π)) = f⃗π↾[j, lh(π)).
• Aσ = Aπ.
• Fσ = Fπ.

Observation 9.3. In the situation of the previous definition, if π′′ ≤ π is such

that κ⃗π
′′ ⊇ κ⃗π⌢λ⃗ and for each even i < j, fπ

′′

i ⊇ gi, then

π′′ ≤ (π⌢λ⃗)[⃗g]

Observation 9.4. In the situation of the previous definition, the j-interpolant of
π and π̃ is

(π⌢λ⃗)[f⃗ π̃↾j]

which is the same as (π[f⃗ π̃↾j])⌢λ⃗.
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Since the length of a condition is finite and can be increased by extending the
condition, M is not countably closed. If a longer decreasing sequence of conditions
⟨πξ | ξ < λ⟩ (with limit λ) is to have a lower bound, then the lengths of the con-
ditions πξ have to stabilize, i.e., be ultimately constant. So let us focus on this
case.

Observation 9.5. Let ⟨πξ | ξ < λ⟩ be a ≤j-decreasing sequence in M, j ≤ l < ω,
where l is the common length of the conditions in the sequence and j is even. Let
κj = κπ0

j .

If j < l, then assume that λ < κ+j , and if j = l, then assume that λ < κ.
Then there is a π̃ ∈ M such that π̃ ≤j πξ, for all ξ < λ.

Proof. For ξ < λ, let

πξ = ⟨⟨κi | i < l⟩, ⟨fξi | i < l even⟩, Aξ, Fξ⟩

Define π̃ = ⟨⟨κi | i ≤ l⟩, ⟨f̃i | i ≤ l even⟩, Ã, F̃ ⟩, by cases.
Case 1: j < l.

In this case, set:

• Ã =
⋂

ξ<λAξ.

Since λ < κ, Ã ∈ U .
• For i < j, i even, f̃i = f0i .
• For j ≤ i < l, i even,

f̃i =
⋃

{fξi | ξ < λ}

Since each fξi ∈ Col(κ+i , <θ), where θ is either κi+2 or the minimum of Ã,

so is f̃i, as λ < κ+j ≤ κ+i and Col(κ+i , <θ) is <κ
+
i -closed.

• F̃ : [Ã]2 −→ V is defined by

F̃ (α, β) =
⋃
ξ<λ

Fξ(α, β).

Note that λ < κ+j ≤ κ+l−1 < α, since κl−1 < min(Ã). Since each Fξ(α, β) is

in Col(α+, <γ), where γ = min(Ã \ (β + 1)), so is the union.

Case 2: j = l.
In this case, set:

• Ã = (
⋂

ξ<λAξ) \ (λ+ 1).

Since λ < κ, Ã ∈ U .
• For i < l, i even, f̃i = f0i .

• F̃ : [Ã]2 −→ V is defined by

F̃ (α, β) =
⋃
ξ<λ

Fξ(α, β).

Note that if {α, β} ∈ [A]2, then λ < α. Since each Fξ(α, β) is in Col(α+, <γ),

where γ = min(Ã \ (β + 1)), so is the union.

□

Lemma 9.6. Let k ∈ ω be even. Let τ be an M-name for an ordinal. Let π ∈ M,
with lh(π) = l. Let j ≤ l be even. Let η be the restriction to j of some extension of
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π. Then there is a π′ ≤j π such that for every π′′ ≤ π′ of length l+k, if π′′ decides
τ and π′′↾j = η, then already the j-interpolant of π′′ and π′ decides τ .

In other words, in this situation, letting λ⃗ be such that κ⃗π
′′

= κ⃗π
′⌢λ⃗, then

(π′⌢λ⃗)[f⃗π
′′
↾j] decides τ .

Proof. The proof is by induction on even k. The inductive statement is that the
lemma holds for all π, j, η (but we may fix τ).

k=0
Let π = ⟨⟨κi | i < l⟩, ⟨fi | i < l even⟩, A, F ⟩, j ≤ l even.
Case 1: there is a π′′ ≤ π of length l = l+ k such that π′′↾j = η and π′′ decides

τ .
In this case, letting π′′ = ⟨⟨κi | i < l⟩, ⟨f ′′i | i < l even⟩, A′′, F ′′⟩, we can define

π′ = ⟨⟨κi | i < l⟩, ⟨f ′i | i < l even⟩, A′′, F ′′⟩,

where for i < j even, f ′i = fi (which is dictated by the requirement that π′ be a
j-length preserving extension of π), for j ≤ i < l, i even, f ′i = f ′′i , A

′ = A′′ and
F ′ = F ′′. Then π′ is as wished: Clearly, π′ is a j-length preserving extension of π.
Now suppose π̃ ≤ π′ has length l, decides τ , and has π̃↾j = η. So π̃↾j = π′′↾j, and
for j ≤ i < l, i even, f π̃i ⊇ f ′i = f ′′i .

