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DETERMINACY OF SCHMIDT’S GAME AND OTHER
INTERSECTION GAMES

LOGAN CRONE, LIOR FISHMAN, AND STEPHEN JACKSON

Abstract. Schmidt’s game and other similar intersection games have played an important role in recent
years in applications to number theory, dynamics, and Diophantine approximation theory. These games
are real games, that is, games in which the players make moves from a complete separable metric space. The
determinacy of these games trivially follows from the axiom of determinacy for real games, ADR, which is
a much stronger axiom than that asserting all integer games are determined, AD. One of our main results
is a general theorem which under the hypothesis AD implies the determinacy of intersection games which
have a property allowing strategies to be simplified. In particular, we show that Schmidt’s (α, �, �) game on
R is determined from AD alone, but on R

n for n ≥ 3 we show that AD does not imply the determinacy of
this game. We then give an application of simple strategies and prove that the winning player in Schmidt’s
(α, �, �) game on R has a winning positional strategy, without appealing to the axiom of choice. We also
prove several other results specifically related to the determinacy of Schmidt’s game. These results highlight
the obstacles in obtaining the determinacy of Schmidt’s game from AD.

§1. Introduction. In 1966, Schmidt [13] introduced a two-player game referred
to thereafter as Schmidt’s game. Schmidt invented the game primarily as a tool for
studying certain sets which arise in number theory and Diophantine approximation
theory. Schmidt’s game and other similar games have since become an important
tool in number theory, dynamics, and related areas.

Schmidt’s game (defined precisely in Section 2.3) and related games are real games,
that is games in which each player plays a “real” (an element of a Polish space: a
completely metrizable and separable space). Questions regarding which player, if
any, has a winning strategy in various games have been systematically studied over
the last century. Games in which one of the players has a winning strategy are said
to be determined. The existence of winning strategies often have implications in
both set theory and applications to other areas. In fact, the assumption that certain
classes of games are determined can have far-reaching structural consequences. One
such assumption is the axiom of determinacy, AD, which is the statement that all
integer games are determined. The axiom of determinacy for real games, ADR,
would immediately imply the determinacy of Schmidt’s game, but it is significantly
stronger than AD (see Section 2.1 for a more thorough discussion). A natural
question is what form of determinacy axiom is necessary to obtain the determinacy
of Schmidt’s game. In particular, can one obtain the determinacy of this game from
AD, or does one need the full strength of ADR?
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2 LOGAN CRONE ET AL.

Consider the case of the Banach–Mazur game on a Polish space (X, d ) with
target set T ⊆ X. Here the players I and II at each turn n play a real which codes
a closed ball B(xn, �n) = {y ∈ X : d (xn, y) ≤ �n}. The only “rule” of the game is
that the players must play a decreasing sequence of closed balls (that is, the first
player to violate this rule loses). If both players follow the rule, then II wins iff⋂
n B(xn, �n) ∩ T �= ∅. Although this is a real game, this game is determined for

any T ⊆ X just from AD. This follows from the easy fact that the Banach–Mazur
game is equivalent to the integer game in which both players play closed balls with
“rational centers” (i.e., from a fixed countable dense set) and rational radii.

For Schmidt’s game on a Polish space (X, d ) with target set T ⊆ X, we have in
addition fixed parameters α, � ∈ (0, 1). In this game I ’s first move is a closed ball
B(x0, �0) as in the Banach–Mazur game. In subsequent moves, the players play
a decreasing sequence of closed balls as in the Banach–Mazur game, but with a
restriction of the radii. Namely, II must shrink the previous radius by a factor of
α, and I must shrink the previous radius by � . So, at move 2n, I plays a closed
ball of radius �2n = (α�)n�0, and at move 2n + 1, II plays a closed ball of radius
�2n+1 = α(α�)n�0. As with the Banach–Mazur game, if both players follow these
rules, then II wins iff x ∈ T where {x} =

⋂
n B(xn, �n). We call this game the

(α, �) Schmidt’s game for T. A variation of Schmidt’s game, first introduced by
Akhunzhanov in [1], has an additional rule that the initial radius �0 = � of I ’s first
move is fixed in advance. We call this the (α, �, �) Schmidt’s game for T. In all
practical applications of the game we are aware of, the difference between these two
versions is immaterial. However, in general, these games are not literally equivalent,
as the following simple example demonstrates.

Example 1.1. Consider R with the usual metric and let the target set for II be
T = (– ∞, – 1] ∪ [1,∞) ∪Q. Notice that this set is dense. It is easy to see that if
� ≥ 2 and α ≤ 1

4 then for any � , II wins the (α, �, �)-game, simply by maximizing
the distance from the center of her first move to the origin. But if I is allowed to
choose any starting radius and � < 1

2 , then he is allowed to play, for instance, (0, 1
2 ),

and then on subsequent moves, simply avoid each rational one at a time, so that in
fact I wins the (α, �)-game.

In the case of Schmidt’s game (either variation) it is not immediately clear that
the game is equivalent to an integer game, and thus it is not clear that AD suffices
for the determinacy of these games. Our main results have implications regarding
the determinacy of Schmidt’s game.

Another class of games which is similar in spirit to Schmidt’s game are the so-
called Banach games whose determinacy has been investigated by Becker [2] and
Freiling [3] (with an important result being obtained by Martin). Work of these
authors has shown that the determinacy of these games follows from (and is, in fact,
equivalent to) AD. Methods similar to those used by Becker, Freiling, and Martin
are instrumental in the proofs of our results as well.

In Section 2 we introduce notation and give some relevant background in the
theory of games, descriptive set theory, and the history of Schmidt’s game in
particular.

In Section 3 we prove our main results, including those regarding the determinacy
of Schmidt’s game. We prove general results, Theorems 3.6 and 3.8, which give some
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DETERMINACY OF SCHMIDT’S GAME AND OTHER INTERSECTION GAMES 3

conditions under which certain real games are determined under AD alone. Roughly
speaking, these results state that “intersection” games which admit strategies which
are simple enough to be “coded by a real,” in a sense to made precise, are determined
from AD. Schmidt’s game, Banach–Mazur games, and other similar games are
intersection games. The simple strategy condition, however, depends on the specific
game. For Schmidt’s (α, �, �) game on R, we show the simple strategy condition is
met, and so this game is determined from AD. Moreover, for the (α, �) Schmidt’s
game on R, AD implies that either player I has a winning strategy or else for every
�, II has a winning strategy in the (α, �, �) game (this does not immediately give a
strategy for II in the (α, �) game from AD, as we are unable in the second case to
choose, as a function of �, a winning strategy for II in the (α, �, �) game). For Rn,
n ≥ 2, the simple strategy condition is not met. In fact, for n ≥ 3 we show that the
determinacy of Schmidt’s (α, �, �) games does not follow from AD. For n = 2, we
do not know if AD suffices to get the determinacy of Schmidt’s game.

We end Section 3 by giving an interesting application of the simple strategy
hypothesis for Schmidt’s game on R to show that whichever player has a winning
strategy must have a winning positional strategy i.e., a strategy which needs only
the latest move to compute a response. Schmidt [13] proved this fact for general
intersection games, but the proof heavily relies on the axiom of choice, which we
are able to avoid here using simple strategies. Precise statements are included in the
section.

In Section 4 we prove two other results related to the determinacy of Schmidt’s
game in particular. First, we show assuming AD that in any Polish space (X, d ),
any p ∈ (0, 1), and any T ⊆ X, there is at most one value of (α, �) ∈ (0, 1)2 with
α� = p such that the (α, �) Schmidt’s game for T is not determined. Second, we
show assuming AD that for a general Polish space (X, d ) and any target set T ⊆ X,
the “non-tangent” version of Schmidt’s (α, �, �) game is determined. This game is
just like Schmidt’s game except we require each player to play a “non-tangent ball,”
that is, d (xn, xn+1) < �n – �n+1. These results help to illuminate the obstacles in
analyzing the determinacy of Schmidt’s game.

Finally in Section 5 we list several open questions which are left unanswered by our
results. We feel that the results and questions of the current paper show an interesting
interplay between determinacy axioms and the combinatorics of Schmidt’s game.

§2. Background. In this section we fix the notation we use to describe the games
we will be considering, both for general games and specifically for Schmidt’s game.
We recall some facts about the forms of determinacy we will be considering, some
necessary background in descriptive set theory to state and prove our theorems, and
we explain some of the history and significance of Schmidt’s game.

