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Introduction

Let F be a totally real number field of degree g = [F :Q] and p a prime ideal of F above

a fixed prime number p.

0.1. Noncritical Galois representations

The objects of this article are p-adic representations of the Galois group GF =Gal(F/F ).

Among them there is a subclass called semistable; roughly speaking, a p-adic Galois
representation is called semistable at p if its restriction to GFp

has periods in Fontaine’s

period ring Bst.

Let L be an extension of Fp that splits Fp. Among semistable (but noncrystalline)

2-dimensional L-representations of GF , there is a subclass, called noncritical, that can
be attached to Fontaine-Mazur L-invariants. See Section 1 for its precise definition. The

importance of L-invariants is due to the fact that they occur in the exceptional zero

conjecture proposed by Mazur, Tate and Teitelbaum [19]. This conjecture was proved by
Greenberg and Stevens [16].

When Fp = Qp, all semistable representations are automatically noncritical. However,

when Fp is different from Qp, a new phenomenon is that there exist critical semistable
noncrystalline 2-dimensional Galois representations.

The main result is the following.

Theorem 0.1. (=Theorem 1.2) Assume that F is a totally real field that satisfies the
following condition:

there is no place other than p above p.
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Let f∞ be a Hilbert modular form over F of even weight (k1, · · · ,kg,w) and suppose that

f∞ is new at p (and another prime ideal if [F : Q] is odd). Then the p-adic Galois

representation attached to f∞ is semistable and noncritical at p.

Here, the notion even weight means that k1, · · · ,kg and w are all even.

Inspired by Theorem 0.1, we propose the following.

Conjecture 0.2. Let f∞ be a Hilbert modular form over F that is new at p. Then the

p-adic Galois representation attached to f∞ is semistable and noncritical at p.

The key in the proof of Theorem 0.1 is the Hodge-like decomposition of de Rham

cohomology. We state this decomposition below.
Let H be Drinfeld’s upper half plane and Γ an arithmetic Schottky group that is

cocompact in PGL(2,Fp). Then Γ acts freely on H and the quotient XΓ = Γ\H is the

rigid analytic space associated with a proper smooth curve over Fp. Let V be the local
system coming from an L[Γ]-module V , where L is a field that contains Fp. Fix an

embedding τ : Fp → L and consider V as an Fp[Γ]-module by τ . Let H1
dR,τ (XΓ,V ) be the

hypercohomology of the complex V ⊗τ,Fp
Ω•

XΓ
. Then we have the following decomposition,

called the Hodge-like decomposition:

H1
dR,τ (XΓ,V ) =H0(XΓ,V ⊗τ,Fp

Ω1
XΓ

)⊕H1(Γ,V ). (0.1)

Let Hd be the d-dimensional Drinfeld p-adic symmetric domain. The Hodge-like

decomposition for the de Rham cohomology H•
dR(Γ\Hd) of certain quotient Γ\Hd of

Hd was conjectured by Schneider [25] and proved by Iovita and Spiess [17]. When d= 2 –

that is, Hd is the above H – de Shalit [9] proved the Hodge-like decomposition for certain

local systems. However, neither the result of Iovita and Spiess nor the result of de Shalit
covers our situation.

We sketch the proof of (0.1). The quotient of H1
dR,τ (XΓ,V ) by H1(Γ,V ) is isomorphic

to C1
har(V )Γ, the group of Γ-invariant harmonic cocycles on the Bruhat-Tits tree attached

to PGL(2,Fp). By Amice-Velu and Vishik’s method we construct a map

C1
har(V )Γ →H0(XΓ,V ⊗τ,Fp

Ω1
XΓ

) c �→ ωτ
c

and show that for each c the image of ωτ
c by the quotient map H1

dR,τ (XΓ,V )→C1
har(V )Γ

is just c. Combining this with a comparing dimensions argument we obtain (0.1).

Now, we sketch the proof of Theorem 0.1. The Galois representation attached to f∞
comes from the étale cohomology H1

et of some local system on a Shimura curve. The
Shimura curve has a p-adic uniformisation; precisely there are some arithmetic Schottky

groups Γi such that the rigid analytic space attached to the Shimura curve is isomorphic

to the union ∪iΓi\H.
We will give a precise description of the filtered ϕq-isocrystal, denoted by V , attached

to the above local system. In [6], Coleman and Iovita provided a precise description

of the monodromy on the de Rham cohomology of V . By their result and the Hodge-
like decomposition, we show that the monodromy is injective on

⊕
i

H0(Γi\H,V ⊗τ,Fp

Ω1). Our precise description of V will imply that
⊕
i

H0(Γi\H,V ⊗τ,Fp
Ω1) coincides
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with Fil
w+minτ kτ

2 −1⊕
i

H1
dR,τ (Γi\H,V ). Then we deduce that the monodromy induces an

isomorphism

Fil
w+minτ kτ

2 −1
⊕
i

H1
dR,τ (Γi\H,V )

∼−→
⊕
i

H1
dR,τ (Γi\H,V )/Fil

w+minτ kτ
2 −1

⊕
i

H1
dR,τ (Γi\H,V ),

which implies Theorem 0.1.

When F has more than one place (say r places) above p, our method of computing

filtered ϕq-isocrystals is not valid. To make it work, one may have to consider the Shimura
variety studied by Rapoport and Zink [23, Chapter 6] (which is of dimension r) instead of

the Shimura curve. Coleman and Iovita’s result [6] is valid only for curves and so cannot

be applied directly.

0.2. Fontaine-Mazur L-invariants and Teitelbaum-type L-invariants

Because the Galois representation attached to f∞ is noncritical at p, we can attach to it

the Fontaine-Mazur L-invariant, denoted by LFM (f∞).