Suppose j > 0. Then the j-interpolant of π′ and π̃ is

⟨⟨κi | i < l⟩, ⟨f ′′i | i < j, i even⟩, A′′, F ′′⟩

which is the same as π′′, and hence, it decides τ .
Case 2: Case 1 fails.
In this case, we can set π′ = π. Then π′ vacuously behaves as wished.

k −→ k + 2

Again, let π = ⟨⟨κi | i < l⟩, ⟨fi | i < l even⟩, A, F ⟩, j ≤ l even.
I will use the well-ordering ≺ of [A]2 defined by {α, β} ≺ {γ, δ} iff β < δ or

(β = δ and α < γ). Since A consists of infinite cardinals, it is clear that the set of
predecessors of {γ, δ} has cardinality at most δ; in fact, it is contained in the set of
a ∈ [A]2 with max(a) ≤ δ, which also has cardinality at most δ.

For a = {α, β} ∈ [A]2, I am going to define a condition πa, which I will also
denote by πα,β , of length l + 2, such that the following conditions hold.

(1) πα,β is of the form

πα,β = ⟨⟨κ0, . . . , κl−1, α, β⟩, ⟨f0, . . . , fj−2, f
α,β
j , fα,βj+2, . . . , f

α,β
l−2 , f

α,β⟩, Bα,β , Hα,β⟩

(i.e., for i < j even, f
πα,β

i = fi, for j ≤ i ≤ l−2, i even, f
πα,β

i = fα,βi (to be
defined), and f

πα,β

l = fα,β (also to be defined). And κ
πα,β

l = α, κ
πα,β

l+1 = β).
(2) πα,β ≤ π.
(3) If {α, β} ≺ {γ, δ}, then

(a) Bα,β ⊇ Bγ,δ.
(b) If x ∈ [Bγ,δ]2, then Hα,β(x) ⊆ Hγ,δ(x).

(So πα,β↾j = π↾j.)
Note that since πα,β ≤ π, it must be that F (α, β) ⊆ fα,β , and if x ∈ Bα,β , then

F (x) ⊆ Hα,β(x).
I will define πα,β by ≺-recursion on {α, β}. So assume πb is already defined, for

all b ≺ {α, β}.

https://doi.org/10.1017/jsl.2023.91 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.91


MORE ON BLURRY HOD 23

In order to define πα,β I will apply the inductive assumption to a preliminary
condition χα,β , also of length l + 2, which is defined as follows.

χα,β = ⟨⟨κ0, . . . , κl−1, α, β⟩, ⟨f0, f2, . . . , fl−2, g
α,β⟩, Aα,β , Gα,β⟩

(so that f
χα,β

l = gα,β), where

• gα,β =
⋃
{Hb(α, β) | b ≺ {α, β} and {α, β} ∈ Bb} ∪ F (α, β)

[Note: Let P = {b ≺ {α, β} | {α, β} ∈ Bb}. P is downward closed
wrt. ≺. Moreover, if b ∈ P , then max(b) < α, because it must be that
max(b) < min(Bb), and α ∈ Bb. So the cardinality of P is at most α.

If P ̸= ∅, then let b ∈ P . By the note above, F (α, β) ⊆ Hb(α, β). So
in this case, we wouldn’t have to explicitly add in F (α, β) as we did in the
definition of gα,β . Moreover, in this case, we are looking at an increasing
union of elements of Col(α+, <κ) of size at most α, so we get a condition
in this poset.

On the other hand, if P = ∅, then the first part of the union defining gα,β

is empty, and we get gα,β = F (α, β), also a valid condition in Col(α+, <κ).]

• Aα,β =

(
A ∩

⋂
b≺{α,β}

Bb

)
\ (β + 1).

• For x ∈ [Aα,β ]2, Gα,β(x) =
⋃

b≺{α,β}
Hb(x).

Note that χα,β ≤ π.
Now apply the inductive assumption to the number k, the condition χα,β , which

has length l + 2, and the same j, η and τ . The inductive assumption guarantees
the existence of a condition π′ ≤j χα such that whenever π′′ ≤ π′ has π′′↾j = η
and π′′ decides τ , then already the j-interpolant of π′ and π′′ decides τ .

Define πα,β to be this π′. It is of the form described above, since π′′ ≤j χα.
Having defined ⟨πα,β | {α, β} ∈ [A]2⟩, we are going to amalgamate all of these

into one condition, which is going to be the condition π′ we want.
By thinning out A, we can find A0 ⊆ A with A0 ∈ U , such that a 7→ fai is

constant for a ∈ [A0]
2, j ≤ i < l−2, i even. This is because for each a ∈ [A]2, fai is

a condition in Col(κ+i , <κi+2), a poset of size less than κ. Note that this does not

immediately work for i = l − 2, because fα,βl−2 ∈ Col(κ+l−2, <α). However, for every

a ∈ [A0]
2, there is an ordinal ρa < min(a) such that fal−2 ∈ Col(κ+l−2, <ρa). Since

the function a 7→ ρa is regressive on [A0]
2, there is an A1 ∈ U , A1 ⊆ A0, such that

it is constant on A1, say with value ρ. Now, for all a ∈ [A1]
2, fal−2 ∈ Col(κ+l−2, <ρ),

and this poset has cardinality less than κ, so we can find a B ⊆ A1 with B ∈ U ,
on which the function a 7→ fal−2 is also constant. Let gj , . . . , gl−2 be the constant

values of faj , . . . , f
a
l−2, for a ∈ [B]2.