Throughout we let � = N = {0, 1, 2, ... } denote the set of natural numbers. We
let R denote the set of real numbers (here we mean the elements of the standard real
line, not the Baire space �� as is frequently customary in descriptive set theory).

2.1. Games. Let X be a non-empty set. Let X<� and X� denote respectively the
set of finite and infinite sequences from X. For s ∈ X<� we let |s | denote the length
of s. If s, t ∈ X<� we write s ≤ t if s is an initial segment of t, that is, t � |s | = s . If
s, t ∈ X<� , we let s�t denote the concatenation of s and t.
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4 LOGAN CRONE ET AL.

We call R ⊆ X<� a tree on X if it is closed under initial segments, that is, if t ∈ R
and s ≤ t, then s ∈ R. We can view R as the set of rules for a game. That is, each
player must move at each turn so that the finite sequence produced stays in R (the
first player to violate this “rule” loses the game). If �x = (x0, x1, ... ) ∈ X� , we say �x
has followed the rules if �x � n ∈ R for all n. We let [R] denote the set of all �x ∈ X�
such that �x � n ∈ R for all n (i.e., �x has followed the rules). We also refer to [R] as
the set of branches through R. We likewise say s ∈ X<� has followed the rules just
to mean s ∈ R.

Fix a set B ⊆ X� , which we call the target set, and let R ⊆ X<� be a rule set
(i.e., a tree on X). The game G(B,R) on the set X is defined as follows. I and II
alternate playing elements xi ∈ X. So, I plays x0, x2, ... , while II plays x1, x3, ... .
This produces the run of the game �x = (x0, x1, ... ). The first player, if any, to violate
the rules R loses the run �x of the game. If both players follow the rules (i.e., �x ∈ [R]),
then we declare I to have won the run iff �x ∈ B (otherwise we say II has won the
run). Oftentimes, in defining a game the set of rules R is defined implicitly by giving
requirements on each players’ moves. If there are no rules, i.e., R = X<� , then
we write G(B) for G(B,R). Also, it is frequently convenient to define the game by
describing the payoff set for II instead of I. This, of course, is formally just replacing
B with X� – B .

A strategy for I in a game on the set X is a function � :
⋃
n∈� X

2n → X. A strategy
for II is a function � :

⋃
n∈� X

2n+1 → X. We say � follows the rule set R is whenever
s ∈ R of even length, than s��(s) ∈ R. We likewise define the notion of a strategy
� for II to follow the rules. We say �x ∈ X� follows the strategy � for I if for all
n ∈ �, x2n = �( �x � 2n), and similarly define the notion of �x following the strategy
� for II. We also extend this terminology in the obvious way to say an s ∈ X<� has
followed � (or �). Finally, we say a strategy � for I is a winning strategy for I in the
game G(B,R) if � follows the rules R and for all �x ∈ [R] which follows � we have
�x ∈ B , that is, player I has won the run �x. We likewise define the notion of � being
a winning strategy for II.

If � is a strategy for I, and �z = (x1, x3, ... ) is a sequence of moves for II, we write
� ∗ �z to denote the corresponding run (x0, x1, x2, x3, ... ) where x2n = �(x � 2n). We
likewise define � ∗ �z for � a strategy for II and �z = (x0, x2, ... ) a sequence of moves
for I. If �, � are strategies for I and II respectively, then we let � ∗ � denote the run
(x0, x1, ... ) where x2n = �(x � 2n) and x2n+1 = �(x � 2n + 1) for all n.

We say the game G(B,R) on X is determined if one of the players has a winning
strategy. The axiom of determinacy for games on X, denotedADX is the assertion that
all games on the set X are determined. Axioms of this kind were first introduced by
Mycielski and Steinhaus. We let AD denote AD� , that is, the assertion all two-player
integer games are determined. Also important for the current paper is the axiom
ADR, the assertion that all real games are determined. Both AD and ADR play an
important role in modern descriptive set theory. Although both axioms contradict
the axiom of choice, AC, and thus are not adopted as axioms for the true universe
V of set theory, they play a critical role in developing the theory of natural models
such as L(R) containing “definable” sets of reals. It is known that ADR is a much
stronger assertion than AD (see Theorem 4.4 of [14]).

Sitting between AD and ADR is the determinacy of another class of games called
1
2R games, in which one of the players plays reals and the other plays integers.
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DETERMINACY OF SCHMIDT’S GAME AND OTHER INTERSECTION GAMES 5

The proof of one of our theorems will require the use of 1
2R games. The axiom

AD 1
2R

that all 1
2R games are determined is known to be equivalent to ADR (AD 1

2R

immediately implies Uniformization; see Theorem 2.3). However, AD suffices to
obtain the determinacy of 1

2R games with Suslin, co-Suslin payoff (a result of
Woodin; see [4]). We define these terms more precisely in Section 3. As in [2], this
fact will play an important role in one of our theorems.

One of the central results in the theory of games is the result of Martin [6] that all
Borel games on any set X are determined in ZFC. By “Borel” here we are referring
to the topology on X� given by the product of the discrete topologies on X. In fact,
in just ZF we have that all Borel games (on any set X) are quasi-determined (see [12]
for the definition of quasi-strategy and proof of the extension of Martin’s result to
quasi-strategies in ZF, which is due to Hurkens and Neeman).

Theorem 2.1 (Martin, Hurkens, and Neeman for quasi-strategies). Let X be
a nonempty set, and let B ⊆ X� be a Borel set, and R ⊆ X<� a rule set R (a
tree). Then the game G(B,R) is determined (assuming ZFC, or quasi-determined just
assuming ZF).

As we mentioned above, AD contradicts AC. In fact, games played for particular
types of “pathological” sets constructed using AC are frequently not determined.
For example, the following result is well-known (e.g., [5, p. 137, paragraph 8]):

Proposition 2.2. Let B ⊆ �� be a Bernstein set (i.e., neither the set nor its
complement contains a perfect set). Then the game G(B) is not determined.

2.2. Determinacy and pointclasses. We briefly review some of the terminology and
results related to the determinacy of games and some associated notions concerning
pointclasses which we will need for the proofs of some of our results.

We have introduced above the axioms AD, AD 1
2R

, and ADR which assert the
determinacy of integer games, half-real games, and real games respectively. We
trivially have ADR ⇒ AD 1

2R
⇒ AD. All three of these axioms contradict AC, the

axiom of choice. They are consistent, however, with DC, the axiom of dependent
choice, which asserts that if T is a non-empty pruned tree (i.e., if (x0, ... , xn) ∈ T
then ∃xn+1 (x0, ... , xn, xn+1) ∈ T ) then there is a branch f through T (i.e.,
∀n (f(0), ... , f(n)) ∈ T ). DC is a slight strengthening of the axiom of countable
choice. On the one hand, DC holds in the minimal model L(R) of AD, while on the
other hand even ADR does not imply DC. Throughout this paper, our background
theory is ZF + DC.

The axiom ADR is strictly stronger than AD (see [14]), and in fact it is known that
ADR is equivalent to AD + Unif, where Unif is the axiom that every R ⊆ R× R

has a uniformization, that is, a function f : dom(R) → R such that (x,f(x)) ∈ R
for all x ∈ dom(R) (see Theorem 2.3). This equivalence will be important for our
argument in Theorem 3.11 that AD does not suffice for the determinacy of Schmidt’s
game in Rn for n ≥ 3. The notion of uniformization is closely connected with the
descriptive set theoretic notion of a scale. If a setR ⊆ X × Y (where X, Y are Polish
spaces) has a scale, then it has a uniformization. The only property of scales which
we use is the existence of uniformizations, so we will not give the definition, which is
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6 LOGAN CRONE ET AL.

rather technical, here (though they are equivalent to Suslin representations, defined
below).

