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Metrizability of Holonomy Invariant
Projective Deformation of Sprays

S. G. Elgendi and Zoltán Muzsnay

Abstract. In this paper, we consider projective deformation of the geodesic system of Finsler spaces by
holonomy invariant functions. Starting with a Finsler spray S and a holonomy invariant function P,
we investigate the metrizability property of the projective deformation S̃ = S − 2λPC. We prove that
for any holonomy invariant nontrivial functionP and for almost every value λ ∈ R, such deformation
is not Finsler metrizable. We identify the cases where such deformation can lead to a metrizable spray.
In these cases, the holonomy invariant functionP is necessarily one of the principal curvatures of the
geodesic structure.

1 Introduction

A system of second order homogeneous ordinary diòerential equations (SODE),
whose coeõcients do not depend explicitly on time, can be identiûed with a spe-
cial vector ûeld, called spray. he spray corresponding to the geodesic equation of a
Riemann or Finslerian metric is called the geodesic spray of the corresponding metric.

he metrizability problem for a spray S seeks a Riemannian or Finslerian metric
whose geodesics coincide with the geodesics of S. For the projective metrizability
problem, one seeks a Riemannian or Finslerianmetric whose geodesics coincide with
the geodesics of S, up to an orientation preserving reparameterization. he two prob-
lems can be viewed as particular and probably themost interesting cases of the inverse
problem of the calculus of variation. For various approaches and results of themetriz-
ability and projective metrizability problem, we refer the reader to [1, 4, 6, 7, 10, 11, 15].

Two sprays on the samemanifold are said to be projectively equivalent if they have
the same geodesics as point sets. Two sprays S and S̃ on the manifold M are projec-
tively equivalent if there is a function P̃∶TM → R such that

(1.1) S̃ = S − 2P̃ ⋅ C,

where C is the Liouville vector ûeld. he function P̃ is called projective factor of the
projective deformation. In [16], Yang shows that for a projectively �at spray of constant
�ag curvature, its projective class contains sprays that are not Finsler metrizable. In
[3], the authors extend Yang’s result and show that for an arbitrary spray, its projective
class contains sprays that are not Finsler metrizable by considering the most natural
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projective deformation of the geodesic spray S of a Finsler metric F, where the pro-
jective factor P̃ = λ ⋅ F in (1.1) is a scalar multiple of the Finsler function F of S. hey
showed that the deformed spray is not Finslermetrizable for almost any value of λ ∈ R.

It would be very interesting to describe the general situation, that is, the neces-
sary and suõcient conditions for a projective deformation of a metrizable spray to be
metrizable. his problem is, however, very complex, and it contains, as a particular
case, Hilbert’s fourth problem. herefore, even partial results, when the projective
factor possesses special geometric or analytic properties, can be interesting. In this
paper, we consider the case where the projective factor in (1.1) is invariant with re-
spect the parallel translation, or in other words, a holonomy invariant function. We
will call such transformation a holonomic projective deformation. Writing the projec-
tive factor in the form P̃ = λ ⋅P with λ ∈ R we extend the results of [3] by proving the
following theorem.

heorem 1.1 For any nontrivial holonomy invariant 1-homogeneous projective factor
P and for almost any scalar λ ∈ R, the projective deformation

S̃ = S − 2λPC,

of a Finsler metrizable spray S is not metrizable.

Only very special holonomy invariant projective factors can lead to metrizable
projective deformation. As one can see in Corollary 4.2, these holonomy invariant
projective factors must be related to the principal curvature of the deformed Finsler
structure.