Chida, Mok and Park [4] attached to each automorphic form f over a totally definite
quaternion algebra (also of weight (k1, · · · ,kg,w)) that satisfies the following condition:

(CMP) f is new at p and Upf =Npw/2f,

another kind of L-invariant LT (f), called the Teitelbaum-type L-invariant. Both

LFM (f∞) and LT (f) are vector valued. See Subsection 1.2 and Subsection 9.2 for

their precise definitions. As mentioned previously, the importance of L-invariants is due
to the fact that they occur in the exceptional zero conjecture [19]. The readers are invited

to consult Colmez’s paper [7] for a historical account on the exceptional zero conjecture

and L-invariants.
In [4], Chida, Mok and Park conjectured that LFM (f∞) = LT (f) when f∞ and f are

attached to each other by Jacquet-Langlands correspondence. When F =Q, this is already

known by Iovita and Spiess [18]. We prove their conjecture under the same assumption

as in Theorem 0.1.

Theorem 0.3. (=Theorem 9.3) Assume that F is a totally real number field that satisfies

the following condition:

there is no place other than p above p.

Let f∞ and f be as above. Then LFM (f∞) = LT (f∞).

As in [18], we prove Theorem 0.3 by analyzing the relation among the monodromy

operator, Coleman integration and Schneider integration.

The article is organised as follows. In Section 1 we recall the notion of noncritical 2-

dimensional Galois representations and state the main theorem. Coleman and Iovita’s

result is recalled in Section 2. Section 3 is devoted to computing the filtered ϕq-isocrystal
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attached to the universal special formal module. We introduce various Shimura curves
and study their p-adic uniformisations following Rapoport and Zink in Section 4 and

Section 5, respectively. In Section 6 we use the result in Section 3 to determine the

filtered ϕq-isocrystals attached to various local systems on Shimura curves. In Section 7
we recall the theory of de Rham cohomology of certain local systems and prove the Hodge-

like decomposition theorem. In Section 8, we combine results in Section 2, Section 6 and

Section 7 to prove Theorem 0.1. In Section 9 we recall Chida, Mok and Park’s construction

of Teitelbaum-type L-invariants and prove Theorem 0.3.

Notation

For two Q-algebras A and B, write A⊗B for A⊗QB. For a ring R let R× denote the
multiplicative group of invertible elements in R.

Let F be a totally real number field, g = [F :Q]. Let p be a fixed prime. Suppose that

p is inertia in F ; that is, there exists exactly one place of F above p, denoted by p. If q
is a power of p, we use vp(q) to denote logp q.

Let Af denote Q⊗Z Ẑ and let Ap
f denote Q⊗Z (

∏
� �=pZ�). Similarly, for any number

field E let AE,f denote E⊗Z Ẑ, the ring of finite adèles of E.
Fix an algebraic closure of Fp, denoted by Fp, and let Cp be the completion of Fp with

respect to the p-adic topology. In this way we have fixed an embedding Fp ↪→ Cp. The

Galois group GFp
=Gal(Fp/Fp) can be naturally identified with the group of continuous

Fp-automorphisms of Cp.

1. Noncritical Galois representations

1.1. Noncritical Galois representations and Fontaine-Mazur L-invariant

Let Fp0 be the maximal absolutely unramified subfield of Fp, q the cardinal number of
the residue field of Fp.

Let Bcris,Bst and BdR be Fontaine’s period rings [15]. As is well known, there are

operators ϕ and N on Bst and a descending Z-filtration on BdR; Bcris is a ϕ-stable subring
of Bst, and N vanishes on Bcris. Put Bst,Fp

:= Bst⊗Fp0
Fp; Bst,Fp

can be considered as a

subring of BdR. We extend the operators ϕq = ϕvp(q) and N Fp-linearly to Bst,Fp
.

Let K be either a finite unramified extension of Fp or the completion of the maximal
unramified extension of Fp in Cp. By our assumption on K we have

(Bcris,Fp
)GK = (Bst,Fp

)GK = (BdR)
GK =K.

Let L be a finite extension of Qp. For a 2-dimensional L-linear representation V of GK ,

we put

Dst,Fp
(V ) := (V ⊗Qp

Bst,Fp
)GK .

This is a finite rank L⊗Qp
K-module. If V is semistable, then Dst,Fp

(V ) is a filtered

(ϕq,N)-module: the (ϕq,N)-module structure is induced from the operators ϕq = 1V ⊗ϕq

and N = 1V ⊗N on V ⊗Qp
Bst,Fp

; the filtration comes from that on V ⊗Qp
BdR. Note that
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ϕq and N are L⊗Qp
K-linear. If V is noncrystalline, then there exists a basis {n0,n1} of

Dst,Fp
(V ) over L⊗Qp

K such that Nn1 = n0 and Nn0 = 0.

If L splits Fp, then L⊗Qp
K is isomorphic to

⊕
σL⊗σ,Fp

K, where σ runs through all
embeddings of Fp into L. Here the subscript σ under ⊗ indicates that Fp is considered

as a subfield of L via σ. Let eσ be the unity of the subring L⊗σ,Fp
K.