Define the condition π′ of length l by

π′ = ⟨⟨κ0, . . . , κl−1⟩, ⟨f0, f2, . . . , fj−2, gj , gj+2, . . . , gl−2⟩, C,H⟩
where C = B ∩△a∈[A]2 B

a and H : [C]2 −→ V is defined by H(a) = fa.

We claim that π′ is as wished.
Note that for a ∈ [C]2,⋃

{Hb(a) | (b ∈ [A]2) ∧ (b ≺ a) ∧ (a ∈ [Bb]2)} ∪ F (a) = ga ⊆ fa}.

Let’s check that π′ has all the desired properties.
It’s clear that π′ ≤j π.

https://doi.org/10.1017/jsl.2023.91 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.91


24 GUNTER FUCHS

Now suppose π′′ ≤ π′, lh(π′′) = l + k + 2, π′′↾j = η and π′′ decides τ .
We have to show that already χ, the j-interpolant of π′ and π′′, decides τ . That

is, letting κ⃗π
′′
= ⟨κ0, . . . , κl−1⟩⌢λ⃗, and h⃗ = f⃗π

′′
↾j,

χ = (π′⌢λ⃗)[⃗h].

Note that λ⃗ = ⟨λ0, . . . , λk+1⟩ is from C.

Note that since π′′↾j = η, we have that η = ⟨⟨κ0, . . . , κj−1⟩, h⃗⟩.
Let a = {λ0, λ1}.
We have that χ ≤ πa: since λ2, . . . , βk+1 ∈ C and λ1 < λ2, it follows that

β2, . . . , βk, βk+1 ∈ Ba. To see that fa ⊆ fχl , note that fχl = H(α, β1) = fa. It
remains to check that Ha(x) ⊆ Hχ(x) for all x ∈ [C \ (β1 + 1)]2. But for such x,
Hχ(x) = H(x) = fx ⊇ gx ⊇ Ha(x) since max(a) = β1 < min(x).

So since π′′ ≤ χ ≤ πa, we have that π′′ ≤ πa. The length of π′′ is k more than
the length of πa, which is l+2, and π′′↾j = η. Since π′′ decides τ , by the properties
of πa, already the j-interpolant of πa and π′′, call it χ′, decides τ .

We have:

• χ is the j-interpolant of π′ and π′′.
• χ′ is the j-interpolant of πa and π′′.
• χ ≤ πa.

It follows that χ ≤ χ′: note that χ′ is the weakest condition extending πa whose

κ⃗-sequence is κ⃗πa⌢⟨λ2, . . . , λk+1⟩ and whose f⃗ -sequence begins with h⃗. But since
χ ≤ πa, χ is such a condition. As a result, χ ≤ χ′. So since χ′ decides τ , so does χ
(in the same way). □

Lemma 9.7. Let τ be an M-name for an ordinal. Let π ∈ M, j ≤ lh(π) even. Let
η be the restriction to j of some extension of π. Then there is a π′ ≤j π such that
for every π′′ ≤ π′, if π′′ decides τ and π′′↾j = η, then already the j-interpolant of
π′′ and π′ decides τ .

In other words, in this situation, letting λ⃗ be such that κ⃗π
′′

= κ⃗π
′⌢λ⃗, then

(π′⌢λ⃗)[f⃗π
′′
↾j] decides τ .

Proof. Define a sequence ⟨πk | k < ω even⟩ by recursion on k such that

• π0 = π.
• πk+2 ≤j πk.
• Whenever π′′ ≤ πk+2 is such that π′′↾j = η, lh(π′′) = lh(πk) + k, and π′′

decides τ , then the j-interpolant of πk+2 and π′′ decides τ .

πk+2 is defined by applying Lemma 9.6 to πk, j and k. Note that all conditions πk
have the same length.

By Observation 9.5, let π′ be a lower ≤j-bound of π⃗ in M. We claim that π′

is as wished. So suppose π′′ ≤ π′ is such that π′′↾j = η and π′′ decides τ . Let
k = lh(π′′) − lh(π). Since π′′ ≤ πk+2, it follows that χ, the j-interpolant of πk+2

and π′′, decides τ . But π′′ ≤ π′ ≤ πk+2, so χ
′, the j-interpolant of π′′ and π′,

is at least as strong as χ, the j-interpolant of πk+2 and π′′. So χ′ decides τ , as
wished. □

Lemma 9.8. Let τ be an M-name for an ordinal. Let π ∈ M, and let j be an even
number such that j = 0 or j < lh(π). Then there is a π′ ≤j π such that for every
π′′ ≤ π′, if π′′ decides τ , then already the j-interpolant of π′′ and π′ decides τ .
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In other words, in this situation, letting λ⃗ be such that κ⃗π
′′

= κ⃗π
′⌢λ⃗, then

(π′⌢λ⃗)[f⃗π
′′
↾j] decides τ .