2 Preliminaries

LetM be an n-dimensionalmanifold and let (TM , π,M) be its tangent bundle. TM ∶=

TM/{0} denotes the set of nonzero tangent vectors. We denote by (x i
) local coor-

dinates on the base manifold M and by (x i , y i
) the induced coordinates on TM. We

use in the sequel Frölicher–Nijenhuis formalism and notation.
A vector ℓ-formonM is a skew-symmetricC∞(M)-linearmap L∶Xℓ

(M)→X(M).
Every vector-valued ℓ-form L deûnes two graded derivations iL and dL of the exte-
rior algebra Λ(M) deûned as follows. For any f ∈ C∞(M), we have iL f = 0 and
iLd f = d f ○ L and

dL ∶= [iL , d] = iL ○ d − (−1)ℓ−1diL .

If X ∈ X(M) is a vector ûeld, then iX is simply the interior product of X and dX = LX
the Lie derivative with respect to X.

2.1 Projective Deformation of Geodesic Structure

here are two canonical objects on TM, the natural almost-tangent structure J and
the the Liouville vector ûeld C ∈ X(TM). Locally, they are deûned by the formulas

J =
∂

∂y i ⊗ dx
i , C = y i ∂

∂y i .

702

https://doi.org/10.4153/S0008439520000016 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439520000016


Metrizability of Holonomy Invariant Projective Deformation of Sprays

A vector ûeld S ∈ X(TM) is called a spray if JS = C and [C, S] = S. Locally, a spray
can be expressed as follows

(2.1) S = y i ∂
∂x i − 2G i ∂

∂y i ,

where the spray coeõcients G i
= G i

(x , y) are 2-homogeneous functions in the
y = (y1 , . . . , yn

) variable. A regular curve σ ∶ I → M on M is called the geodesic
of a spray S if S ○ σ ′ = σ ′′. Locally, σ(t) = (x i

(t)) is a geodesic of S if and only if it
satisûes the equation

d2x i

dt2
+ 2G i

(x ,
dx
dt

) = 0.

Consequently, a system of second order homogeneous ordinary diòerential equations
(SODE), whose coeõcients functions do not depend explicitly on time, can be iden-
tiûed with a special vector ûeld, called spray.

Deûnition 2.1 Two sprays S and S̃ are projectively related if their geodesics coincide
up to an orientation preserving reparameterization.

An orientation preserving reparameterization t → t̃ of the spray (2.1) leads to a new
spray given by formula (1.1) with some 1-homogeneous scalar function P̃ ∈ C∞(TM).
his function is related to the new parametrization by

d2 t̃
dt2

= 2P̃(x ,
dx
dt

)
dt̃
dt
,

dt̃
dt

> 0.

Deûnition 2.2 he spray S̃ given by formula (1.1) is called the projective deforma-
tion of the spray S with the projective factor P̃. he projective deformation is called
holonomic if P̃ is a holonomy invariant function.

2.2 Geometric Quantities Associated with a Spray

A nonlinear connection is deûned by an n-dimensional distribution H on TM that
gives a direct decomposition of

(2.2) T(TM) =H ⊕V,

where V = Ker π∗ is the vertical space. Every spray S induces a canonical nonlinear
connection through the corresponding horizontal and vertical projectors,

(2.3) h =
1
2
(Id + Γ), v =

1
2
(Id − Γ),

where Γ = [J , S] is the nonlinear connection induced by spray [8]. We remark that
the spray S is horizontal with respect to (2.2), that is, S = hS. Locally, the projectors
(2.3) can be expressed as follows

h = δ i ⊗ dx i , v = ∂̇ i ⊗ δy i ,
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where

δ i ∶=
∂

∂x i −G j
i

∂
∂y j , ∂̇ j ∶=

∂
∂y j , δy i

= dy i
+G i

jdx
j ,

with the 1-homogeneous G j
i ∶=

∂G j

∂y i functions. We note that

S = y iδ i and C = y i ∂̇ i .

he Nijenhuis torsion of h measuring the integrability of the horizontal distribution

R =
1
2
[h, h] =

1
2
R i

jk
∂

∂y i ⊗ dx
j
∧ dxk , R i

jk =
δG i

j

δxk −
δG i

k

δx j

is called the curvature of S. From the curvature tensor, one can obtain the Jacobi
endomorphism [3], which is deûned by

(2.4) Φ = R i
j dx

j
⊗

∂
∂y i , R i

j = 2
∂G i

∂x j − S(G i
j) −G i

kG
k
j .

he two tensors are related by

(2.5) Φ = iSR, 3R = [J , Φ],

respectively. he spray S is called R-�at if it Jacobi endomorphism vanishes.