If D is a filtered (ϕq,N)-module, for each σ we put Dσ = eσD. Let −k2,σ ≤ −k1,σ be
the Hodge-Tate weights of Dσ. For D to be noncritical, one demands −k2,σ <−k1,σ for

each σ. Then there exists

(aσ,bσ) ∈ (L⊗σ,Fp
K)× (L⊗σ,Fp

K)\{(0,0)}

such that

FiliDσ =

⎧⎨
⎩

Dσ if i≤ k1,σ
(L⊗σ,Fp

K)(aσn1,σ + bσn0,σ) if k1,σ < i≤ k2,σ
0 if i > k2,σ,

where n1,σ = eσn1 and n2,σ = eσn2. If for each σ, aσ is invertible, we say that D is

noncritical. If the filtered (ϕq,N)-module attached to V is noncritical, we say that V is

noncritical. In this case, we put LFM,σ(V ) =−bσ/aσ, and we call the vector LFM (V ) =
(LFM,σ(V ))σ the Fontaine-Mazur L-invariant of V .

1.2. Galois representations attached to Hilbert modular forms

Let {τ1, · · · ,τg} be the set of real embeddings F ↪→ R. Fix a multiweight k =

(k1, · · · ,kg,w) ∈ Ng+1 satisfying ki ≥ 2 and ki ≡ w mod 2.

Let π=⊗vπv be a cuspidal automorphic representation of GL(2,AF ) such that for each
τi, πτi is the holomorphic discrete series representation Dki,2−w. See [3] for the definition

of Dki,2−w. Let n be the level of π.

Carayol [3] attached to such an automorphic representation (under a further condition)
an �-adic Galois representation, which is recalled as follows.

Let L be a sufficiently large number field of finite degree over Q such that the finite part

π∞ =⊗p�∞πp of π admits an L-structure π∞
L . The fixed part (π∞

L )K1(n) is of dimension
1 and generated by an eigenform f∞. In this case we write πf∞ for π.

The local Langlands correspondence associates to every irreducible admissible repre-

sentation πp of GL(2,Fp) defined over L a 2-dimensional L-rational Frobenius semisimple

representation σ(πp) of the Weil-Deligne group WD(F p/Fp). Let σ̌(πp) denote the dual
of σ(πp).

For an �-adic representation ρ of GF , let ρp denote its restriction to GFp
, ′ρp the Weil-

Deligne representation attached to ρp and ′ρF-ssp the Frobenius semisimplification of ′ρp.

Theorem 1.1. [3] Let f∞ be an eigenform of multiweight k satisfying the following
condition:

If g = [F : Q] is even, then there exists a finite place q such that the q-factor πf∞,q lies in the discrete
series.
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Then for any prime number � and a finite place λ of L above �, there exists a λ-adic
representation ρ= ρf∞,λ :GF →GLLλ

(Vf∞,λ) satisfying the following property:

For any finite place p � � there is an isomorphism

′ρF-ssf∞,λ,p � σ̌(πf∞,p)⊗LLλ

of representations of the Weil-Deligne group WD(F p/Fp).

Saito [24] showed that when p | �, ρf∞,λ,p is potentially semistable.

Now we assume that �= p, p is the prime ideal of F above p and L contains F . Let P

be a prime ideal of L above p.
The main result of our article is the following.

Theorem 1.2. Let f∞ be as in Theorem 1.1 and of even weight, �= p and λ=P. If f∞
is new at p (when [F :Q] is odd, we demand that f∞ is new at another prime ideal), then

ρf∞,P,p is a noncritical semistable (noncrystalline) representation of GFp
.

Remark 1.3. The conditions in Theorem 1.1 and Theorem 1.2 are used to ensure that
via the Jacquet-Langlands correspondence f∞ corresponds to a modular form on the

Shimura curve M associated to a quaternion algebra B that splits at exactly one real

place; in Theorem 1.2 the quaternion algebra B is demanded to be ramified at p. See

Subsection 4.1 for the construction of M .

Thus, Dst,Fp
(ρf∞,P,p) is associated with the Fontaine-Mazur L-invariant. We define the

Fontaine-Mazur L-invariant of f∞, denoted by LFM (f∞), to be that of Dst,Fp
(ρf∞,P,p).

2. Local systems and the associated filtered ϕq-isocrystals

Let X be a p-adic formal OFp
-scheme. Suppose that X is analytically smooth over OFp

;

that is, the generic fibre Xan of X is smooth. Here, by a formal OFp
-scheme, we mean a

formal OFp
-scheme locally of finite type.

The filtered convergent ϕ-isocrystals attached to local systems are studied in [14, 6]. It

is more convenience for us to compute the filtered convergent ϕq-isocrystals attached to
the local systems that we will be interested in. From now on, we will ignore ‘convergent’

in the notion.

Filtered ϕq-isocrystal is a natural analogue of filtered ϕ-isocrystal. To define it one

needs the notion of Fp-enlargement. An Fp-enlargement of X is a pair (T,xT ) consisting
of a flat formal OFp

-scheme T and a morphism of formal OFp
-scheme xT : T0 →X, where

T0 is the reduced closed subscheme of T defined by the ideal πOT .

An isocrystal E on X consists of the following data:
• for every Fp-enlargement (T,xT ) a coherent OT ⊗OFp

Fp-module ET ,

• for every morphism of Fp-enlargements g : (T ′,xT ′)→ (T,xT ) an isomorphism of

OT ′ ⊗OFp
Fp-modules θg : g

∗(ET )→ ET ′ .
The collection of isomorphisms {θg} is required to satisfy certain cocycle condition. If T

is an Fp-enlargement of X, then ET may be interpreted as a coherent sheaf Ean
T on the

rigid space T an.
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Because X is analytically smooth over OFp
, there is a natural integrable connection

∇X : Ean
X → Ean

X ⊗Ω1
Xan .

Note that an isocrystal on X depends only on X0, the reduced closed subscheme of X
defined by the ideal πOX . Let ϕq denote the absolute q-Frobenius of X0. A ϕq-isocrystal

on X is an isocrystal E on X together with an isomorphism of isocrystals ϕq : ϕ
∗
qE → E .