Proof. Let l = lh(π).
Note that the lemma follows immediately from Lemma 9.7 if j = 0, using η = ∅.

So let’s assume that 0 < j < l. Consider the set X = {π′′↾j | π′′ ≤ π}. The

cardinality of X is the same as the cardinality of Y = {f⃗π′′
↾j | π′′ ≤ π}, and

Y ⊆ Col(κ+0 , <κ2)× · · · × Col(κ+j−2, <κj).

Since κj is inaccessible, Y has cardinality at most κj . Recall that by Observation
9.5, any ≤j-decreasing sequence in M starting with π, of length at most κj , has a
lower bound in M.

We construct such a sequence as follows. Let ⟨ηξ | ξ < κj⟩ enumerate X. By
recursion on ξ, define πξ such that

• π0 = π.
• If ξ < ζ < κj , then πζ ≤j πξ.
• Whenever π′′ ≤ πξ+1 is such that π′′ decides τ and π′′↾j = ηξ, then already

the j-interpolant of πξ+1 and π′′ decides τ .

In the successor step of the construction, the existence of πξ+1 is guaranteed by
applying Lemma 9.7 to πξ and ηξ, and in the limit step, one uses Observation 9.5.

Having constructed the sequence π⃗, another application of Observation 9.5 yields
the existence of a π′ such that π′ ≤j πξ for all ξ < κj . This π

′ is as wished: clearly,
π′ ≤j π. And if π′′ ≤ π′ decides τ , then letting ξ be such that ηξ = π′′↾j, it follows
that χ, the j-interpolant of πξ+1 and π′′ decides τ , since π′′ ≤ πξ+1. But since
π′ ≤ πξ+1, the j-interpolant of π

′ and π′′ is at least as strong as χ and hence also
decides τ . □

Corollary 9.9. Let π ∈ M with lh(π) = n, and let j be an even number such

that j = 0 or j < n. Let µ ≤ (κπj )
+ and let ḃ be an M-name such that π forces

wrt. M that ḃ : µ̌ −→ On. Then there is a π′ ≤j π such that whenever π′′ ≤ π′ and

λ < µ are such that for some β, π′′ ⊩M ḃ(λ̌) = β̌, then this is already forced by the
j-interpolant of π′ and π′′.

Proof. Construct a ≤j-decreasing sequence ⟨πλ | λ < µ⟩ by setting π0 = π, defining
πλ to be a lower bound of π⃗↾λ in the case that λ is a limit (using Observation 9.5),

and by applying Lemma 9.8 to πλ and the name “ḃ(λ̌)” to get πλ+1. Let π′ be a
≤j-lower bound of π⃗. This π′ is as wished. □

Definition 9.10. Let G ⊆ M be V-generic. Let f⃗G = ⟨fGi | i < ω even⟩ where

for even i < ω, fGi =
⋃

π∈G, i<lh(π) f
π
i , and let κ⃗G =

⋃
π∈G κ⃗

π. Let
˙⃗
f and ˙⃗κ be

canonical names for f⃗ and κ⃗, respectively.

Clearly, if G ⊆ M is V-generic, then V[G] = V[f⃗G, κ⃗G]. The following is the
version of [16, Thm. 3.2] for the current forcing.

Theorem 9.11. Let p ∈ M be a condition of length n, let 0 < j < n be even,
µ < (κπj )

+ and ḃ an M-name such that π forces that ḃ is subset of µ̌. Then π forces

that ḃ ∈ V̌[
˙⃗
f↾j].
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Proof. This proof is basically identical to that of [16, Thm. 3.2]. I include it for the
reader’s convenience.

For i < n, let κi = κπi , and write

Pj = Col(κ+0 , <κ2)× · · · × Col(κ+j−2, <κj)

where for convenience I’ll index elements of Pj with even numbers between 0 and
j − 2, so members of Pj are of the form ⟨g0, g2, . . . , gj−2⟩ such that for i < j even,
gi ∈ Col(κ+i , <κi+2).

Note that if G is M-generic over V and π ∈ G, then Gj = {f⃗π↾j | π ∈ G, lh(π) >

j} is Pj-generic over V. The filter Gj is definable from f⃗↾j and vice versa, so V[f⃗↾j]
can be viewed as a Pj-generic extension of V.