2.3 Finsler Structure

Deûnition 2.3 AFinsler function on amanifoldM is a continuous function F ∶ TM
→ R such that
(i) F is smooth and strictly positive on TM and F(x , y) = 0 if and only if y = 0;
(ii) F is positively homogeneous of degree 1 in the directional argument y;
(iii) the metric tensor g i j =

1
2

∂2F2
∂y i ∂y j has maximal rank on TM.

he function E ∶= 1
2F

2 is called the energy function associated with F. From con-
dition (iii), one can obtain that the 2-form ddJE is non-degenerate, and the Euler-
Lagrange equation

iSddJE = −dE

uniquely determines a spray S on TM. his spray is called the geodesic spray of the
Finsler function.

Deûnition 2.4 A spray S on a manifoldM is called Finsler metrizable if there exists
a Finsler function F such that the geodesic spray of the Finsler manifold (M , F) is S.

he holonomy distribution Dhol (S) of a spray S is the smallest involutive distribu-
tion generated by the horizontal distribution H (see [12]). his distribution is gener-
ated by the horizontal vector ûelds and their successive Lie-brackets, that is,

Dhol (S) ∶= {[X1 , [X2 , . . . [Xm−1 , Xm] . . . ]] ∣ X i ∈ X
h
(TM), m ∈ N},
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where Xh
(TM) denotes the module of horizontal vector ûelds. A function P ∈

C∞(TM) is called holonomy invariant if it is invariant with respect to parallel trans-
lation; that is, for any v ∈ TM and for any parallel translation τ, we have P(τ(v)) =
P(v). Using the geometric construction of parallel transport through horizontal li�s,
it is clear that a function P is holonomy invariant if and only if

(2.6) dhP = 0;

that is, for any horizontal vector ûeld X ∈ Xh
(TM), we haveLXP = 0. Obviously, this

property must be also true for the successive Lie-brackets of horizontal vector ûelds.
Consequently, we get the following property.

Property 2.5 P ∈ C∞(TM) is a holonomy invariant function if and only ifLXP = 0
for any X ∈Dhol (S).

he above property shows that the elements of the holonomy distribution are the
inûnitesimal symmetries of the holonomy invariant functions. Since ImR ⊂ Dhol (S)
and ImΦ ⊂ Dhol (S); that is, the images of the curvature tensor and the Jacobi endo-
morphism are in the holonomy distribution we have the following corollary.

Corollary 2.6 he derivatives of a holonomy invariant function with respect to any
vector ûeld in the image of R and Φ are identically zero.

We note that if S is Finsler metrizable, then its Finsler function and its energy
function are both holonomy invariant functions; therefore, we have the following
corollary.

Corollary 2.7 If S is Finsler metrizable and E is its energy function, then LXE = 0
for any X ∈Dhol (S).

2.4 Principal Curvatures of a Finsler Metric

he Jacobi endomorphism (2.4) of the geodesic spray S of a Finsler metric is also
called the Riemann curvature [13]. It is diagonalizable in the following sense: there
exist κα ∈ C∞(TM) and Xα ∈ Xh

(TM) for α = 1, . . . , n such that

Φ(Xα) = κα ⋅ JXα .

(he summation convention is not applied on the index α here and in the sequel). Xα
is called an eigenvector ûeld ofΦ corresponding to the eigenfunction κα . In particular,
using (2.5), we have

(2.7) Φ(S) = iSR(S) = R(S , S) = 0;

that is, Xn ∶= S is always an eigenvector of Φ corresponding to the eigenfunction
λn = 0.