A filtered ϕq-isocrystal on X is a ϕq-isocrystal E with a descending Z-filtration on Ean
X .

The following result compares the de Rham cohomology of a filtered ϕq-isocrystal E
and the étale cohomology of the Qp-local system E over the general fibre XFp

associated

to it. Let us explain what that E and E are attached to each other means. The question

is local, so we may assume that there exists a scheme X over OFp
whose special fibre

is isomorphic to X0 and whose completion along the special fibre is isomorphic to X.

When Spec(R) ⊂ X is a sufficiently small affine subscheme, one may form a certain

filtered ring B(R). Evaluate E on it to get E (B(R)), which admits a Galois action and
a filtration. That E and E are associated to each other means that functorially in R

one has E (B(R)) ∼= B(R)⊗E respecting Galois actions and filtrations. See [12, 13] for

details.

Theorem 2.1. [14, Theorem 3.2] Suppose that X is a semistable proper curve over
OFp

. Let E be a filtered ϕq-isocrystal over X and E be a Qp-local system over XFp

that are attached to each other. Then the Galois representation Hi
et(XFp

,E) of GFp
is

semistable and the associated filtered (ϕq,N)-module Dst,Fp
(Hi

et(XFp
,E)) is isomorphic

to Hi
dR(X

an,E ).

Now let X be a connected, smooth and proper curve over Fp with a regular semistable
model X over OFp

such that all irreducible components of its special fibre X are

smooth. For a subset U of X let ]U [ denote the tube of U in Xan. We associate to

X a graph Gr(X ). Let n : X n → X be the normalisation of X . The vertices V(X ) of
Gr(X ) are irreducible components of X . For every vertex v let Cv be the irreducible

component corresponding to v. The edges E(X ) of Gr(X ) are ordered pairs {x,y} where

x and y are two different liftings in X n
of a singular point. Let τ be the involution

on E(X ) such that τ{x,y} = {y,x}. Below, for a module M on which τ acts, set

M± = {m ∈M : τ(m) =±m}.
Let E be a filtered ϕq-isocrystal over X. For any e = {x,y} ∈ E(X ), let Hi

dR(]e[,E )

denote Hi
dR(]n(x)[,E ). Then τ exchanges Hi

dR(]e[,E ) and Hi
dR(]ē[,E ) where ē = {y,x}.

Note that {Cv}v∈V(X ) is an admissible covering of Xan. From the Mayer-Vietoris exact

sequence with respect to this admissible covering, we obtain the following short exact

sequence:

0 �� (
⊕

e∈E(X )H
0
dR(]e[,E ))−/the image of

⊕
v∈V(X )H

0
dR(]Cv[,E )

ι �� H1
dR(X

an,E )

�� ker
(⊕

v∈V(X )H
1
dR(]Cv[,E )→ (

⊕
e∈E(X )H

1
dR(]e[,E ))+

)
�� 0.

(2.1)
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For any e ∈ E(X ) there is a residue map Rese : H
1
dR(]e[,E ) → H0

dR(]e[,E ) [6, Section
4.1]. These residue maps induce a map⊕

e∈E(X )

Rese :
( ⊕

e∈E(X )

H1
dR(]e[,E )

)+

→
( ⊕

e∈E(X )

H0
dR(]e[,E )

)−
.

Proposition 2.2. [6, Theorem 2.6, Remark 2.7] The monodromy operator N on
H1

dR(X
an,E ) coincides with the composition

ι◦ (
⊕

e∈E(X )

Rese)◦
(
H1

dR(X
an,E )→ (

⊕
e∈E(X )

H1
dR(]e[,E ))+

)

where H1
dR(X

an,E ) →
(⊕

e∈E(X )H
1
dR(]e[,E )

)+

is the restriction map and ι is the

connecting homomorphism appeared in (2.1).

3. The universal special formal module

3.1. Special formal modules and Drinfeld’s moduli theorem

Let Bp be the quaternion algebra over Fp with invariant 1/2. So Bp is isomorphic to

F
(2)
p [Π ]; Π 2 = π and Π a = āΠ for all a ∈ F

(2)
p . Here, π is a fixed uniformiser of Fp,

F
(2)
p is the unramified extension of Fp of degree 2 and a �→ ā denotes the nontrivial

Fp-automorphism of F
(2)
p .

Let OBp
be the ring of integers in Bp. Let k be the residue field of Fp and F

(2)
p0 the

unramified extension of Fp0 of degree 2.

Let Our denote the maximal unramified extension of OFp
and Ôur its π-adic completion.

Fix an algebraic closure k̄ of k. We identify Ôur/πÔur with k̄. Then W(k̄)⊗O
F0
p

OFp
∼= Ôur.

Let F̂ ur
p be the fractional field of Ôur.

We use the notion of special formal OBp
-module in [11].

We fix a special formal OBp
-module over k̄, Φ, as in [23, (3.54)]. Let ι denote the natural

embedding of Fp0 into W(k̄)[1/p]. Then all embeddings of Fp0 into W(k̄)[1/p] are ϕj ◦ ι
(0≤ j ≤ vp(q)−1). We have the decomposition

OBp
⊗Zp

W(k̄) =

vp(q)−1∏
j=0

OBp
⊗O

F0
p
,ϕj◦ιW(k̄).

Let u ∈ OBp
⊗Zp

W(k̄) be the element whose ϕj ◦ ι-component with respect to this
decomposition is

uϕj◦ι =

{
Π ⊗1 if j = 0,

1⊗1 if j = 1, . . . ,vp(q)−1.