Let’s show that the set of conditions that force that ḃ is in V[
˙⃗
f↾j] is dense below

π in M. So let π′ ≤ π. We’ll find a χ ≤ π′ that does the job. Let χ′ ≤ π′ be
as in Corollary 9.9 (identifying ḃ with a name for the characteristic function of ḃ).
That is, χ′ ≤j π has the property that whenever ξ < µ and χ′′ ≤ χ′ decides the

statement “ξ̌ ∈ ḃ,” then already the j-interpolant of χ′ and χ′′ decides it (the same
way χ′′ does).

Define a partition F : [Aχ′
]<ω −→ X, where X = P(Pj ×µ× 3). Note that X ∈

Vκ, hence X has cardinality less than κ. F is defined by letting F ({λ0, . . . , λi−1})
(where it is understood that λ⃗ = ⟨λ0, . . . , λi−1⟩ is increasing) consists of all triples
⟨g⃗, ξ, i⟩ such that g⃗ ≤Pj f⃗

χ′
↾j, ξ < µ and i < 3 is such that

• if (χ′⌢λ⃗)[⃗g] ⊩ ξ̌ /∈ ḃ, then i = 0.

• if (χ′⌢λ⃗)[⃗g] ⊩ ξ̌ ∈ ḃ, then i = 0.

• if (χ′⌢λ⃗)[⃗g] does not decide “ξ̌ ∈ ḃ” then i = 2.

By Rowbottom’s theorem, there is a B ∈ U , B ⊆ Aχ′
, such that for every l < ω, F

is constant on [B]l, say with value El.

(1) If ⟨g⃗, ξ, 1⟩ ∈ El, then there can be no l′ < ω for which there is a g⃗′ that’s
compatible in Pj with g⃗ such that ⟨g⃗′, ξ, 0⟩ ∈ El′ .

This is because if so, letting h⃗ ≤ Pj g⃗, g⃗
′ and m = max(l, l′), we could pick {λ⃗} ∈

[B]m, and we would obtain:

(χ′⌢λ⃗)[⃗h] ≤ (χ′⌢(λ⃗↾l))[⃗g] ⊩ ξ̌ ∈ ḃ

since ⟨g⃗, ξ, 1⟩ ∈ F ({λ⃗↾l}) but also

(χ′⌢λ⃗)[⃗h] ≤ (χ′⌢(λ⃗↾l′))[⃗g′] ⊩ ξ̌ /∈ ḃ

since ⟨g⃗′, ξ, 0⟩ ∈ F ({λ⃗↾l′}). This is a contradiction.

Define χ = ⟨κ⃗χ′
, f⃗χ

′
, B, Fχ′

↾[B]2⟩. The claim is that χ is as wished, that is, χ

forces that ḃ is in V[
˙⃗
f↾j].

Note that whenever G̃ is Pj-generic over V, then the set

{ξ < µ | ∃l < ω, g⃗ ∈ G̃ ⟨g⃗, ξ, 1⟩ ∈ El}

is in V[G̃]. By maximality, let ċ ∈ VPj be a Pj-name for this set, so that letting
ΓPj

be the canonical name for the Pj-generic filter,

1Pj
⊩Pj

ċ ⊆ µ̌ ∧ ∀ξ < µ̌(ξ ∈ ċ ⇐⇒ ∃l < ω∃g⃗ ∈ ΓPj
⟨g⃗, ξ, 1⟩ ∈ Ěl).
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Now let Γ̃ be the canonical M-name for the generic filter on Pj . If P is a forcing
notion, τ is a P-name, and H ⊆ P is a filter, write val(τ,H) for the interpretation
of τ by H. We claim that

(2) χ ⊩M ḃ = val(ˇ̇c, Γ̃)

thus completing the proof. To see this, suppose G is M-generic over V with χ ∈ G.

Let G̃ = Γ̃G be the Pj-generic filter generated by G (which is equivalent to
˙⃗
fG↾j).

Suppose ξ ∈ ḃG. Let π ≤ χ, π ∈ G be such that π ⊩M ξ̌ ∈ ḃ. Then already the

j-interpolant of χ′ and π forces this. That is, letting g⃗ = f⃗π↾j, lh(χ) + l = lh(π)

and κ⃗π = κ⃗⌢λ⃗, we have that {λ⃗} ∈ [B]l and the condition (χ′⌢λ⃗)[⃗g] forces ξ̌ ∈ ḃ.

This means that ⟨g⃗, ξ, 1⟩ ∈ El, and hence, as g⃗ ∈ G̃, that ξ ∈ ċG̃.

Now suppose ξ /∈ ḃG. Then we can find π ≤ χ as above, but π ⊩ ξ̌ /∈ ḃ. Defining
g⃗ and l as before it then follows that ⟨g⃗, ξ, 0⟩ ∈ El. But by claim (1), there can then

be no h⃗ ∈ G̃ and l′ < ω such that ⟨⃗h, ξ, 1⟩ ∈ El′ since g⃗ and h⃗ would be compatible.