Deûnition 2.8 he eigenfunctions κ1 , . . . , κn−1 of the Riemannian curvature are
called the principal curvatures of the Finsler metric.
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he principal curvatures are the most important intrinsic invariants of the Finsler
metric (see [14]).

3 Holonomic Projective Deformations

In this section, we investigate the holonomic projective deformations, that is, projec-
tive deformations by a holonomy invariant functions. We focus mainly on the prop-
erties of the holonomy distribution of the projective deformation (1.1). he rather
technical results of this section are necessary to prove the metrizability results of
Section 4.

Lemma 3.1 Let S be the geodesic spray, let P be a holonomy invariant function, and
let λ ∈ R. hen some geometric quantities associated with the projectively deformed
spray S̃ = S − 2λPC are given by

̃h = h − λ(PJ + dJP⊗ C),(3.1)
ṽ = v + λ(PJ + dJP⊗ C),(3.2)

Φ̃ = Φ + λ2
(P2 J −PdJP⊗ C).(3.3)

Proof In [3, Proposition 4.4], the geometric quantities of the projectively deformed
spray (1.1) given by S̃ = S − 2P̃ C, were expressed in terms of the original spray S and
the projective factor P̃:

̃h = h − P̃J − dJP̃⊗ C,(3.4)

ṽ = v + P̃J + dJP̃⊗ C,

Φ̃ = Φ + (P̃2
−LSP̃)J + (2dhP̃ − P̃dJP̃ −∇dJP̃) ⊗ C,

where ∇ is the dynamical covariant derivative [2, Deûnition 3.4]. Using the fact that
the spray S is horizontal, that is hS = S, and P̃ ∶= λP is holonomy invariant, from
(2.6), we get

(3.5) LSP = LhSP = dhP(S) = 0.

Finally, using the commutator formula ∇dJ − dJ∇ = 4iR − dh ([3, eq. (4.11)]), we get

(3.6) ∇dJP = dJ∇P − dhP + 4iRP = dJ∇P = dJLSP = 0.

Using (2.6), (3.5), and (3.6), one can simplify the formulas of (3.4), and we get
(3.1)–(3.3). ∎

3.1 Horizontal and Vertical Subdistributions Adapted to Holonomic Projective
Deformation

For further computation and analysis, it will be very useful to introduce a decom-
position of the horizontal (resp. the vertical) distributions adapted to a holonomic
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projective deformation associated with the projective factor P. We introduce the en-
domorphsims

h
P
= h −

dJP

P
⊗ S , v

P
= v −

dvP
P

⊗ C,

and we set

H
P
∶= Im h

P
, V

P
∶= Im v

P
.

We have the following lemma.

Lemma 3.2
(i) Properties of v

P
and V

P
:

(a) ker(v
P
) =H ⊕ Span{C}

(b) Im(v
P
) = V

P
is an (n − 1)-dimensional involutive subdistribution of V,

(c) any X ∈ V
P

is an inûnitesimal symmetry of P that is LXP = 0.
(d) the vertical distribution have the decomposition V = V

P
⊕ Span{C}.

(ii) Properties of h
P
andH

P
:

(a) ker(h
P
) = V⊕ Span{S}

(b) Im(h
P
) =H

P
is an (n − 1)-dimensional subdistribution ofH,

(c) any X ∈H
P

is an inûnitesimal symmetry of P that is LXP = 0.
(d) the horizontal distribution have the decomposition H =H

P
⊕ Span{S},

(iii) J(H
P
) = V

P
.