Let F̃ be the 1⊗ϕ-semilinear operator on OBp
⊗Zp

W(k̄) defined by

F̃x= (1⊗ϕ)x ·u, x ∈ OBp
⊗Zp

W(k̄).
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Let Ṽ be the 1⊗ϕ−1-semilinear operator on OBp
⊗Zp

W(k̄) such that F̃Ṽ = p. Then

(OBp
⊗Zp

W(k̄),Ṽ,F̃)

is a Dieudonne module over W(k̄) with an action of OBp
by the left multiplication. Let

Φ be the special formal OBp
-module over k̄ whose contravariant Dieudonne crystal is

(OBp
⊗Zp

W(k̄),Ṽ,F̃). 1

Let ι0 and ι1 be the extensions of ι to F
(2)
p0 . Then

ϕjι0, ϕ
jι1 (0≤ j ≤ vp(q)−1)

are all embeddings of F
(2)
p0 into W(k̄)[1/p]. We have

OBp
⊗Zp

W(k̄) =

vp(q)−1∏
j=0

OBp
⊗O

F
(2)
p0

,ϕj◦ι0 W(k̄)×
vp(q)−1∏

j=0

OBp
⊗O

F
(2)
p0

,ϕj◦ι1 W(k̄),

where OBp
is considered an O

F
(2)
p

-module by the left multiplication. Let X be the element

of OBp
⊗Zp

W(k̄) whose ϕj ◦ ι0-component (0 ≤ j ≤ vp(q)−1) is 1⊗1 and whose ϕj ◦ ι1-
component (0 ≤ j ≤ vp(q)− 1) is Π ⊗ 1. Similarly, let Y be the element whose ϕj ◦ ι0-
component (0 ≤ j ≤ vp(q)− 1) is Π ⊗ 1 and whose ϕj ◦ ι1-component (0 ≤ j ≤ vp(q)− 1)

is π⊗1. Then {X,Y } is a basis of OBp
⊗Zp

W(k̄) over O
F

(2)
p

⊗Zp
W(k̄).

Note that GL(2,Fp) = (End0OBp
Φ)× [23, Lemma 3.60]. We normalise the isomorphism

such that the action on the ϕ-module

(OBp
⊗Zp

W(k̄),F̃)[1/p] = (Bp⊗Qp
W(k̄)[1/p],F̃)

is given by
[ a b
c d

]−1
X = (a⊗1)X+(c⊗1)Y and

[ a b
c d

]−1
Y = (b⊗1)X+(d⊗1)Y . We can

also let GL(2,Fp) act on the ϕ-module on the right-hand side by X
[ a b
c d

]
= (a⊗ 1)X+

(c⊗1)Y and Y
[ a b
c d

]
= (b⊗1)X+(d⊗1)Y .

Let D̃0 denote the ϕq-module

(Bp⊗Qp
F̂ ur
p ,F̃vp(q))

coming from the ϕ-module (OBp
⊗Zp

W(k̄),F̃)[1/p].

We describe Drinfeld’s moduli problem. Let Nilp be the category of Ôur-algebras on
which π is nilpotent. For any A ∈ Nilp, let ψ be the homomorphism k̄ → A/πA; let

1The Dieudonne crystal in [23, (3.54)] is exactly the covariant Dieudonne crystal of Φ. The
duality between the contravariant Dieudonne crystal and the covariant Dieudonne crystal is
induced by the trace map

< ·,·>: OBp
×OBp

→ Zp,(x,y) �→ trFp/Qp

(
δ−1
Fp/Qp

trBp/Fp
(xyt)

)
,

where δFp/Qp
is the difference of Fp over Qp, trBp/Fp

is the reduced trace map and y �→ yt is the

involution of Bp such that Π t =Π and at = ā if a∈ F
(2)
p . Then we have < b ·x,y >=<x,bt ·y >

for any b ∈ OBp
.
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SFM(A) be the set of pairs (G,ρ) where G is a special formal OBp
-module over A and

ρ : ΦA/πA = ψ∗Φ→G is a quasi-isogeny of height zero.

We state a part of Drinfeld’s theorem [11] as follows. In [1] Boutot and Carayol provided
more details for [11].

Let H be the Drinfeld upper half plane over Fp; that is, the rigid analytic Fp-variety

whose Cp-points are Cp−Fp.

Theorem 3.1. The functor SFM is represented by the Deligne formal scheme Ĥ⊗̂Ôur

over Ôur whose generic fibre is H
F̂ur

p

=H⊗̂F̂ ur
p .

See [1, Chapter I] for a precise description of Ĥ⊗̂Ôur. It is closely related to the Bruhat-

Tits tree T of PGL(2,Fp). Each edge e (respectively vertex v) of T is assigned an affine

formal scheme of finite type Spf(Ae) (respectively Spf(Av)). Then Ĥ⊗̂Ôur is the union of

these Spf(Ae). If e and e′ have a common vertex v, then Spf(Ae)∩Spf(Ae′) is Spf(Av).
Otherwise, Spf(Ae)∩Spf(Ae′) = ∅.
Let G be the universal special formal OBp

-module over Ĥ⊗̂Ôur. There is an action

of GL(2,Fp) on G (see [1, Chapter II (9.2)]): The group GL(2,Fp) acts on the functor

SFM by g · (ψ;G,ρ) = (ψ ◦Frob−n;G,ρ◦ψ∗(g
−1 ◦Frobn)) if vp(detg) = n. Here, vp is the

valuation of Cp normalised such that vp(π) = 1.