Thus, ξ /∈ ċG̃. □

Corollary 9.12. Suppose G is M-generic over V, and let f⃗ = f⃗G. Then for every
bounded subset b of κ in V[G], there is a j < ω such that a ∈ V[f↾j].

Proof. Let γ < κ and ḃ ∈ VM be such that b = ḃG ⊆ γ. By genericity, there is
an even j < ω such that κj ≥ γ (where κ⃗ = κ⃗G). Pick a condition π ∈ G with

lh(π) > j such that π ⊩ ḃ ⊆ γ̌. By Theorem 9.11, π forces that ḃ ∈ V[
˙⃗
f↾j], so, since

π ∈ G, b ∈ V[f⃗↾j]. □

As a consequence, if G is M-generic and κ⃗ = κ⃗G, f⃗ = f⃗G, then the infinite
cardinals below κ in the sense of V[G] are precisely the following (in increasing
order):

ω = κ0, κ
+
0 , κ2, κ

+
2 , κ4, κ

+
4 , . . .

where for even i, the calculation of κ+i gives the same result in V and in V[G]. In

particular, κ = ℵV[G]
ω , and κ is a strong limit cardinal in V[G], since given α < κ,

letting κn > α, we have that P(α)V[G] ⊆ P(α)V[f⃗↾n], where f⃗↾n is generic for a
forcing of size less than κ, and κ is inaccessible.

9.2. Perturbing the odd part of the Př́ıkrý sequence. In this subsection,
simply put, we will see how to change the κ⃗-sequence of a generic filter for M
without changing its f⃗ -sequence.

Lemma 9.13. Let π ∈ M, and let α ∈ Aπ. Then there is a set B ⊆ Aπ \ (α + 1)
of cardinality κ such that for all β, γ ∈ B, Fπ(α, β) and Fπ(α, γ) are compatible in
Col(α+, <κ).

Proof. Fix π and α. Recall that Col(α+, <κ) consists of all functions c with
dom(c) ⊆ {⟨i, ξ⟩ | i ∈ (α+, κ) and ξ < α+}, such that card(dom(c)) < α+ and
for all ⟨i, ξ⟩ ∈ dom(c), c(i, ξ) < i.

Let ∆ = {dom(Fπ(α, β) | β ∈ Aπ}.
If ∆ has cardinality less than κ, then by a simple pigeonhole principle, there is a

subset B̄ of Aπ on which β 7→ dom(Fπ(α, β)) is constant, and since there are fewer
than κ conditions in Col(α+, <κ) with this domain, B̄ can be further shrunk to B,
so that the map β 7→ Fπ(α, β) is constant on B, and we are done.

https://doi.org/10.1017/jsl.2023.91 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.91


28 GUNTER FUCHS

Otherwise, ∆ is a set of cardinality κ all of whose members have cardinality
less than α+ < κ. Since κ is inaccessible, an application of the ∆-system lemma
shows that there is a B̄ ⊆ A such that ∆̄ = {dom(Fπ(α, β)) | β ∈ B̄} forms
a ∆-system, say with root r, meaning that for all β, γ ∈ B̄ with α < β < γ,
dom(Fπ(α, β)) ∩ dom(Fπ(α, γ)) = r. Clearly, there are fewer than κ members of
Col(α+, <κ) with domain r, so there is a B ⊆ B̄ such that for all β, γ ∈ B with
α < β < γ, Fπ(α, β)↾r = Fπ(α, γ)↾r. It follows that B is as wished. □

Definition 9.14. Given V-generic filters G,H ⊆ M, H is close to G if V[G] =

V[H], f⃗G = f⃗H and there is an odd natural number m such that for all n < ω, if
n ̸= m, then κGn = κHn .

Lemma 9.15. Let G ⊆ M be V-generic, and let π ∈ G. Then, in V[G], there are
κ many V-generic filters H ⊆ M which are close to G and contain π.

Proof. Working in V[G], since κ is a limit cardinal, it suffices to show that for any
cardinal θ < κ, there are at least θ many V-generic filters close to G and containing
π. Fix such a θ, and let κ⃗ = κ⃗G.

For any condition σ ∈ M, say that σ′ ≤ σ is a θ-nice extension of σ if lh(σ′) =

lh(σ) + 4 and, letting κ⃗σ
′
= κ⃗σ⌢⟨λ0, λ1, λ2, λ3⟩, we have that

• λ0 ≥ θ.
• There is a set B ⊆ (λ1, λ2) ∩ Aσ of cardinality at least θ such that for all

β ∈ B, Fσ(λ0, β) ⊆ fσ
′

lh(σ).

Every σ ∈ M has a θ-nice extension: let λ0 ∈ Aσ \ θ, and by Lemma 9.13, let
B̄ ⊆ Aσ \ (λ0 + 1) have cardinality κ, such that for all β, γ ∈ B̄, with β < γ,
Fσ(λ0, β) and Fσ(λ0, γ) are compatible. Let λ1 = min(B̄), let λ2 be the θ-th
element of B̄, B = B̄ ∩ λ2, and λ3 ∈ Aσ \ (λ2 + 1). We can then define σ′ to be

like σ⌢⟨λ0, λ1, λ2, λ3⟩, except that we set fσ
′

lh(σ) =
⋃

β∈B F
σ(λ0, β). The latter is a

condition in Col(λ+0 , <λ2) because it is a union of pairwise compatible elements in
that poset, of cardinality θ < λ+0 , and the latter is the closure of the poset.