A (boldface) pointclass Γ is a collection of subsets of Polish spaces closed under
continuous preimages, that is, if f : X → Y is continuous and A ⊆ Y is in Γ, then
f–1(A) is also in Γ. We say Γ is self-dual if Γ = Γ̌ where Γ̌ = {X \ A : A ∈ Γ} is
the dual pointclass of Γ. We say Γ is non-self-dual if Γ �= Γ̌. A set U ⊆ �� × X
is universal for the Γ subsets of X if U ∈ Γ and for every A ⊆ X with A ∈ Γ
there is an x ∈ �� with A = Ux = {y : (x, y) ∈ U}. A standard fact is that for any
Polish space X, the usual non-self-dual Borel levels Σ0

α � X, Π0
α � X are pointclasses

and have universal sets, as are the projective levels Σ1
n � X, Π1

n � X. In the case X =
�� , there is a complete analysis of pointclasses under AD. The pointclasses Γ � ��
fall into a natural well-ordered hierarchy (modulo considering Γ and its dual class Γ̌
at the same level) by Wadge’s lemma. Furthermore, every non-self-dual Γ � �� has
a universal set, an easy consequence of Wadge’s lemma (see Theorem 7D.3 of [12]).

In this paper we will be looking at more general pointclasses in more general
Polish spaces (in particular in Rn). We note that the general definition of pointclass
given above allows in this context some unnatural examples. For example, consider
Γ defined by: A ∈ Γ � X iff A ∈ Π0

10 � X and A ∩ C is closed for every connected
component C of the space X (here Π0

10 can be replaced by any pointclass). Then
it is easy to check that Γ is a pointclass, but Γ � �� = Π0

10 � �� and Γ � R =
Π0

1 � R. Nevertheless, an arbitrary pointclass Γ in the Baire space (i.e., Γ is closed
under continuous preimages by functions f : �� → ��) can be extended to general
Polish spaces in a natural way as follows. Given Γ � �� , say A ∈ Γ′ � X if for any
continuousf : �� → X we have thatf–1(A) ∈ Γ � �� . Extended this way, it is easy
to check that Γ′ is a pointclass and Γ′ � �� = Γ � �� . We will henceforth just write
Γ � X instead of Γ′ � X for this extension. Note that if Γ is a general pointclass
(closed under inverse images by continuous functions) then if we consider Γ � ��
then the extension (Γ � ��)′ of Γ � �� to all Polish spaces contains Γ.

Suppose Γ is a pointclass in �� which is non-self-dual, and closed under
inverse images by Σ0

2-measurable functions (recall f : X → Y is Σ0
2-measurable

if f–1(U ) ∈ Σ0
2 � X for every U open in Y). Then Γ � X has universal sets for all

Polish spaces X. This includes all Levy classes, that is pointclasses Γ closed under
∧, ∨, and either ∃�� or ∀�� . To see this, first note that since Γ is a non-self-dual
pointclass in �� , it has a universal set U ⊆ �� × �� . Let ϕ : F → X be one-to-
one, onto, continuous, and with ϕ–1 being Σ0

2-measurable, where F ⊆ �� is closed
(see Theorem 1G.2 of [12] or Theorem 7.9 of [5]). Let Ũ ⊆ �� × X be defined by
Ũ (x, y) ↔ U (x, ϕ–1(y)). It is straightforward to check that every Γ � X set occurs
as a section of Ũ [If A ⊆ X is in Γ, let r : �� → F be a continuous retraction
(i.e., f is continuous, onto, and r � F is the identity). Then (ϕ ◦ r)–1(A) ∈ Γ � �� .
Let x be such that Ux = (ϕ ◦ r)–1(A). Then A = Ũx .] Also, Ũ ∈ Γ � �� × X since
if 	 : �� → �� × X is continuous, then 	–1(Ũ )(z) ↔ U (	(z)0, ϕ

–1 ◦ 	(z)1) and
the function z �→ (	(z)0, ϕ

–1 ◦ 	(z)1) from �� to �� × �� is Σ0
2-measurable (here

	(z) = (	(z)0, 	(z)1)).
For κ an ordinal number we say a set A ⊆ �� is κ-Suslin if there is a tree T on

� × κ such thatA = p[T ], where p[T ] = {x ∈ �� : ∃f ∈ κ� (x,f) ∈ [T ]} denotes
the projection of the body of the tree T. We say A is Suslin if it is κ-Suslin for some
κ. We say A is co-Suslin if �� \ A is Suslin. For a general Polish space X, we say
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A ⊆ X is Suslin if for some continuous surjection ϕ : �� → X we have that ϕ–1(A)
is Suslin (this does not depend on the choice of ϕ). Scales are essentially the same
thing as Suslin representations, in particular a set A ⊆ Y is Suslin iff it has a scale,
thus relations which are Suslin have uniformizations. If Γ is a pointclass, then we
say a set A is projective over Γ if it is in the smallest pointclass Γ′ containing Γ
and closed under complements and existential and universal quantification over R.
Assuming AD, if Γ is contained in the class of Suslin, co-Suslin sets, then every
set projective over Γ is also Suslin and co-Suslin. For this result, more background
on these general concepts, as well as the precise definitions of scale and the scale
property, the reader can refer to [12].

Results of Martin and Woodin (see [7, 9]) show that assuming AD + DC, the
axioms ADR, Unif, and scales are all equivalent. More precisely we have the
following.

Theorem 2.3 (Martin and Woodin). Assume ZF + AD + DC. Then the following
are equivalent:

(1) ADR,
(2) Unif,
(3) Every A ⊆ R has a scale.

Scales and Suslin representations are also important as it follows from AD that
ordinal games where the payoff set is Suslin and co-Suslin (the notion of Suslin
extends naturally to sets A ⊆ �� for � an ordinal number) are determined. One
proof of this is due to Moschovakis, Theorem 2.2 of [11], another due to Steel can
be found in the proof of Theorem 2 of [8]. We will not need this result for the current
paper.

A strengthening of AD, due to Woodin, is the axiom AD+. This axiom has been
very useful as it allows the development of a structural theory which has been used
to obtain a number of results. It is not currently known if AD+ is strictly stronger
than AD, but it holds in all the natural models of AD obtained from large cardinal
axioms. In particular, if the model L(R) satisfies AD (which it does if there is any
inner model containing the reals which satisfies AD), then it satisfies AD+. Also, if
L(R) satisfies AD, then L(R) does not satisfy uniformization, and so L(R) does not
satisfy ADR. So, AD+ is strictly weaker than ADR. In our Theorem 3.11 we in fact
show that AD+ does not suffice to get the determinacy of Schmidt’s (α, �, �) game
in Rn for n ≥ 3.

2.3. Schmidt’s game. As mentioned in the introduction, Schmidt invented the
game primarily as a tool for studying certain sets which arise in number theory and
Diophantine approximation theory. These sets are often exceptional with respect
to both measure and category, i.e., Lebesgue null and meager. One of the most
significant examples is the following. LetQ denote the set of rational numbers. A real
number x is said to be badly approximable if there exists a positive constant c = c(α)

such that
∣∣∣x – pq

∣∣∣ > c
q2 for all pq ∈ Q. We denote the set of badly approximable

numbers by BA. This set plays a major role in Diophantine approximation theory,
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8 LOGAN CRONE ET AL.

and is well known to be both Lebesgue null and meager. Nonetheless, using his
game, Schmidt was able to prove the following remarkable result:

Theorem 2.4 (Schmidt [13]). Let (fn)∞n=1 be a sequence of C1 diffeomorphisms
of R. Then the Hausdorff dimension of the set

⋂∞
n=1 f

–1
n (BA) is 1. In particular,⋂∞

n=1 f
–1
n (BA) is uncountable.

Yet another example of the strength of the game is the following. Let b ≥ 2 be an
integer. A real number x is said to be normal to base b if, for every n ∈ N, every block
of n digits from {0, 1, ... , b – 1} occurs in the base-b expansion of x with asymptotic
frequency 1/bn. It is readily seen that the set of numbers normal to no base is both
Lebesgue null and meager. Nevertheless, Schmidt used his game to prove:

Theorem 2.5 (Schmidt [13]). The Hausdorff dimension of the set of numbers
normal to no base is 1.

2.3.1. The game’s description For the (α, �) Schmidt’s game on the complete
metric space (X, d ) with target set T ⊆ X, I and II each play pairs (xi , �i) in
Y = X × R>0. The R ⊆ Y<� of rules is defined by the conditions that �i+1 +

d (xi , xi+1) ≤ �i and �i+1 =

{
α�i , if i is even,
��i , if i is odd.

The rules guarantee that the closed

balls B(xi , �i) = {x ∈ Rn : d (x, xi) ≤ �i} are nested. Since the �i → 0, there is a
unique point z ∈ X such that {z} =

⋂
i B(xi , �i). For �x ∈ [R], a run of the game

following the rules, we letf( �x) be this corresponding point z. The payoff setB ⊆ Y�
for player I is { �x ∈ Y� ∩ [R] : f( �x) /∈ T}. Formally, when we refer to the (α, �)
Schmidt’s game with target set T, we are referring to the gameG(B,R) with these sets
B and R just described. The formal definition of Schmidt’s (α, �, �) game with target
set T and initial radius � (i.e., �0 = �) is defined in the obvious analogous manner.