Proof We prove (i) in detail. he computations for (ii) are similar.
(a) We note that H = Ker v, therefore, H ⊂ Ker v

P
. Moreover, if V ∈ ker v

P
is

vertical, then using v(V) = V , we get

v
P
(V) = 0 ⇐⇒ V =

V(P)

P
C;

that is, V ∈ Span{C}, and we get (a).
(b) We introduce the simpliûed notation Pi ∶= ∂̇ iP and the vector ûelds

h i ∶= h
P
(δ i) = δ i −

Pi

P
S ,(3.7)

v i ∶= v
P
(∂̇ i) = ∂̇ i −

Pi

P
C(3.8)

for i = 1, . . . , n. We get

H
P
= Span{h1 , . . . , hn},(3.9)

V
P
= Span{v1 , . . . , vn}.(3.10)

Wenote that the vector ûelds in (3.9) (resp. in (3.10)) are not independent, since y ih i =

0 (resp. y iv i = 0). Because the 1-homogeneity property of P (and the 0-homogeneity
property of Pi) for any v i , v j ∈ VP

, their Lie bracket is

[v i , v j] = [∂̇ i −
Pi

P
yk ∂̇k , ∂̇ j −

P j

P
yℓ ∂̇ℓ] =

Pi

P
∂̇ j −

P j

P
∂̇ i =

Pi

P
v j −

P j

P
v i ,

and hence from (3.10), we get that [v i , v j] ∈ VP
, hence V

P
is involutive.
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(c) One can check that the generators (3.10) of the distribution are inûnitesimal
symmetry of P. Indeed, using Euler’s theorem of the homogeneous functions, we get
for the 1-homogeneous P:

(3.11) LCP = P,

and therefore

(3.12) Lv i P = ∂̇ i(P) −
Pi

P
C(P) = Pi −

Pi

P
P = 0.

(d) Supposing C ∈ V
P
we get form (3.10) that C = C iv i with some coeõcients C i .

Solving this equation, since C(P)=P and v i(P)= 0, we ûnd that C(P)=C iv i(P)= 0,
which is a contradiction.
For (iii), we note that for the generators (3.7) of (3.9) and (3.8) of (3.10), we get

Jh i = Jδ i −
Pi

P
JS = ∂̇ i −

Pi

P
C = v i ,

i = 1, . . . , n, and this proves (iii). ∎

3.2 Curvature Properties of the Holonomy Deformation

In the sequel, we investigate the curvature properties of the connections associated
with a Finsler metrizable spray S and its holonomy invariant projective deformation
S̃ = S − 2λPC. We focus on the Riemannian curvature.

Lemma 3.3 (Riemann curvature of a Finsler spray S) LetP be a nontrivial holonomy
invariant 1-homogeneous function with respect to the Finsler spray S. hen one can
choose a basisX = {X i}i=1. . .n of the horizontal distributionH such that the elements of
X are eigenvectors of Φ with Xn = S and

H
P
= Span{X1 , . . . , Xn−1}.

Proof Using the notation of Section 2.4, there exists a basis {Xα} composed of
eigenvectors of Φ where Xn ∶= S is an eigenvector of Φ corresponding to the eigen-
function κn = 0. We consider the decomposition H =H

P
⊕ Span{S} given in

Lemma 3.2. For α ∈ {1, . . . , n − 1} the eigenvector Xα can be written as a linear com-
bination

(3.13) Xα = X i
α ⋅ h i + XS

α ⋅ S ,

of the vectors (3.7) and the spray S. If κα ≠ 0, then, using Corollary 2.6, we get
LΦ(Xα)P = 0, and using (3.12) we get:

0 = LΦ(Xα)P = κα LJXαP = κα(X i
αLv iP + XS

αLCP) = κα XS
α P.

Since P ≠ 0, it follows that XS
α = 0, that is, Xα ∈ H

P
. On the other hand, if κα = 0,

then using the notation (3.13), we can modify Xα to get X̂α ∶= Xα − XS
α ⋅ S , which will

be an eigenvector of Φ in H
P
with eigenvalue κα = 0. ∎
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Let P be a holonomy invariant function. If we ûx an arbitrary point (x , y) ∈ TM,
then for almost any value of λ ∈ R, the inequality

(3.14) κα(x , y) + λ2P2
(x , y) ≠ 0

holds for any α = 1, . . . , n. Using the continuity property of the eigenvaules κα , there
is an open neighbourhoodU ⊂ TM of (x , y) such that the condition (3.14) is satisûed
on U . From now on, all geometric objects will be restricted to U .