In particular, the set D of conditions which are a θ-nice extension of some σ ≤ π
is dense below π: given π′ ≤ π, π′ has a θ-nice extension σ′, and that σ′ is in D, as
witnessed by π′.

Since π ∈ G, we can pick π̃′ ∈ G ∩ D. Let π̃ ≤ π be such that π̃′ is a θ-nice
extension of π̃. In particular, π̃ ∈ G as well.

Let l = lh(π̃). It follows that

lh(π̃′) = l + 4 and κ⃗π̃
′
= κ⃗↾(l + 4) = κ⃗π̃⌢⟨κl, κl+1, κl+2, κl+3⟩.

Let B witness that π̃′ is a θ-nice extension of π̃, and fix β ∈ B. Let π̃β be like π̃′,

except that κ
π̃β

l+1 = β. Note that π̃β ≤ π̃ (this is the point)! Then an isomorphism

Iβ : M≤π̃′ −→ M≤π̃β
can be defined by letting Iβ(σ) be like σ, except that κ

Iβ(σ)
l+1 =

β.
Now Iβ [G] generates an M-generic filter Gβ over V. Clearly, V[G] = V[Gβ ]

(since Gβ can be defined from G using Iβ , and vice versa). In fact, f⃗G = f⃗Gβ and

κGn = κ
Gβ
n for all n ∈ ω \ {l + 1}. So Gβ is close to G. And since πβ ∈ Gβ and

πβ ≤ π, we have that π ∈ Gβ .
Thus, we have found θ many V-generic filters which are close to G and contain

π, as wished. □
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9.3. Putting everything together. Now suppose V = L[U ], where U is a normal
ultrafilter on κ, and let M be defined relative to U . Let G be M-generic over V.

Let f⃗ = f⃗G, κ⃗ = κ⃗G. In V[G], let C be the forcing to code f⃗ into the continuum
function above ℵω+2, say; see [7, Theorem 66] as an example for this method. Let
H be C-generic over V[G].

Theorem 9.16. In V[G][H], κ = ℵω is a strong limit cardinal, and the least leap
is ℵω+1.

Proof. We have already seen that κ = ℵω is a strong limit cardinal in V[G]. Since C
is sufficiently closed, these facts are preserved to V[G][H]. Let’s break the remainder
of the argument down.

(1) κ⃗ /∈ <κ-HODV[G][H].

Proof of (1). Suppose that κ⃗ belongs to some OD set A = {x | φ(x, ρ)} in V[G][H].
The idea is that there are κmany finite variations of κ⃗ that also belong to A, because
we can vary G by changing its κ⃗ sequence (by modifying one odd coordinate)

without changing its f⃗ sequence in κ many ways, so that the modified κ⃗ sequence
still belongs to A. In detail, since C is homogeneous, its trivial condition forces
over V[G] that φ(ˇ⃗κ, ρ̌) holds. Let Ċ be the canonical M-name for C. We have some

π ∈ G forcing “φ( ˙⃗κ, ρ̌) holds after forcing with Ċ”. But by Lemma 9.15, we can find
κmany V-generic filters G′ which are close to G and contain π. For each such G′, we

have that V[G] = V[G′] and f⃗G = f⃗G
′
. The point is that ĊV[G′] = ĊV[G], because

the definition of C depends only on f⃗ . So φ( ˙⃗κG
′
, ρ) holds in V[G′][H] = V[G][H].

Letting G′ range over κ many possibilities, we obtain κ many variations κ⃗G
′
of κ⃗

which all belong to A. □

(2) κ⃗ ∈ <κ+-HODV[G][H].

Proof of (2). Arguing in V[G][H], by the Dodd-Jensen Covering Lemma for L[U ],
Theorem 4.5, since 0† does not exist and covering fails, there is a maximal Př́ıkrý
sequence C over L[U ]. Since every Př́ıkrý sequence is determined by C, a subset
of ω and a finite subset of κ, and since the continuum is less than κ, there are
altogether no more than κ Př́ıkrý sequences over L[U ]. One of them is κ⃗. So κ⃗ is
<κ+-HOD in V[G][H]. □

Claims (1) and (2) together immediately imply:

(3) κ+ is a leap in V[G][H].

It remains to show that no cardinal below κ is a leap in V[G][H]. Assume,
towards a contradiction:

(4) κ̄, the least leap of V[G][H], is less than κ+.

Since the least leap cannot be a limit cardinal, but is uncountable, it follows that

(5) ω < κ̄ < κ.