§3. Main results. We next prove a general result which states that certain real
games are equivalent to 1

2R games. The essential point is that real games which are
intersection games (i.e., games where the payoff only depends on the intersection of
sets coded by the moves the players make) with the property that if one of the players
has a winning strategy in the real game, then that player has a strategy “coded by a
real” (in a precise sense defined below), then the game is equivalent to a 1

2R game.
In [2] a result attributed to Martin is presented which showed that the determinacy
of a certain class of real games, called Banach games, follows from AD 1

2R
, the axiom

which asserts the determinacy of 1
2R games (that is, games in which one player

plays reals, and the other plays integers). In Theorem 3.6 we use ideas similar to
Martin’s to prove a general result which applies to intersection games satisfying a
“simple strategy” hypothesis. Since many games with applications to number theory
and dynamics are intersection games, it seems that in practice the simple strategy
hypothesis is the more significant requirement.

Definition 3.1. Let Γ be a pointclass. A simple one-round Γ strategy s for the
Polish space X is a sequence s = (An, yn)n∈� where yn ∈ X, An ∈ Γ, and the An
are a partition of X. A simple Γ strategy � for player II is a collection {su}u∈�<�
of simple one-round Γ strategies su . A simple Γ strategy � for player I is a pair
� = (ȳ, �) where ȳ ∈ X is the first move and � is a simple Γ strategy for player II.
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DETERMINACY OF SCHMIDT’S GAME AND OTHER INTERSECTION GAMES 9

The idea for a simple one-round strategy is that if the opponent moves in the set
An, then the strategy will respond with yn. Thus there is only “countably much”
information in the strategy; it is coded by a real in a simple manner. If s = (An, yn)
is a simple one-round strategy, we will write s(n) = yn and also s(x) = yn for any
x ∈ An. A general simple strategy produces after each round a new simple one-round
strategy to follow in the next round. For example, suppose � is a simple strategy for
I. � gives a first move x0 = ȳ and a simple one-round strategy s∅. If II plays x1, then
x2 = �(x0, x1) = s∅(x1) =the unique yn0 such that x1 ∈ An0 where s∅ = (An, yn).
If II then plays x3, then � responds with sn0(x3). The play by � continues in this
manner. Formally, a general simple strategy is a sequence (su)u∈�<� of simple one-
round strategies, indexed by u ∈ �<� .

If Γ is a pointclass with a universal set U ⊆ �� × X, then we may use U to
code simple one-round Γ strategies. Namely, the simple one-round Γ strategy s =
(An, yn) is coded by z ∈ �� if z codes a sequence (z)n ∈ �� and U(z)2n

= An and
(z)2n+1 codes the response yn ∈ X in some reasonable manner (e.g., via a continuous
surjection from �� to X, the exact details are unimportant).

Remark 3.2. For the remainder of this section, X and Y will denote Polish
spaces.

Definition 3.3. Let R ⊆ X<� be a tree on X which we identify as a set of rules
for a game on X. We say a simple one-round Γ strategy s follows the rules R at
position p ∈ R if for any x ∈ X, if p�x ∈ R, then p�x�s(x) ∈ R.

Definition 3.4. LetR ⊆ X<� be a set of rules for a real game. Suppose p ∈ X<�
is a position in R. Suppose f : X → X is such that for all x ∈ X, if p�x ∈ R, then
p�x�f(x) ∈ R (i.e., f is a one-round strategy which follows the rules at p). A
simplification of f at p is simple one-round strategy s = (An, yn) such that:

(1) For every x in any An, if p�x ∈ R, then p�x�yn ∈ R.
(2) For every n, if there is an x ∈ An such that p�x ∈ R, then there is an x′ ∈ An

with p�x′ ∈ R and f(x′) = yn.

We say s is a Γ simplification of f if all of the sets An are in Γ.

Definition 3.5. We say a treeR ⊆ X<� is positional if for allp, q ∈ R of the same
length and x ∈ X, if p�x, q�x are both in R then for all r ∈ X<� , p�x�r ∈ R iff
q�x�r ∈ R.

Theorem 3.6 (ZF + DC). Let Γ be a pointclass with a universal set with Γ contained
within the Suslin, co-Suslin sets. Suppose B ⊆ X� and R ⊆ X<� is a positional tree,
and suppose both B and R are in Γ. Let G = G(B,R) be the real game on X with
payoff B and rules R. Suppose the following two conditions on G hold:

(1) (intersection condition) For any �x, �y ∈ [R], if x(2k) = y(2k) for all k, then
�x ∈ B iff �y ∈ B .

(2) (simple one-round strategy condition) If p ∈ R has odd length, and f : X → X
is a rule following one-round strategy at p, then there is a Γ-simplification of f
at p.

Then G is equivalent to a Suslin, co-Suslin 1
2R game G∗ in the sense that if I (or II )

has a winning strategy in G∗, then I (or II ) has a winning strategy in G.
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Proof. Consider the gameG∗ where I plays pairs (x2k, s2k) and II plays integers
n2k+1. The rulesR∗ ofG∗ are that I must play at each round a real coding s2k which
is a simple one-round Γ strategy which follows the rules R relative to a position
p�x2k for any p of length 2k (this does not depend on the particular choice of p
as R is positional). I must also play such that x2k = s2k–2(n2k–1). II must play each
n2k+1 so that there is a legal move x2k+1 ∈ As2kn2k+1

with p�x2k
�x2k+1 ∈ R (for any p

of length 2k).
If I and II have followed the rules, to produce x2k, s2k and n2k+1, the payoff

condition for G∗ is as follows. Since II has followed the rules, there is a sequence
x2k+1 such that the play (x0, x1, ... ) ∈ [R]. I then wins the run ofG∗ iff (x0, x1, ... ) ∈
B . Note that by the intersection condition, this is independent of the particular
choice of the x2k+1.

From the definition, G∗ is a Suslin, co-Suslin game.
We show that G∗ is equivalent to G. Suppose first that I wins G∗ by �∗. Then �∗

easily gives a strategy Σ for G. For example, let �∗(∅) = (x0, s0). Then Σ(∅) = x0. If
II plays x1, then let n1 be such that x1 ∈ As0n1 . Then Σ(x0, x1) = s0(n1). Continuing
in this manner defines Σ. If (x0, x1, ... ) is a run of Σ, then there is a corresponding
run ((x0, s0), n1, ... ) of �∗. As each s2k follows the rules R, then as long as II ’s moves
follow the rules R, I ’s moves by Σ also follow the rules R. If II has followed the rules
R in the run of G, then the run ((x0, s0), n1, ... ) of �∗ has followed the rules for G∗

(II has followed the rules of G∗ since for each n2k+1, x2k+1 witnesses that n2k+1 is a
legal move). Since �∗ is winning for G∗, the sequence (x0, x

′
1, x2, x

′
3, ... ) ∈ B ∩ [R]

for some x′2k+1. By the intersection condition, (x0, x1, x2, x3, ... ) ∈ B .
Assume now that II has winning strategy �′ in G∗. We first note that there is

winning strategy �∗ for II in G∗ such that �∗ is projective over Γ. To see this, first
note that the payoff set for G∗ is projective over Γ as both B and R are in Γ. Also,
there is a scaled pointclass Γ′, projective over Γ, which contains the payoff set for
II in G∗. By a result of Woodin in [4] (since II is playing the integer moves in G∗)
there is a winning strategy �∗ which is projective over Γ′, and thus projective over Γ.
For the rest of the proof we fix a winning strategy �∗ for II inG∗ which is projective
over Γ.

We define a strategy Σ for II in G. Consider the first round of G. Suppose I moves
with x0 in G. We may assume that (x0) ∈ R.

Claim 3.7. There is an x1 with (x0, x1) ∈ R such that for all x2 with (x0, x1, x2) ∈
R, there is a simple one-round Γ strategy s0 which follows the rules R from position x0

(so (x0, s0) is a legal move for I in G∗) such that if n1 = �∗(x0, s0) then x1 ∈ As0n1 and
x2 = s0(x1).

