
1

Preliminaries

In this chapter we introduce some notation, including definitions and basic properties of
source coding, entropy, and redundancy. In particular, we define the average redundancy and
the worst-case redundancy for prefix codes.

1.1 Source Code and Entropy

Let us start with some notation. Throughout, we write x = x1x2 . . . for a nonempty sequence
of unspecified length over a finite alphabet A. We also write x j

i = xi, . . . , xj ∈ Aj−i+1 for a
consecutive subsequence of length j − i + 1. Sometimes we use the abbreviation xn

= xn
1.

Finally, throughout we write Z, Q, and R for integer, rational, and real numbers respectively.
A (binary) code is a one-to-one (or injective) mapping:

C : A→ {0, 1}+

from a finite alphabet A (the source) to the set {0, 1}+ of nonempty binary sequences (where
we use the notation S+ = ∪∞i=1Si) One can extend this concept to m-ary codes C : A →
{0, 1, . . . , m−1}+, if needed. We write L(C, x) (or simply L(x)) for the length of C(x). Finally,
a code is a prefix code if no codeword is a prefix of another codeword.

In this book, we mostly deal with a sequence of codes:

Cn : An → {0, 1}+,

where An is a sequence of alphabets. In particular, if this sequence is of the form An = An,
where A = {0, . . . , m − 1}, the code is called a fixed-to-variable (FV) code, discussed
in Chapter 2. If An ⊆ A+ and {0, 1}+ is replaced by {0, 1}M for some M , we deal with
variable-to-fixed (VF) codes; otherwise we have a general variable-to-variable (VV) code.
We discuss VF codes in Chapters 3 and 4 and VV codes in Chapter 5.

We denote by P a probability distribution on the alphabet A. The elements of the source
can be then interpreted as a random variable X with probability distribution P(X = x) =
P(x). Such a source is also called probabilistic source. For example, the code length L(X ) is
then a random variable too, and the expected code length E[L(X )] is an important parameter
of a probabilistic source code.

The source entropy of a probabilistic source is defined by

H(X ) := H(P) = −E[log P(X )] = −
∑
x∈A

P(x) log P(x),
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4 Preliminaries

where we write log for the logarithm of unspecified base; however, throughout the book, the
base is usually equal to 2, unless specified otherwise.

Finally, we introduce a few other concepts related to entropy that we will use throughout
the book.

Definition 1.1 (i) Let A and A′ be two finite alphabets and P a probability distribution on
A × A′, and (X , Y ) a random vector with P(X = a, Y = a′) = P(a, a′). Then the Joint
Entropy H(X , Y ) is defined as

H(X , Y ) = −E[log P(X , Y )] = −
∑
a∈A

∑
a′∈A′

P(a, a′) log P(a, a′). (1.1)

(ii) The Conditional Entropy H(Y |X ) is

H(Y |X ) = −E[log P(Y |X )] =
∑
a∈A

P(a)H(Y | X = a)

= −

∑
a∈A

∑
a′∈A′

P(a, a′) log P(a′|a), (1.2)

where P(a′|a) = P(a, a′)/P(a) and P(a) =
∑

a′∈A′ P(a, a′).
(iii) The Relative Entropy or Kullback Leibler Distance or Kullback Leibler Divergence
between two distributions P and Q defined on the same probability space (or finite alphabet
A) is

D(P‖|Q) = E
[

log
P(X )

Q(X )

]
=

∑
a∈A

P(a) log
P(a)

Q(a)
, (1.3)

where, by convention, 0 log(0/Q) = 0 and P log(P/0) = ∞.

(iv) The Mutual Information of X and Y is the relative entropy between the joint distribution
of X and Y and the product distribution P(X )P(Y ); that is,

I(X ; Y ) = E
[

log
P(X , Y )

P(X )P(Y )

]
=

∑
a∈A

∑
a′∈A′

P(a, a′) log
P(a, a′)

P(a)P(a′)
. (1.4)

(v) Rényi’s Entropy of order b (−∞ ≤ b ≤ ∞, b 6= 0) is defined as

Hb(X ) = −
log E[Pb(X )]

b
= −

1

b
log

∑
a∈A

Pb+1(a), (1.5)

provided b 6= 0 is finite, and by

H−∞ = min
i∈A
{P(i)}, (1.6)

H∞ = max
i∈A
{P(i)}. (1.7)

Observe that H(X ) = limb→0 Hb(X ).