Lemma 3.4 (Riemann curvature of the projectively deformed spray S̃)
For λ ∈ R such that (3.14) holds, the image of the Riemann curvature Φ̃ of S̃ is V

P
:

V
P
= Im Φ̃.

Proof We have that Φ̃ is determined by (3.3). Since it is semibasic, it is identically
zero on vertical vector ûelds. Hence, its image can be calculated by using horizontal
vectors. We will use the horizontal basis introduced in Lemma 3.3.
For α = n, we have Xn = S and dJP(S) = dJSP = dCP = P; hence, from (2.7), (3.3),

and (3.11), we obtain

Φ̃(S) = Φ(S) + λ2P2 JS − λ2P dJP(S) ⊗ C = 0 + λ2P2C − λ2P2C = 0.

For 1 ≤ α < n we have Xα ∈ H
P
. Using Lemma 3.2(iii), we have JXα ∈ V

P
and

from (i)(c) of the same lemma, we get dJP(Xα) = LJXαP = 0. It follows that

Φ̃(Xα) = Φ(Xα) + λ2
(P2 J −PdJP⊗ C)(Xα) = (κα + λ2P2

)JXα .

Using (3.14) we get that JXα ∈ Im Φ̃. Summarizing, we have

Im Φ̃ = Span{JX1 , . . . , JXn−1} = V
P
. ∎

Since the image of the Riemann curvature is a subspace of the holonomy distribu-
tion (see Corollary (2.6)), we get the following corollary.

Corollary 3.5 Under the hypothesis of Lemma 3.4, we have

(3.15) V
P
⊂Dhol (S̃).

Proposition 3.6 If the projective factor P is nonlinear and λ ≠ 0 satisûes (3.14) on
U ⊂ TM, then the holonomy distribution of the non-trivial projectively deformed spray
S̃ = S − 2λPC is the full TU, that is,

Dhol (S̃)∣U = TU .

Proof heholonomydistributionDhol (S̃)of the spray S̃ contains its horizontal space
H̃ and the image of the Riemann curvature Φ̃; therefore, from Lemma 3.4, we get that

(3.16) H̃ ⊕V
P
⊂Dhol (S̃).

It follows that ̃h i ∶=
̃h(h i) and v i are elements of Dhol (S̃). By the involutivity of

Dhol (S̃), the Lie bracket [̃h i , v i] and its horizontal part are inDhol (S̃); therefore, so is

709

https://doi.org/10.4153/S0008439520000016 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439520000016


S. G. Elgendi and Z. Muzsnay

its vertical part:

(3.17) ṽ[̃h i , v j] ∈Dhol (S̃).

On the other side, we get from (3.1) that ̃h i = h i − λPv i , and hence, taking Lv iP = 0
into account, we have

(3.18) ṽ[̃h i , v j] = ṽ[h i , v j] − λPṽ[v i , v j].

Since the distribution V
P

is integrable, ṽ is the identity on V
P
, and we have

(3.19) ṽ[v i , v j] = [v i , v j] ∈ V
P
⊂Dhol (S̃).

herefore, from (3.17) and (3.19), using (3.18), we get that

(3.20) ṽ[h i , v j] ∈HolS̃ .

On the other hand, using the identities

δ iP j = Gk
i jPk , δ i y j

= −G j
i , S(P j) = Gk

j Pk , S(y j
) = −2G j ,

we have

v[h i , v j] = v[δ i −
Pi

P
S , ∂̇ j −

P j

P
C] = (Gk

i j −
Pi

P
Gk

j )vk ,

from which we get that v[h i , v j] ∈ VP
and

(3.21) v[h i , v j] ∈Dhol (S̃).