Proof. Suppose not, then for every x1 with (x0, x1) ∈ R there is an x2 with
(x0, x1, x2) ∈ Rwhich witnesses the failure of the claim. Define the relationS(x1, x2)
to hold iff (x0, x1) /∈ R or (x0, x1, x2) ∈ R and the claim fails, that is, for every
simple one-round Γ strategy s which follows R, if we let n1 = �∗(x0, s), then either
x1 /∈ Asn1

or x2 �= s(x1). Since �∗, B, R are projective over Γ, so is the relation S.
By assumption, dom(S) = R. Since S is projective over Γ, it is within the scaled
pointclasses, and thus there is a uniformization f for S. Note that f follows the
rules R. By the simple one-round strategy hypothesis of Theorem 3.6, there is a
Γ-simplification s0 of f. Let n1 = �∗(x0, s0). Since �∗ follows the rules R∗ for II,
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there is an x1 ∈ As0n1 such that (x0, x1) ∈ R. Since s0 is a simplification of f, there is
an x′1 with (x0, x

′
1) ∈ R and f(x′1) = s0(n1). Let x2 = f(x′1). From the definition of

S we have that (x0, x
′
1, x2) ∈ R. Since S(x′1, x2), there does not exist an s (following

the rules) such that (x′1 ∈ Asn1
andx2 = s(x′1)) where n1 = �∗(x0, s). But on the other

hand, the s0 we have produced does have this property. This proves the claim. �
Now that we’ve proved this claim, we can attempt to define the strategy Σ. We

would like to have Σ(x0) be any x1 as in the claim. Now since the relation A(x0, x1)
which says that x1 satisfies the claim relative to x0 is projective over Γ, we can
uniformize it to produce the first round x1(x0) of the strategy Σ.

Suppose I now moves x2 in G. For each such x2 such that (x0, x1, x2) ∈ R, there
is a rule-following simple one-round Γ strategy s0 as in the claim for x1 and x2.
The relationA′(x0, x2, s0) which says that s0 satisfies the claim for x1 = x1(x0), x2 is
projective over Γ and so has a uniformization g(x0, x2). In the G∗ game we have I
play (x0, g(x0, x2)). Note that n1 = �∗(x0, s0) is such that x1 ∈ As0n1 , and x2 = s0(x1).

This completes the definition of the first round of Σ, and the proof that a one-round
play according to Σ has a one-round simulation according to �∗, which will guarantee
that Σ wins. The definition of Σ for the general round is defined in exactly the same
way, using DC to continue. The above argument also shows that a run of G following
Σ has a corresponding run of G∗ following �∗. If I has followed the rules of G, then
I has followed the rules ofG∗ in the associated run. Since �∗ is winning for II inG∗,
there is no sequence x′2k+1 of moves for II such that (x0, x

′
1, x2, x

′
3, ... ) ∈ B ∩ [R].

In particular, (x0, x1, x2, x3, ... ) /∈ B (since (x0, x1, ... ) ∈ [R]). Thus, II has won the
run of G following Σ. �

If G is a real game on the Polish space X with rule set R, we say that G is an
intersection game if it satisfies the intersection condition of Theorem 3.6. This is
equivalent to saying that there is a function f : X� → Y for some Polish space Y
such that f( �x) = f(�y) if x(2k) = y(2k) for all k, and the payoff set for G is of the
form f–1(T ) for some T ⊆ Y . In many examples, the rules R require the players
to play decreasing closed sets with diameters going to 0 in some Polish space, and
the function f is simply giving the unique point of intersection of these sets. If we
have a fixed rule set R and a fixed function f, the class of games GR,f associated
with R and f is the collection of games with rules R and payoffs of the form f–1(T )
for T ⊆ Y . Thus, we allow the payoff set T to vary, but the set of rules R and the
“intersection function” f are fixed. In practice, R and f are usually simple, such as
Borel relations/functions.

Theorem 3.8 (AD). Suppose Γ is a pointclass within the Suslin, co-Suslin sets
and GR,f is a class of intersection games on the Polish space X with R, f ∈ Γ, and
R is positional (as above f : X� → Y , where Y is a Polish space). Suppose that for
every T ⊆ Y which is Suslin and co-Suslin, if player I or II has a winning strategy
in GR,f(T ), then that player has a winning simple Γ-strategy. Then for every T ⊆ Y ,
the game GR,f(T ) is determined.

Proof. First consider Γ � �� . Considering this as a pointclass in the Baire space,
there is a larger pointclass Γ′ � �� which is non-self-dual and closed under ∧,∨,
and ∃�� and is still within the Suslin and co-Suslin sets. We now extend Γ′ � ��
to all Polish spaces to get Γ′ � X as defined in the introduction, and as noted
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there this extension contains the original Γ � X. The closure properties of Γ′ ensure
that it is closed under substitutions by Borel functions and so (as discussed in the
introduction) Γ′ has universal sets. So, without loss of generality we may assume
that Γ has universal sets.

Fix the rule set R and function f in Γ. Let T ⊆ Y , and we show the real game
GR,f(T ) is determined. Following Becker, we consider the integer game G where I
and II play out reals x and y which code trees (indexed by�<�) of simple one-round
Γ strategies. The winning condition for II is as follows. If exactly one of x, y fails to
be a simple Γ-strategy, then that player loses. If both fail to code simple Γ-strategies,
then II wins. If x codes a simple Γ-strategy �x and y codes a simple Γ-strategy �y ,
then II wins iff �x ∗ �y ∈ GR,f(T ), where � ∗ � denotes the unique sequence of reals
obtained by playing � and � against each other. From AD, the game G is determined.
Without loss of generality we may assume that II has a winning strategy w for G.
Let S1 ⊆ �� be the set of z such that z codes a simple Γ-strategy for player I which
follows the rules R. Likewise, S2 is the set of z coding rule following Γ-strategies �z
for II. Note that S1, S2 are projective over Γ. Let

A = {�y ∈ X� : ∃z ∈ S1 �y = �z ∗ �w(z)}.

Since w is a winning strategy for II in G, A ⊆ X� \GR,f(T ), so f(A) ⊆ Y \ T .
Note that A is projective over Γ by the complexity assumption on R and the fact
that S1 is also projective over Γ. We claim that it suffices to show that II wins the
real game GR,f(Y \ f(A)). This is because if II wins GR,f(Y \ f(A)) with run �y,
i.e., �y �∈ GR,f(Y \ f(A)), then f(�y) ∈ f(A) ⊆ Y \ T , so �y �∈ GR,f(T ), thus �y is a
winning run for II in GR,f(T ).

We see that Y \ f(A) is projective over Γ, and thusGR,f(Y \ f(A)) is equivalent
to a Suslin, co-Suslin 1

2R game by Theorem 3.6 which is determined (see [4]), and
so GR,f(Y \ f(A)) is determined. Now it suffices to show that I doesn’t have a
winning strategy in GR,f(Y \ f(A)).

Suppose I had a winning strategy for GR,f(Y \ f(A)). By hypothesis, I has a
winning simple Γ-strategy coded by some z ∈ �� . Let �y = �z ∗ �w(z) (note that
z ∈ S1 and so w(z) ∈ S2). Since �z is a winning strategy for I in GR,f(Y \ f(A)),
we have f(�y) ∈ Y \ f(A). On the other hand, from the definition of A from w we
have that f(�y) ∈ f(A), a contradiction. �

We next apply Theorem 3.8 to deduce the determinacy of Schmidt’s (α, �, �)
games in R from AD.

Theorem 3.9 (AD). For any α, � ∈ (0, 1), any � ∈ R>0, and any T ⊆ R, the
(α, �, �) Schmidt’s game with target set T is determined.

Proof. Let Γ be the pointclass Π1
1 of co-analytic sets. Let R be the tree described

by the rules of the (α, �, �) Schmidt’s game. R is clearly a closed set and is positional.
The function f of Theorem 3.8 is given by {f((xi , �i)i)} =

⋂
i B(xi , �i). This clearly

satisfies the intersection condition, that is,GR,f is a class of intersection games. Also,
f is continuous, so f ∈ Γ.