If Pn is a sequence of probability measures on An (for n ≥ 1), we also define the entropy
rate h, if it exists, as

h = lim
n→∞

H(Pn)

n
= lim

n→∞

−
∑

xn∈An Pn(xn) log Pn(xn)

n
.
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Figure 1.1 Lattice paths and binary trees.

1.2 Prefix Codes and Their Properties

As discussed, a prefix code is a code for which no codeword C(x) for x ∈ A is a prefix of
another codeword. For such codes, there is mapping between a codeword C(x) and a path in
a tree from the root to a terminal (external) node (e.g., for a binary prefix code, a move to
the left in the tree represents 0 and a move to the right represents 1), as shown in Figure 1.1.
We also point out that a prefix code and the corresponding path in a tree define a lattice path
in the first quadrant also shown in Figure 1.1. Here left L and right R traversals in the binary
tree correspond to “left” or “up” movement in the lattice. If some additional constraints
are imposed on the prefix codes, this translates into certain restrictions on the lattice path
indicated as the shaded area in Figure 1.1. (See Section 3.4 for some embellishments on this
topic.)

The prefix condition imposes some restrictions on the code length. This fact is known as
Kraft’s inequality discussed next.

Theorem 1.2 (Kraft’s inequality) Let |A| = N. Then for any binary prefix code C we
have ∑

x∈A

2−L(C,x)
≤ 1.

Conversely, if positive integers `1, `2, . . . , `N satisfy the inequality

N∑
i=1

2−`i ≤ 1, (1.8)

then there exists a prefix code with these codeword lengths.

Proof This is an easy exercise on trees. Let `max be the maximum codeword length. Observe
that at level `max, some nodes are codewords, some are descendants of codewords, and some
are neither. Since the number of descendants at level `max of a codeword located at level `i

is 2`max−`i , we obtain
N∑

i=1

2`max−`i ≤ 2`max ,

which is the desired inequality. The converse part can also be proved, and the reader is asked
to prove it in Exercise 1.7.

Using Kraft’s inequality we can now prove the first theorem of Shannon (which was first
established by Khinchin) that bounds from below the average code length.
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Theorem 1.3 Let C be a prefix code on the alphabet A, P a probability distribution on A,
and X a random variable with P(X = a) = P(a). Then the average code length E[L(C, X )]
cannot be smaller than the entropy H(P); that is,

E[L(C, X )] ≥ H(P),

where the expectation is taken with respect to the distribution P and the logarithms in the
definition of H(P) are the binary logarithms.

Proof Let K =
∑

x 2−L(x)
≤ 1 and L(x) := L(C, x). Then by Kraft’s inequality, K ≤ 1.

Furthermore, by using the inequality − log2 x ≥ 1
ln 2 (1− x) for x > 0 we get (recall that

log = log2)

E[L(C, X )]− H(P)] =
∑
x∈A

P(x)L(x)+
∑
x∈A

P(x) log P(x)

= −

∑
x∈A

P(x) log
2−L(x)/K

P(x)
− log K

≥
1

ln 2

(∑
x∈A

P(x)−
1

K

∑
x∈A

2−L(x)

)
− log K

= − log K ≥ 0,

as proposed.

Observe that this theorem implies the existence of at least one element x̃ ∈ A such that

L(̃x) ≥ − log P(̃x). (1.9)

Furthermore, we can complement Theorem 1.3 by the following property.

Lemma 1.4 (Barron) Let C be a prefix code and a > 0. Then

P(L(C, X ) < − log P(X )− a) ≤ 2−a.

Proof We argue as follows (again log = log2):

P(L(X ) < − log P(X )− a) =
∑

x: P(x)<2−L(x)−a

P(x)

≤

∑
x: P(x)<2−L(x)−a

2−L(x)−a

≤ 2−a
∑

x

2−L(x)
≤ 2−a,

where we have used Kraft’s inequality.

What is the best prefix code with respect to code length? We are now in a position to
answer this question. One needs to solve the following constrained optimization problem:

min
L

∑
x

L(x)P(x) subject to
∑

x

2−L(x)
≤ 1. (1.10)

This optimization problem has an easy real-valued solution through Lagrangian multipli-
ers, and one finds that the optimal code length is L(x) = − log P(x), provided the integer
character of the length is ignored (see Exercise 1.8). If it is not ignored, then interesting
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things happen. First, the excess of the code length over − log P(x) is called the redundancy
and is discussed in this book, in particular in Chapter 2. Furthermore, to minimize the re-
dundancy, that is, to make− log P(x) as close to an integer as possible, ingenious algorithms
were designed, which we will discuss in Part I of this book, in particular in Chapter 5.