3.2. The filtered ϕq-isocrystal attached to the universal special formal module

It is rather difficult to describe G precisely.2 However, we can determine the filtered ϕq-

isocrystal M attached to the local system VpG, the Tate module of G tensoring with Q.

For every A ∈Nilp and each pair (G,ρ) ∈ SFM(A), G admits a universal extension EG

by a vector group. Considering tangent spaces we obtain a homomorphism

MG → LieG

that is functorial in A, where MG and LieG are the Lie algebras of EG and G, respectively.

Such an assignment exists even for complete flat Ôur-algebra of finite type A. Indeed,
this follows from the crystalline property of the Dieudonne crystal of G⊗A A/pA [20,

Chapter V (1.6)]. Tensoring with Q we obtain MG⊗Q→ LieG⊗Q. Let Fil1(MG⊗Q) be

the kernel of this morphism.

We apply it to G|Spf(Ae) and G|Spf(Av). Patching them, we obtain the filtered ϕq-
isocrystal M attached to VpG. From these data we obtain a period map of Han, the

general fibre of Ĥ, that is defined by the filtration. See [23, 3.29 and 5.18] for a more

precise construction of this period map.
Taking dual, we get the filtered ϕq-isocrystal D attached to the dual of VpG. Precisely,

the filtration on D is defined in the way that

FiljD and Fil2−jM are annihilators of each other.

In the following, we write OH,F̂ur
p

for OH⊗̂F̂ur
p

and ΩH,F̂ur
p

for the differential sheaf

ΩH⊗̂F̂ur
p

.

2See [26] for some information about G and [29] for a higher rank analogue.
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Lemma 3.2. D is naturally isomorphic to the ϕq-isocrystal

D̃0⊗F̂ur
p

OH,F̂ur
p

with the q-Frobenius being F̃vp(q)⊗ϕq,H
F̂ur
p

1 and the connection being

1⊗d : D̃0⊗F̂ur
p

OH,F̂ur
p

→ D̃0⊗F̂ur
p

ΩH,F̂ur
p

.

Proof. What we need to show is that D is constant except for the filtration. The same
property for M is mentioned in [14, Section 5] without providing details. It follows from

the rigidity of quasi-isogeny [23, Proposition 3.62] and the Grothendieck-Messing theorem

[20, Chapter V (1.6)]. We sketch the proof for the reader’s convenience.

For any formal Ôur-scheme (of finite type) T and a morphism xT : T → Ĥ⊗̂Ôur, x∗
TG

is a special formal OBp
-module over T , denoted by GT . Let T0 be the closed subscheme

of T defined by π and T ′
0 the closed subscheme defined by p. Then both T0 and T ′

0 are

k̄-schemes. By definition of Drinfeld’s functor, GT0
=GT ×T T0 is quasi-isogenous to ΦT0

,

the pullback of Φ via T0 → Spec(k̄). By [23, Proposition 3.62], this quasi-isogeny uniquely
extends to a quasi-isogeny GT ′ := GT ×T T ′

0 → ΦT ′
0
. Let D be the covariant Dieudonne

crystal functor. By the Grothendieck-Messing theorem we have

MG = D(GT ′
0
)T

.
= D(ΦT ′

0
)T = OT ⊗W(k̄)D(Φ)W(k̄). (3.1)

Here,
.
= means that the equalty holds after tensoring with Q. See also [23, Proposition

5.15].

If f : S → T is a morphism of formal Ôur-schemes, put xS = xT ◦f and GS = x∗
SG. We

form S0 and S′
0 in the same way. Then we have a commutative diagram

GS′
0

��

�� (f ′
0)

∗GT ′
0

��
ΦS′

0

�� (f ′
0)

∗ΦT ′
0
,

where the vertical arrows are quasi-isogenies, the horizontal arrows are natural iso-

morphisms and f ′
0 : S′

0 → T ′
0 is the morphism induced from f . This implies that the

isomorphism (3.1) is functorial. Hence, the isocrystal structure of M is constant.
Let F be the absolute Frobenius. From the commutative diagram

GT ′
0

��

Fvp(q)
�� GT ′

0

��
ΦT ′

0

Fvp(q)
�� ΦT ′

0

we obtain the constancy of the ϕq-module structure of M.

Next, we determine the filtration on D̃0⊗F̂ur
p

OH,F̂ur
p

.

For any Fp-algebras K and L, L⊗Qp
K is isomorphic to L⊗Fp

K⊕(L⊗Qp
K)non, where

(L⊗Qp
K)non is the kernel of the homomorphism L⊗Qp

K → L⊗Fp
K, �⊗ a �→ �⊗ a.
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If L is a field extension of Fp that splits Fp, then L⊗Qp
K =

⊕
τ :Fp↪→LL⊗τ,Fp

K, and

(L⊗Qp
K)non corresponds to the nonnatural embeddings. We apply this to L = Fp and

K = F̂ ur
p ; consider D̃0 = Bp⊗Qp

F̂ ur
p as an Fp⊗Qp

F̂ ur
p -module. Then D̃0 splits into two

parts: one is the canonical part that corresponds to the natural embedding id : Fp ↪→ Fp

and the other is the noncanonical part that corresponds to the nonnatural embeddings.

Correspondingly, D̃0⊗F̂ur
p

OH,F̂ur
p

splits into two parts, the canonical part Bp⊗Fp
OH,F̂ur

p

and the noncanonical part. Because Fp acts on the Lie algebra of any special formal

OBp
-module through the natural embedding, the filtration on the noncanonical part is

trivial.

The filtration on the canonical part is precisely described by Drinfeld’s period

morphism. Let us recall the definition of Drinfeld’s period morphism. We will use the
notations in [29, Section 2.2].