It remains to verify the simple strategy condition of Theorem 3.8. The argument
is essentially symmetric in the players, so we consider the case of player II. In
fact we show that for any T ⊆ R, if II has a winning strategy for the (α, �, �)
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Schmidt’s game, then II has a simple Borel strategy. Fix a winning strategy Σ for
II in this (real) game. Consider Σ restricted to the first round of the game. For
every z0 ∈ R, there is a half-open interval Iz0 of the form [z0, z0 + ε) or (z0 – ε, z0]
such that for any x0 ∈ Iz0 , we have that ((x0, �0),Σ(z0, �0)) ∈ R. That is, for any
x0 ∈ Iz0 we have that Σ’s response to (z0, �0) is still a legal response to the play
(x0, �0). Note that we need to consider half-open intervals because Σ may play an
interval tangent to I ’s move. Consider the collection C of all intervals I = [z, z + ε)
or I = (z – ε, z] having this property. So, C is a cover of R by half-open intervals.
There is a countable subcollection C′ ⊆ C which covers R. To see this, first get a
countable C0 ⊆ C such that ∪C0 ⊇

⋃
I∈C int(I ). The set R \

⋃
I∈C int(I ) must be

countable, and so adding countably many sets of C to C0 will get C′ as desired. Let
C′ = {Izn}n∈� . The first round of the simple Borel strategy � is given by (An, yn)
whereAn = {(x0, �0) : x0 ∈ Izn \

⋃
m<n Izm} and yn = Σ(zn, �0). Clearly (An, yn) is a

simple one-round Borel strategy which follows the rules R of the (α, �, �) Schmidt’s
game. This defines the first round of �. Using DC, we continue inductively to define
each subsequent round of � in a similar manner.

To see that � is a winning strategy for II, simply note that for any run of � following
the rules there is a run of Σ producing the same point of intersection. �

This theorem immediately implies the following corollary about Schmidt’s original
(α, �) game.

Corollary 3.10 (AD). For any α, � ∈ (0, 1), and any T ⊆ R, exactly one of the
following holds.

(1) Player I has a winning strategy in Schmidt’s (α, �) game.
(2) For every � ∈ R>0, player II has a winning strategy in Schmidt’s (α, �, �) game.

In contrast to these results, the situation is dramatically different for Rn, n ≥ 3.

Theorem 3.11. AD+ does not imply that the (α, �, �) Schmidt’s game for T ⊆ Rn,
n ≥ 3 is determined.

Proof. We will show that the determinacy of these games in R3 implies that all
relations R ⊆ R× R can be uniformized. It is known that AD+ does not suffice to
imply this. The proof for larger n is identical.

Let R ⊆ R× [0, 2
) such that ∀x ∈ R ∃� ∈ [0, 2
) (x, �) ∈ R. Let r = � –
2�α(1 – �)

∑∞
n=0(α�)n. Let the target set for player II be T = {(x, r cos �, r sin �) :

(x, �) ∈ R} ∪ {(x, y, z) : y2 + z2 > r}. The value r is the distance from the x-axis
that is obtained if I makes a first move B((x0, 0, 0), �) centered on the x-axis, and
at each subsequent turn II moves to maximize the distance from the x-axis and
I moves to minimize it (note that these moves all have centers having the same
x-coordinate x0). The target set T codes the relation R to be uniformized along the
boundary of the cylinder of radius r centered along the x-axis.

We claim that I cannot win the (α, �, �) Schmidt’s game for T. First note that if
I plays his center not on the x-axis, then II can easily win in finitely many moves
by simply playing to maximize distance to the x-axis. (This will win the game by the
definition of r.) So suppose I plays (x, 0, 0) as the center of his first move. Fix � so
thatR(x, �) holds. Then II can win by always playing tangent towards the direction
(0, cos �, sin �) maximizing distance to the x-axis. If I resists and minimizes distance
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to the x-axis, then the limit point will be in {(x, r cos �, r sin �) : (x, �) ∈ R}. If I ever
deviates from this, then again II can win after finitely many moves by maximizing
distance to the x-axis.

This shows that I does not have a winning strategy, so by the assumption that
these games are determined, II has a winning strategy �. By similar arguments to
those above, � must maximize distance from the x-axis in response to optimal play
by I. But one can take advantage of this to easily define a uniformization f of R
from � by the following:

f(x) = � ⇐⇒ �
(
B

((
x, 0, 0

)
, �

))
= B

((
x, (� – α�) cos �, (� – α�) sin �

)
, α�

)
. �

The fact that strategies can be simplified actually gives a fairly useful result about
so-called positional winning strategies in Schmidt’s game.

Definition 3.12. A positional strategy for a game on a set X is a functionf : X →
X. A positional strategy is winning for a player if every run which follows the
strategy on every move, i.e., xn+1 = f(xn) is a win for that player. For player I a
positional strategy must include a special first move, separate from the instructions
for responses.

This definition is useful mostly in the context of intersection games, in which the
last move is generally the intersection of all moves up to that point. Many games
trivially cannot satisfy this definition. This definition can be made more general
by specifying exactly to what extent information can be ignored. For instance,
when considering certain classes of games, it may be more appropriate to call
a strategy positional if it considers only the latest move and what round of the
game it is.

We can use the technology of simple strategies to give us the following theorem
regarding the existence of positional strategies in Schmidt’s game on R.

Theorem 3.13 (ZF + DC). Let T ⊆ R and α, � ∈ (0, 1) and � > 0. Whichever
player has a winning strategy in Schmidt’s (α, �, �)-game with target set T has a
winning positional strategy. If player I has a winning strategy in Schmidt’s (α, �)-
game, then player I has a positional winning strategy. If player II has a winning
strategy in Schmidt’s (α, �)-game and if any of the following holds:

• AC,
• AD and T is Suslin,
• T is Borel,

then player II has a winning positional strategy.

Remark 3.14. We note that the argument we are about to give is not particular
to Schmidt’s game, and the only use of DC, as opposed to countable choice, is
to guarantee that a simple strategy exists for the winning player (see the proof of
Theorem 3.9). The argument below works for any intersection game with positional
rules which satisfies the simple strategy hypothesis.

Proof. We will first prove the portion regarding the (α, �, �)-game. We’ve already
proven that whichever player wins has a winning Borel simple strategy. It is worth
noting that one can use the complexity of the simple strategy in the proof below
to get a complexity bound on the positional strategies in all cases except for
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player II winning in the (α, �)-game, but we will not concern ourselves with
that here.

Let � = {(As�i), (xs�i , rs�i)}s∈�<�,i∈� be a simple winning strategy for player II
in the (α, �, �)-game. We first define a simple choice function we will need in the
proof. Let s�i ∈ �n+1. If s = ∅, let zi = zs�i ∈ Ai . If s �= ∅, let zs�i ∈ As�i and
a legal response to II ’s play of xs , if such a legal response exists. Otherwise let
zs�i ∈ As�i be arbitrary. This makes sense, as the rules of the game are positional
(see Definition 3.5). We only use countable choice to define the zs�i .

We will define a positional strategy �̂. Let (x, r) be some potential move by I for
which we need to define a response. If r is not of the form (α�)n� for some n, then
this move is illegal, and so we may play anything, say �̂(x, r) = (x, αr). Now if r
is of the form (α�)n� for some n, then let s�i ∈ �n+1 be lexicographically least so
that x ∈ As�i and so that the sequence

(
z(s�i)�1, z(s�i)�2, ... , z(s�i)�n, x

)
of centers

for moves by I is a legal sequence to play against �. If no such s�i exists, again we
play arbitrarily, say �̂(x, r) = (x, αr). If we have such an s�i , then �’s responses to
both (zs�1, zs�2, ... , zs�n, x) and (zs�1, zs�2, ... , zs�n, zs�i) of centers will be the same,
and so we play

�̂(x, r) = �
({(
z(s�i)�j , (α�)j�

)}
1≤j≤n+1

)
.

This completes the definition of �̂. To see that it wins, let {yj, rj}j∈� be a run
following �̂. It is important to note that the only case in which we could have played
arbitrarily is if our opponent broke the rules. To see this, assume by induction that
for (y(0), y(1), ... , y(2k)) there is a sequence (zs�1, zs�2, ... , zs�k+1) of legal moves
for I such that the responses of � will be (y(1), y(3), ... , y(2k + 1)) (which will
also be legal as � is a winning strategy). There is an i so that y(2k + 2) ∈ As�i
(as the As�j partition all possible next moves). As y(2k + 2) is also legal, we have
that zs�i is defined and legal. Thus we have such a z sequence for (y(0), y(1), ... ,
y(2k + 2)).