In this book, we mostly deal with prefix codes, with the exception of Chapter 6 where we
discuss nonprefix one-to-one codes.

To start with, we just mention a very simple prefix code, namely the Shannon code. It
assigns to x ∈ A a codeword with code length

L(x) = d− log P(x)e.

By Theorem 1.2, such a prefix code always exists, since∑
x∈A

2−d− log P(x)e
≤

∑
x∈A

P(x) = 1.

1.3 Redundancy

In general, one needs to round the length to an integer, thereby incurring some cost. This
cost is usually called redundancy. More precisely, redundancy is the excess of real code
length over its ideal (optimal) code length, which is assumed to be − log P(x). There are
several possible specifications of this general definition. For a known distribution P, which
we assume throughout Part I, the pointwise redundancy RC(x) for a code C and the average
redundancy R

C
are defined as

RC(x) = L(C, x)+ log P(x),

R = E[L(C, X )]− H(P)].

Furthermore, we define the maximal or worst-case redundancy R∗ as

R∗ = max
x∈A

[L(C, x)+ log P(x)] = max
x∈A

RC(x).

The pointwise redundancy can be negative, but the average and worst-case redundancies
cannot due to the Shannon theorem (Theorem 1.3) and (1.9), respectively.

For example, for the Shannon code we have

0 ≤ R ≤ R∗ = max
x∈A

[d− log P(x)e + log P(x)] < 1.

1.4 Exercises

1.1 Establish the following properties:

H(X , Y ) = H(X )+ H(Y |X ),

H(X1, X2, . . . , Xn) =
n∑

i=1

H(Xi|Xi−1, . . . , X1),

I(X ; Y ) = H(X )− H(X |Y ) = H(Y )− H(Y |X ),

I(X ; X ) = H(X ).
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1.2 Prove that the following inequalities hold:

D(P‖Q) ≥ 0, (1.11)

I(X ; Y ) ≥ 0, (1.12)

H(X ) ≥ H(X |Y ), (1.13)

H(X1, . . . , Xn) ≤
n∑

i=1

H(Xi), (1.14)

with equality in (1.11) if and only if P(a) = Q(a) for all a ∈ A, equality in (1.12)
and (1.13) if and only if X and Y are independent, and equality in (1.14) if and only
if X1, . . . , Xn are independent.

1.3 Let Y = g(X ) where g is a measurable function. Prove

• h(g(X )) ≤ h(X );
• h(Y |X ) = 0.

1.4 Random variables X , Y , Z form a Markov chain in that order (denoted by X → Y →
Z) if the conditional distribution of Z depends on Y and is independent of X ; that is,

P(X = x, Y = y, Z = z) = P(X = x)P(Y = y|X = x)P(Z = z|Y = y)

for all possible x, y, z. Prove the data processing inequality that states

I(X ; Y ) ≥ I(X ; Z)

if X → Y → Z.
1.5 Consider a probability vector p = (p1, . . . , pn) such that

∑n
i=1 pi = 1. What proba-

bility distribution p minimizes the entropy H(p)?
1.6 (Log sum inequality) (i) Prove that for nonnegative numbers a1, . . . , an and b1, . . . , bn,

n∑
i=1

ai log
ai

bi
≥

(
n∑

i=1

ai

)
log

∑n
i=1 ai∑n
i=1 bi

with equality if and only if ai

bi
= const.

(ii) Deduce form (i) that for p1, . . . , pn and q1, . . . , qn such that
∑n

i=1 pi =
∑n

i=1 qi =

1, we have
n∑

i=1

pi log
1

qi
≥

n∑
i=1

pi log
1

pi
;

that is,

min
qi

n∑
i=1

pi log
1

qi
=

n∑
i=1

pi log
1

pi
.

(iii) Show that the following (potential) extension of (ii) is not true:
n∑

i=1

pi

⌈
log

1

qi

⌉
≥

n∑
i=1

pi

⌈
log

1

pi

⌉
,

where dxe is the smallest integer greater than or equal to x.
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1.7 Prove the converse part of the Kraft inequality in Theorem 1.2.
1.8 Consider the optimization problem (1.10). Show that the optimal length is L(x) =

− log P(x).
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