Let M(Φ) be the Cartier module of Φ, a Z/2Z-graded module. The Z/2Z-grading

depends on a choice of Fp-embedding of F
(2)
p into F̂ ur

p . We choose the one, ι̃0, that restricts
to ι0 and denote the other Fp-embedding by ι̃1. We fix a graded V-basis {g0,g1} of M(Φ)

such that Vg0 =Π g0 and Vg1 =Π g1. Then {g0,g1,Vg0,Vg1} is a basis of M(Φ)[1/p] over

F̂ ur
p ; F

(2)
p ⊂Bp acts on F̂ ur

p g0⊕ F̂ ur
p Vg1 by ι̃0 and acts on F̂ ur

p Vg0⊕ F̂ ur
p g1 by ι̃1. See [11]

for the definition of Cartier module and the meaning of graded V-basis.

Let R be any flat π-adically complete O
F̂ur

p

-algebra. Drinfeld constructed for each

(ψ;G,ρ) ∈ SFM(R) a quadruple (η,T,u,ρ). Let M =M(G) be the Cartier module of G,

N(M) the auxiliary module that is the quotient of M ⊕M by the submodule generated

by elements of the form (Vx, −Πx) and βM the quotient map M ⊕M → N(M). For
(x0,x1) ∈M ⊕M , we write ((x0,x1)) for βM (x0,x1). Then we have a map ϕM :N(M)→
N(M). See [29, Definition 4] for its definition. Put

ηM :=N(M)ϕM , TM :=M/VM ;

both ηM and TM are Z/2Z-graded. Note that TM is exactly the tangent sheaf of G (see
[1, Subsection II.8]).

Let uM : ηM → TM be the OFp
[Π ]-linear map of degree 0 that is the composition of the

inclusion ηM ↪→N(M) and the map

N(M)→M/VM, ((x0,x1)) �→ x0 mod VM.

Then ηM(Φ) is a free OFp
-module of rank 4 with a basis

{((g0,0)), ((g1,0)),((Vg0,0)),((Vg1,0))},

where ((g0,0)) and ((Vg1,0)) are in degree 0 and ((g1,0)) and ((Vg0,0)) are in degree 1.

The quasi-isogeny ρ : ψ∗Φ→GR/πR induces an isomorphism

ρ : η0M(Φ)⊗OFp
Fp

∼−→ η0M(G)⊗OFp
Fp.

The Drinfeld period of (G,ρ) is defined by

z(G,ρ) =
u′
M ◦ρ((Vg1,0))

u′
M ◦ρ((g0,0)) , (3.2)
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where u′
M is the map η0M(G)⊗OFp

Fp → T 0
M ⊗RR[1/p] induced by uM . By [23, Subsection

5.49] Drinfeld’s period map coincides with the period map defined by filtration.
By [23, (3.55)], M(Φ) is isomorphic to the caonical part of the covariant Dieudonne

module attached to Φ. In [23] the Cartier module is called τ -WF (L)-crystal. So, as a ϕq-

module, M(Φ)[1/p] is the dual of Bp⊗Fp
F̂ ur
p , the canonical part of D̃0. Let {v0,v1,v2,v3}

be the basis of Bp⊗Fp
F̂ ur
p over F̂ ur

p dual to {πg1,g0,Vg0,Vg1}.

Lemma 3.3. We have

Fil0Bp⊗Fp
OH,F̂ur

p

= Bp⊗Fp
OH,F̂ur

p

Fil1Bp⊗Fp
OH,F̂ur

p

= the OH,F̂ur
p

-submodule generated by

F̂ ur
p · (v1+ zv3)⊕ F̂ ur

p · (zv0+v2)

Fil2Bp⊗Fp
OH,F̂ur

p

= 0.

Here, z is the canonical coordinate on H
F̂ur

p

.

Proof. Let R and (ψ;G,ρ) ∈ SFM(R) be as above. Via ρ, as a ϕq-module, M(G)[1/p] is

isomorphic to M(Φ)[1/p]⊗
F̂ur

p

R[1/p] and thus

M(G)[1/p] =R[1/p] ·πg1⊕R[1/p] ·g0⊕R[1/p] ·Vg1⊕R[1/p] ·Vg0.

Let z be the Drinfeld period of (G,ρ). Because Drinfeld’s period map coincides with the
period map defined by filtration, we have

Fil1M(G)[1/p] =R[1/p](Vg1− zg0)⊕R[1/p](zVg0−πg1).

Here, we note that πg1− zVg0 =V(Vg1− zg0).

Taking dual, we obtain the desired filtration structure on D.

We decompose Bp⊗Fp
F̂ ur
p into two direct summands:

Bp⊗Fp
F̂ ur
p =Bp⊗F

(2)
p , ι̃0

F̂ ur
p ⊕Bp⊗F

(2)
p , ι̃1

F̂ ur
p ,

where Bp is considered as an F
(2)
p -module by left multiplication. Let e0 and e1 denote

the projection to the first summand and that to the second, respectively. We may choose
g0 and g1 such that v0 = e0X, v1 = e1Y , v2 = e0Y and v3 = e1X. Thus,

Fil0Bp⊗Fp
OH,F̂ur

p

= Bp⊗Fp
OH,F̂ur

p

,

Fil1Bp⊗Fp
OH,F̂ur

p

= the F
(2)
p ⊗Fp

OH,F̂ur
p

-submodule generated by zX+Y , and

Fil2Bp⊗Fp
OH,F̂ur

p

= 0.