By the definition of �̂ we have, for each y2k+1, some lexicographically least sk�ik
and the corresponding sequence of centers {z(sk�ik )�j}1≤j≤k so that (y2k+1, r2k+1) =
�({(z(sk�ik )�j , (α�)j�)}1≤j≤k+1). By the lexicographical minimality of each sk�ik ,
it must be that sk+1(0) ≤ sk(0) for all k, and this digit can only decrease finitely
often, and so must stabilize. This means z(sk�ik )�1 and �((z(sk�ik )�1, r0)) are both
eventually constant. For any k large enough so that this has occurred, we must
also have sk+1(1) ≤ sk(1), and so z(sk�ik )�2 and �((z(sk�ik )�1, r0), (zsk�ik )�2, r2))
are also eventually constant. Continuing, we have that both z(sk�ik )�m and
�({(z(sk�ik )�j , (α�)j�)}1≤j≤m) are eventually constant (as k → ∞) for every fixed
m ≥ 1.

The eventual constant values for these moves give us a sequence of positions
which converges to a full run {z0, z1, ... } which is consistent with �, but this run may
disagree with the original run {y0, y1, ... }. However, using a legality argument, it is
not hard to show that the centers of these moves converge to the same limit point:
Let y∞ = limn→∞ yn, and let ε > 0. LetN0 be large enough so that (α�)N0� < ε/2,
and letM0 be large enough so that for any k ≥M0, z(sk�ik )�j+1 = z2j for all j ≤ N0.
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16 LOGAN CRONE ET AL.

Then we have for any k ≥M0 that

yk = �
(

(z0, r0), (z2, r2), ... (z2N0 , (α�)N0�),

(z(sk�ik )�N0+2, rN0+2), ... (z(sk�ik )�k+1, rk+1)
)
.

Now since all the moves made are legal (by the choice of zs�i and since � is winning,
and thus rule-following), we can conclude that for any j ≥ 2N0, both zj and yk are
legal moves extending a position in which z2N0 was played, and so they both must
be in an interval around z2N0 of radius (α�)N0�. Thus

|zj – yk | ≤
∣∣zj – z2N0

∣∣ +
∣∣z2N0 – yk

∣∣ < 2(α�)N0� < ε.

And so we have zn → y∞ as well. Thus since � is winning for player II, y∞ ∈ T and
so the run {yj, rj}j∈� is a win for II as well.

The case for player I is identical, as we must only include the first move as an extra
instruction. Easily then, we also have that the (α, �)-game for player I is positional,
since he is able to decide which � to play.

To see that player II has a positional strategy in the (α, �)-game we must consider
the several cases. If AC holds, then the game is positional by an argument included
in [13], which resembles the argument we gave above, but well-orders all possible
moves.

If AD holds and T is Suslin, then since we assume that player II has a winning
strategy in the (α, �) game, player II has a winning strategy in the (α, �, �)-game for
each fixed �, which means player II has a simple Borel winning strategy, which can
be thought of as coded by a real using a Π1

1 universal set. We consider the relation
on pairs (�, �) which says that � codes a winning simple strategy in the (α, �, �)
game. Since T is Suslin, this relation is also Suslin (assuming AD, the Suslin sets
are closed under quantification over reals), and thus we can uniformize it to pick
a simple winning strategy for each �. Now we will mimic the operation above to
produce a positional strategy. We must now consider potential moves by I of the
form (x, r) where r is arbitrary, and must choose some � uniformly from it in order
to use the simple strategy corresponding to � in the above argument. We simply
pretend as though we are playing using the largest possible � which is less than or
equal to some fixed constant (say 1 for instance) so that r = (α�)n� for some n, if
such a � exists. If not, we play arbitrarily, but legally, say by copying our opponent’s
center. Note that at some point in the game after enough legal moves, there must
eventually be � satisfying r = (α�)n� for some n and � less than this constant.
Once such a � exists, we choose the lexicographically least s�i corresponding to the
simple strategy assigned to � as before, and define our positional strategy exactly
as in the first half of this proof relative to this simple strategy. To see that this wins,
we simply observe that our choice of � can only increase finitely often, and so must
be eventually constant, at which point the argument that we win reduces to the one
given above.

In the case that we don’t have AD but T is Borel, we note that the relation
we uniformized above in this case is Π1

1, and so we can uniformize it with no extra
hypotheses. It is important here that the simple strategies are Borel simple strategies.
The rest of the argument is the same as in the case of AD and T is Suslin. �
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§4. Further results regarding Schmidt’s game. In Section 3 we showed that AD
suffices to get the determinacy of the (α, �, �) Schmidt’s game for any target set
T ⊆ R, but that for T ⊆ Rn, n ≥ 3, AD (or AD+) is not sufficient. The proof for
the positive result in R used a reduction of Schmidt’s (α, �, �) game to a certain 1

2R

game. The fact that AD does not suffice for T ⊆ Rn, n ≥ 3, shows that in general
the (α, �, �) Schmidt’s game is not equivalent to an integer game (for T ⊆ R it still
seems possible the game is equivalent to an integer game). A natural question is to
what extent we can reduce Schmidt’s game to an integer game. In this section we
prove two results concerning this question.

In the proof of Theorem 3.11 it is important that the value r = r(α, �) was
calibrated to the particular values of α, � . In other words, if we change the values
of α, � to α′, � ′, using the same target set, so that r(α′� ′) �= r(α, �), then the
game is easily determined. In Theorem 4.3 we prove a general result related to this
phenomenon. Namely, we show, assuming AD, that for T (in any Polish space) and
each value of p ∈ (0, 1) there is at most one value of α, � with α� = p such that
the (α, �) Schmidt’s game with target set T is not determined. Thus the values of
α, � must be tuned precisely to have a possibility of the game being not determined
from AD.

The proof of Theorem 3.11 also uses critically the ability of each player to play a
ball tangent to the previous ball. In Theorem 4.5, we make this precise by showing
that the modification of Schmidt’s (α, �, �) game where the players are required
to make non-tangent moves is determined from AD alone. Thus, the ability of the
players to play tangent at each move is a key obstacle in reducing Schmidt’s game
to an integer game.

In the Banach–Mazur game, the rational modification of the game is fairly
straightforward, i.e., the allowed moves for the players are just representatives of
balls with centers from some fixed countable dense subset of X and the radii are
positive rationals, in Schmidt’s game there is a slight difference, again due to the
restriction on the players’ radii.

Definition 4.1. For a Polish (X, d ) and a fixed countable dense subset D ⊆ X
we define the rational Schmidt (α, �) game by modifying Schmidt’s (α, �)-game by
restricting the set of allowed moves for both players to balls B(xi , �i) where xi ∈ D
and �i ∈

(⋃
n,m∈N

αn�mQ>0
)
.

Theorem 4.2. Let (X, d ) be a Polish space. Let 0 < α < α′ < 1, 0 < � ′ < � < 1,
and α� = α′� ′.

(1) If II wins the rational Schmidt’s (α′, � ′) game for target set T then II wins
Schmidt’s (α, �) game for T.

(2) If I wins the rational Schmidt’s (α, �) game for target set T then I wins
Schmidt’s (α′, � ′) game for T.

Proof. We will prove the first statement, and the proof of the second is similar.
Fix the target set T ⊆ X. Let � be a winning strategy for II in the rational Schmidt’s
(α′, � ′) game. We will construct a strategy for II in Schmidt’s (α, �) game by
using �.
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Suppose I plays (x0, �0) as his first move in the (α, �) game. Let � = �0 to conserve
notation. Let �′ ∈

(⋃
n,m∈N

αn�mQ>0
)

with

�
α

α′
1 – �
1 – � ′

< �′ < �
1 – α
1 – α′ . (4.1)

This is possible since α
α′

1–�
1–�′ < 1 and 1–α

1–α′ > 1 and
⋃
n,m∈N

αn�mQ>0 is dense in R>0.

Let εn
def= min

{
(α�)n(�(1 – α) – �′(1 – α′)), (α�)n–1(α′�′(1 – � ′) – α�(1 – �))

}
.

Notice that εn > 0 by inequality (4.1). Now let (x′1, α
′�′) = �(x′0, �

′) where x′0 ∈
D ∩ B(x0, ε0). Let x1 = x′1. By the definition of ε0 and (4.1), B(x1, α�) ⊆ B(x0, �),
and thus (x1, α�) is a valid response to (x0, �) in Schmidt’s (α, �) game.