Now, by (3.2), we have

(3.22) ṽ[h i , v j] − v[h i , v j] = λPJ[h i , v j] + λLJ[h i ,v j]PC,

and because of (3.20) and (3.21), the le�-hand side of (3.22) is inDhol (S̃), and so is the
right-hand side:

(3.23) P ⋅ J[h i , v j] +LJ[h i ,v j]P ⋅ C ∈Dhol (S̃).

Calculating the second term on the right-hand side of (3.22), we get

J[h i , v j] = J[δ i −
Pi

P
S , ∂̇ j −

P j

P
C] =

Pi

P
v j +

Pi j

P
C,

where Pi j ∶= ∂̇ jPi . Using Lemma 3.2(i)(c), we get

P ⋅ J[h i , v j] +LJ[h i ,v j]P ⋅ C = Piv j + 2Pi jC.

he (3.23) and (3.15) show that the le�-hand side and the ûrst term in the right-hand
side are in Dhol (S̃); therefore, Pi jC ∈ Dhol (S̃). Since P is non linear, then there exists
at least pair of indices (i , j) such that Pi j ≠ 0. It follows that

C ∈Dhol (S̃).

Completing (3.16) with Span{C}, we get

H̃ ⊕V
P
⊕ Span{C} ⊂Dhol (S̃).
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According to Lemma 3.2(i)(d), we have V
P
⊕ Span{C} = V = Ṽ; therefore,

H̃ ⊕ Ṽ =Dhol (S̃),

which proves the proposition. ∎

4 Metrizability of Holonomic Projective Deformations

In this section, we investigate the metrizability property of the holonomic projective
deformation S̃ = S − 2λPC of the spray S. Our goal is to prove heorem 1.1 and to
characterize the cases where such a deformation can lead to a metrizable spray.

Proposition 4.1 Let λ ∈ R be such that (3.14) holds. If λ ≠ 0, then the projectively
deformed spray S̃ = S − 2λPC is not metrizable.

Proof Arguing by contradiction, let us suppose that S̃ is Finsler metrizable and Ẽ is
a Finsler energy function associated with S̃. Depending on the linearity of the pro-
jective factor P, we consider two cases. If the projective factor P is nonlinear, from
Proposition 3.6, we get that Dhol (S̃) = TTM. Hence, using Corollary 2.7, we get
that the derivative of Ẽ of S̃ should be identically zero with respect to any vector ûeld
X ∈ X(TM), that is, Ẽ is constant, which is impossible. On the other hand, if the
projective factor P is linear, then using (3.15) and Corollary 2.7, we get

Lv i Ẽ = 0 Ô⇒ ∂̇ i Ẽ −
Pi

P
LC(Ẽ) = 0 Ô⇒

∂̇ i Ẽ
Ẽ

= 2
∂̇ iP

P
;

therefore, locally, there exists a function θ(x) on M such that Ẽ = P2eθ(x) . Writing
the linear projective factor in the form P = a i(x)y i , we get

g i j(x , y) = ∂̇ i ∂̇ j Ẽ = 2a i(x)a j(x)eθ(x);

hence, g i j has rank 1, and in the case n ≥ 2, the energy function Ẽ is degenerate, which
is a contradiction. ∎

Proof of the Theorem 1.1 LetPbe a nontrivial holonomy invariant 1-homogeneous
function. Let us ûx a point x ∈ M and a direction y ∈ TxM. hen, using the eigenvalue
κ i of the Riemann curvature Φ at y, the set

Λ(x ,y) ∶= { λ ∈ R ∣ κ i + λ2P2
= 0, i = 1, . . . , n−1}

is a ûnite set; therefore, its complement is an open dense subset ofR. For any element
λ ∈ R/Λ(x ,y), we have (3.14), and using heorem 4.1, one obtains that S̃ = S − 2λPC,
is not metrizable. ∎