Applying Corollary 3.7 in V[G][H] to HOD ⫋ <κ̄-HOD, there are sets a and b
such that a ∈ <κ̄-HOD \ HOD, a ⊆ b ∈ HOD and card(b) < κ̄.

Clearly, there are an ordinal β and an ODV[G][H] bijection i : β −→ b – i can
be taken to be the enumeration of b according to the canonical well-ordering of

HODV[G][H] in V[G][H]. Since card(b) < κ̄, it follows that β < κ.
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Letting ā = i−1[a], we have that ā is <κ̄-HODV[G][H], since a, i ∈ <κ̄-HODV[G][H].

And ā is not in HODV[G][H], because if it were, then so would a = i[ā], as b ∈
HODV[G][H]. And of course, ā ⊆ β < κ.

Because C is more than κ+-closed and ā is a bounded subset of κ, it follows that

ā ∈ V[G]. But then, by Corollary 9.12, it follows that ā ∈ V[f⃗↾j] = L[U ][f⃗↾j], for
some j < ω. But f⃗ is coded by H and is hence ODV[G][H], and U is ODV[G][H], so

ā ∈ HODV[G][H], a contradiction!
This contradiction shows that (4) fails, that is, that the least leap in V[G][H]

must be κ+. □

10. Other limit cardinals of countable cofinality

In this section, I will sketch how to produce models in which the least leap is
any strong limit cardinal of countable cofinality wished. More precisely, let us work
in L[U ], where κ is the measurable cardinal, and let λ < κ be a limit ordinal of
countable cofinality.

Recall that if G is M-generic and κ⃗ = κ⃗G, f⃗ = f⃗G, then the infinite cardinals
below κ in the sense of V[G] are given by:

ω = κ0, κ
+
0 , κ2, κ

+
2 , κ4, κ

+
4 , . . .

Thus, in addition to the κn, where n is even, their successors also remain cardi-
nals. There was a technical need to leave this extra space, but there is no reason
why we couldn’t leave more space. The idea is to leave exactly the space needed in
order to arrange that in the forcing extension, κ = ℵλ.

To this end, let c : ω −→ λ be increasing and cofinal. Let κ0 = c(0), and let
s : {m < ω | m is even} −→ λ be defined by

s(2n) = c(n+ 1)− (c(n) + 1)

so that c(n) + 1 + s(2n) = c(n + 1) for all n < ω. The idea is to define our poset

Ms in such a way that when G, κ⃗ and f⃗ are as above, then in V[G], the cardinals
below κ are:

ω, ω1, . . . , κ0 = c(0), κ+0 , . . . , κ
+s(0)
0 , κ2, κ

+
2 , . . . , κ

+s(2)
2 , κ4, . . .

so that in total, the order type of the infinite cardinals less than κ is

c(0) + 1 + s(0) + 1 + s(2) + 1 + . . . = λ

making κ = ℵV[G]
λ as wished.

Accordingly, the conditions in Ms should have the form π = ⟨κ⃗, f⃗ , A, F ⟩ as

before, except that for even i < lh(π), fi ∈ Col(κ
+s(i)
i , <κ), and if i + 2 < lh(π),

fi ∈ Col(κ
+s(i)
i , <κi+2). To make it work, F needs to be defined in such a way

that it provides meaningful upper bounds, i.e., F (m, {α, β}) is defined whenever
m ≥ lh(π) is even and {α, β} ∈ [A]2, and in this case, F (m,α, β) ∈ Col(α+s(m), <κ).

A condition π′ ∈ Ms extends π if lh(π′) ≥ lh(π), κ⃗π is an initial segment of κ⃗π
′
, for

every even i < lh(π), fπi ⊆ fπ
′

i , Aπ′ ⊆ Aπ, for every i ∈ [lh(π), lh(π′)), κπ
′

i ∈ Aπ,

for every even i ∈ [lh(π), lh(π′)), and Fπ(i, {κπ′

i , κ
π′

i+1}) ⊆ fπ
′

i , and for all even

j ∈ [lh(π′), ω) and {α, β} ∈ [Aπ′
]2, Fπ(j, {α, β}) ⊆ Fπ′

(j, {α, β}).
Working over L[U ], this forcing is ordinal definable, as L[U ] |= V = HOD. All

the relevant arguments go through. We obtain:
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Theorem 10.1. Let V = L[U ], and let κ be the measurable cardinal. If λ < κ
is an ordinal of countable cofinality, then there is a forcing extension in which the
statement “Λ0 = ℵλ+1” (using λ as a parameter) holds.

11. Questions

There are many open questions in this area, but here are a two that I find
particularly interesting.

(1) Does the statement “λ is a strong limit and a limit of leaps, and λ+ is a
leap” have the consistency strength of a measurable cardinal?

(2) What is the consistency strength of the statement “Λ0 is the successor of
a singular cardinal of uncountable cofinality”?

So far, I have found a promising lower bound for 2, but an upper bound is missing.
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