Now given a partial play with centers {xk : k ≤ 2n}, continue by induction to
generate x2n+1 by considering (x′2n+1, (α

′� ′)nα′�′) = �
({

(x′k, rk) : k ≤ 2n
})

where
for each 1 ≤ k ≤ n, x′2k–1 is given by � and x′2k ∈ D ∩ B(x2k, εk). Again by the
definition of εn and (4.1), B(x2n+1, (α�)nα�) ⊆ B(x2n, (α�)n�).

We have defined a strategy for II in Schmidt’s (α, �) game which has the property
that if a run is compatible with this strategy with centers {xk : k ∈ �} then there
is a corresponding run compatible with � with centers

{
x′k : k ∈ �

}
such that for

all k, x2k+1 = x′2k+1, so that limn→∞ x
′
n = limn→∞ xn and so since � is a winning

strategy in the rational Schmidt’s (α′, � ′) game, limn→∞ xn ∈ T . So the strategy we
have constructed is winning in Schmidt’s (α, �) game. �

As a consequence we have the following theorem.

Theorem 4.3 (AD). Let (X, d ) be a Polish space. Let T ⊆ X. Let p ∈ (0, 1), then
there is at most one point (α, �) ∈ (0, 1)2 with α� = p at which Schmidt’s (α, �) game
for T is not determined.

Proof. Suppose that Schmidt’s (α, �) game is not determined with α� = p. Let
α1 < α < α2 and �1 > � > �2 with α1�1 = α� = α2�2. Note that by part (1) of
Theorem 4.2, II cannot have a winning strategy in the rational Schmidt’s (α2, �2)
game, since II does not have a winning strategy in Schmidt’s (α, �) game by
assumption. This means that I must have a winning strategy in the rational Schmidt’s
(α2, �2) game for any such (α2, �2) (by AD) and thus by part (2) of Theorem
4.2, I wins Schmidt’s (�, �) game for any (�, �) ∈ (0, 1)2 with �� = p and α < �.
By a symmetric argument, I has no winning strategy in the rational Schmidt’s
(α1, �1) game, so II must have a winning strategy in Schmidt’s (�, �) game for any
(�, �) ∈ (0, 1)2 with �� = p and � < α. �

We next consider the variation of Schmidt’s game where we restrict the players to
making non-tangent moves. We consider a general Polish space (X, d ).

Definition 4.4. We say the ball B(xn+1, �n+1) is tangent to the ball B(xn, �n) if
�n+1 + d (xn, xn+1) = �n.

In the non-tangent Schmidt’s (α, �, �) game with target set T ⊆ X, a rule of the
game is that each player must play a nested ball of the appropriate radius, as in
Schmidt’s game, but that ball must not be tangent to the previous ball. Note that the
non-tangent variation of Schmidt’s game is still an intersection game, and the rule
set R is still Borel. We will show that the “simple strategy” condition of Theorem
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3.8 is also satisfied, and so the non-tangent Schmidt’s game is determined from AD.
The proof of this theorem is similar to that of Theorem 3.9. It is clear that the
rules of this game are positional, so it will suffice to check the other hypotheses of
Theorem 3.8.

Theorem 4.5 (AD). Let (X, d ) be a Polish space, let α, � ∈ (0, 1), � ∈ R>0, and
T ⊆ X, and the non-tangent (α, �, �) Schmidt’s game with target set T is determined.

Proof. We will show that if I (or II ) has a winning strategy in the non-tangent
(α, �, �) Schmidt game, then I (or II ) has a simple Borel winning strategy (in the
sense of Definition 3.1), and thus by Theorem 3.8, the result follows.

Without loss of generality, say II has a winning strategy Σ in the non-tangent
(α, �, �) Schmidt’s game. We will define a simple Borel strategy � for II from Σ.
Suppose I makes first move B(x0, �), and Σ responds with B(x1, α�), which is not
tangent to B(x0, �). Let ε = �(1 – α) – d (x0, x1) > 0. If d (x′0, x0) < ε, then if I
plays B(x′0, �), then B(x1, α�) is still a valid response for II. In other words, for
each x0, there is an open ball U of some radius, for which any x′0 ∈ U has the
property that the response by Σ to (x0, �) is also a legal response to (x′0, �). Let C be
the collection of all such open balls U. Then C is an open cover of X, and since X is
Polish, it is Lindelöf, and thus C has a countable subcover C′ = {Uzn}n∈� . The first
round of the simple Borel strategy � is given by (An, yn) where An = {(x0, �) : x0 ∈
Uzn \

⋃
m<n Uzm} and yn = Σ(zn, �). Clearly (An, yn) is a simple one-round Borel

strategy which follows the rules R of the non-tangent (α, �, �) Schmidt’s game.
This defines the first round of �. Using DC, we continue inductively to define each
subsequent round of � in a similar manner.

To see that � is a winning strategy for II, simply note that for any run of � following
the rules there is a run of Σ producing the same point of intersection. �

§5. Questions. In Theorem 3.9 we showed that AD suffices to the determinacy
of Schmidt’s (α, �, �) game on R. In Theorem 3.11 we showed that AD+ does not
suffice to prove the determinacy of Schmidt’s (α, �, �) game on Rn for n ≥ 3. In view
of these results several natural questions arise.

First, for n = 2 our arguments do not seem to resolve the question of the strength
of Schmidt game determinacy in either case of the (α, �, �) or the (α, �) game. The
proof of Theorem 3.9 does not immediately apply as R2 does not have the “Lindelöf-
like” property we used for R. On the other hand, the proof of Theorem 3.11 also
does not seem to apply as we don’t seem to have enough freedom in R2 to code an
arbitrary instance of uniformization as we did in R3. In fact, the method of proof of
Theorem 3.9 of using “simple strategies” cannot show the determinacy of Schmidt
games in R2 from AD. This is because while we cannot seem to code an arbitrary
uniformization problem into the game, we can code the characteristic function of
an arbitrary setA ⊆ R in a way similar to the proof of Theorem 3.11. We could then
choose a set A not projective over the pointclass Γ (as in the statement of Theorem
3.8). Then the “simple strategy” hypothesis of Theorem 3.8 will fail for this instance
of the game. So we ask:

Question 5.1. Does AD suffice to get the determinacy of either the Schmidt’s
(α, �, �) or (α, �) games on R2?
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Although the distinction between Schmidt’s (α, �, �) game and Schmidt’s (α, �)
game seem immaterial in practical applications, our main theorems apply to the
(α, �, �) games only. So we ask:

Question 5.2. Does AD suffice to prove the determinacy of Schmidt’s (α, �) game
on Rn?

Also interesting is the converse question of whether the determinacy of Schmidt’s
game (either variation) implies determinacy axioms. In [3] it is shown that the
determinacy of Banach games (which are similar in spirit to Schmidt games) implies
AD. Here we do not have a corresponding result for Rn. We note though that if
α = � = 1

2 and � = 1
2 , then the determinacy of Schmidt’s (α, �, �) game onX = ��

with the standard metric d (x, y) = 1
2n+1 where n is least so that x(n) �= y(n), gives

AD. So we ask:

Question 5.3. Does the determinacy of Schmidt’s (α, �, �) (or (α, �)) game on Rn

imply AD? If n ≥ 3, does Schmidt determinacy imply ADR?

A related line of questioning is to ask what hypotheses are needed to get the
determinacy of Schmidt’s game for restricted classes of target sets. For example,
while the determinacy of the Banach–Mazur game for Σ1

1 (that is, analytic) target
sets is a theorem of just ZF, the corresponding situation for Schmidt’s game is not
clear. so we ask:

Question 5.4. Does ZF + DC suffice to prove the determinacy of Schmidt’s game
in Rn for Σ1

1 target sets?

In view of the results of this paper, it is possible that the answer to Question 5.4
depends on n. We can extend the class of target sets from the analytic sets to the
more general class of Suslin, co-Suslin sets. So we ask:

Question 5.5. Does AD suffice to prove the determinacy of Schmidt’s game in Rn

for Suslin, co-Suslin target sets?

Again, it is possible that the answer to Question 5.5 depends on n.
Finally, it is reasonable to ask the same questions of this paper for other real games

which also have practical application to number theory and related areas. Important
examples include McMullen’s “strong” and “absolute” variations of Schmidt’s game
[10]. These are also clearly intersection games, so the question is whether the simple
strategy hypothesis of Theorem 3.8 applies.
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