As the previous results show, for a given Finsler structure (M , F), only very speciûc
holonomy invariant projective factors can produce Finsler metrizable sprays. Such
projective factors must be related to the principal curvature of the original Finsler
structure. More precisely, we have the following corollary.
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Corollary 4.2 Let (M , F) be a Finsler manifold, let S be its geodesic spray, and let P̃
be a holonomy invariant nonzero function. If the projective deformation S̃ = S − 2P̃ C

is metrizable, then

(4.1) P̃2
+ κα = 0,

for some (nonzero) principal curvature κα , α ∈ {1, . . . , n − 1}.

In particular, we obtain that if the principal curvatures are all non-negatives, then
there is no non-trivial holonomy invariant metrizable projective deformation of the
Finsler structure.
As Corollary 4.2 shows, the holonomy invariant projective deformations S̃ = S −

2P̃ C leading to metrizable sprays are limited by the condition (4.1). We emphasize,
however, that (4.1) gives only a necessary condition, as will be shown in coming ex-
amples where we consider Finsler functions F having constant �ag curvature κ. It
follows that the principal curvatures

(4.2) κα = κF2 ,

for α = 1, . . . , n − 1 are equal [3].

Example 1 Let us consider the Klein metric

F =

¿

Á
ÁÀ

(1 − ∣x∣2)∣y∣2 + ⟨x , y⟩2

(1 − ∣x∣2)2 .

It is a projectively �at metric of constant �ag curvature κ = −1, and its geodesic spray
S is given by the geodesic coeõcients G i

=
⟨x ,y⟩
1−∣x ∣2 y

i . Since F is a holonomy invariant
function,

(4.3) S̃ = S − 2FC

is a holonomy invariant projective deformation of the Finsler spray S with P̃ = F.
From (4.2), we get κα = −F2, and (4.1) is satisûed. he geodesic coeõcients of (4.3)
are

G̃ i
= (

¿

Á
ÁÀ

(1 − ∣x∣2)∣y∣2 + ⟨x , y⟩2

(1 − ∣x∣2)2 +
⟨x , y⟩
1 − ∣x∣2

)y i .

It is clear that the above spray S̃ is projectively �at. Moreover, one can show that (4.3)
is also R-�at, and by [9], it is locally Finsler metrizable. It should be noted that the
(global) Finsler metrizability of (4.3) is questioned in [13, Chapter 10.3].

Example 2 Modifying the above example, let us consider for µ > 0 the Finsler
function

F =

¿

Á
ÁÀ

(1 − µ∣x∣2)∣y∣2 + µ⟨x , y⟩2

(1 − µ∣x∣2)2 .

It is a projectively �at metric of constant �ag curvature κ = −µ (see [5]), and its
geodesic spray S is given by G i

= µ ⟨x ,y⟩
1−∣x ∣2 y

i . From (4.2), the principal curvatures
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are κα = −µF2 . hen

(4.4) S̃ = S − 2λF ⋅ C,

with λ ∈ R, λ ≠ 0, is a nontrivial holonomy invariant projective deformation of the
Finsler spray S with projective factor P̃ = λF. If λ = √µ, then (4.1) is satisûed; the
spray (4.4) is R-�at, and hence it is locally Finsler metrizable. For any other nonzero
value of λ, the condition (4.1) is not satisûed, and (4.4) is not Finsler metrizable.
Indeed, one can check that in a generic direction y ∈ TM, the holonomy distribu-
tion Dhol (S)y contains the full second tangent direction, that is,Dhol (S)y = TyTM.

Open problem Corollary 4.2 gives necessary conditions on the Finslermetrizability
of holonomy invariant projective deformations in terms of the principal curvatures.
It would be very interesting to ûnd suõcient conditions of metrizability that can be
expressed by these important geometric quantities.
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