Finally, we note that the induced action of GL(2,Fp) on H is given by
[ a b
c d

]
z = az+b

cz+d .
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4. Shimura curves

Fix a real place τ1 of F . Let B be a quaternion algebra over F that splits at τ1 and is
ramified at other real places {τ2, · · · ,τg} and p.

4.1. Shimura curves M , M ′ and M ′′

We will use three Shimura curves studied by Carayol [2] and recall their constructions in

this subsection (see also [24]).
Let G be the reductive algebraic group over Q such that G(R) = (B⊗R)× for any

Q-algebra R. Let Z be the center of G; it is isomorphic to T =ResF/QGm. Let ν :G→ T

be the morphism obtained from the reduced norm NrdB/F of B. The kernel of ν is Gder,

the derived group of G, and thus we have a short exact sequence of algebraic groups

1 �� Gder �� G
ν �� T �� 1.

Let X be the G(R)-conjugacy class of the homomorphism

h : C× → G(R) = GL2(R)×H××·· ·×H×

z = x+
√
−1y �→

(
[ x y
−y x

]−1
, 1, · · · , 1

)
,

where H is the Hamilton quaternion algebra. The conjugacy class X is naturally identified

with the union of upper and lower half planes. Let M =M(G,X) = (MU (G,X))U be the

canonical model of the Shimura variety attached to the Shimura pair (G,X); the canonical
model is defined over F , the reflex field of (G,X). There is a natural right action of G(Af )

onM(G,X). Here and in what follows, by abuse of terminology we call a projective system

of varieties simply a variety.

Take an imaginary quadratic field E0 =Q(
√
−a) (a a square-free positive integer) such

that p splits in E0. Put E = FE0 and D = B⊗F E = B⊗QE0. We fix a square root ρ

of −a in C. Then the prolonging of τi to E by x+ y
√
−a �→ τi(x)+ τi(y)ρ (respectively

x+y
√
−a �→ τi(x)− τi(y)ρ) is denoted by τi (respectively τ̄i).

Let TE be the torus ResE/QGm and T 1
E the subtorus of TE such that T 1

E(Q) = {z ∈
E : zz̄ = 1}. We consider the amalgamate product G′′ = G×Z TE and the morphism

G′′ = G×Z TE
ν′′
−−→ T ′′ = T ×T 1

E defined by (g,z) �→ (ν(g)zz̄,z/z̄). Consider the subtorus

T ′ =Gm×T 1
E of T ′′ and let G′ be the inverse image of T ′ by the map ν′′. The restriction

of ν′′ to G′ is denoted by ν′. Both the derived group of G′ and that of G′′ are identified
with Gder, and we have two short exact sequences of algebraic groups

1 �� Gder �� G′ ν′
�� T ′ �� 1

and

1 �� Gder �� G′′ ν′′
�� T ′′ �� 1.

The complex embeddings τ1, · · · ,τg of E identify G′′(R) with GL2(R) ·C××H× ·C××
·· ·×H× ·C×. We consider the G′(R)-conjugacy class X ′ (respectively G′′(R)-conjugacy
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class X ′′) of the homomorphism

h′ : C× → G′(R)⊂
G′′(R) = GL2(R) ·C××H× ·C××·· ·×H× ·C×

z = x+
√
−1y �→

(
[ x y
−y x

]−1
⊗1, 1⊗ z−1, · · · , 1⊗ z−1

)
.

Let M ′ = M(G′,X ′) and M ′′ = M(G′′,X ′′) be the canonical models of the Shimura

varieties defined over their reflex field E. There are natural right actions of G′(Af ) and

G′′(Af ) on M ′ and M ′′, respectively.
Put TE0

=ResE0

Q Gm. Using the complex embeddings τ1, · · · ,τg of E, we identify TE(R)

with C××·· ·×C×; similarly, via the embedding x+y
√
−a→ x+yρ, we identify TE0

(R)

with C×. Consider the homomorphisms

hE : C× → TE(R) = C××·· ·×C×, z �→ (z−1,1, · · · ,1),
hE0

: C× → TE0
(R) = C×, z �→ z−1.

Let NE = M(TE,hE) and NE0
= M(TE0

,hE0
) be the canonical models attached to the

pairs (TE,hE) and (TE0
,hE0

), respectively. Then NE is defined over E and NE0
is defined

over E0.

Consider the homomorphism α :G×TE →G′′ of algebraic groups inducing

B××E× →G′′(Q)⊂ (B⊗QE)×, (b,e) �→ b⊗NE/E0
(e)e−1

on Q-valued points and the homomorphism β :G×TE → TE0
inducing

NE/E0
◦pr2 :B××E× → E×

0

on Q-valued points. Here, NE/E0
denotes the norm map E× →E×

0 . Because h′ = α◦ (h×
hE) and hE0

=NE/E0
◦hE , α and β induce morphisms of Shimura varieties M×N →M ′′

and M ×NE → NE0
, again denoted by α and β, respectively. We have the following

diagram:

M M ×NE

β

��

pr1�� α �� M ′′ M ′��

NE0
.

4.2. Connected components of M , M ×NE, M
′ and M ′′

We write G̃ for G×TE and write M̃ for M ×NE . For � = ,̃∅, ′,′′, because B is ramified

at p, there exists a unique maximal compact open subgroup U 

p,0 of G
(Qp). We have

U ′
p,0 = U ′′

p,0∩G′(Qp) and U ′′
p,0 = α(Ũp,0).

If U 
 is a subgroup of G
(Af ) of the form U 

p,0U


,p where U 
,p is a compact open

subgroup of G
(Ap
f ), we will write M



0,U�,p for M 


U� . Let M


0 denote the projective system

(M 

0,U�,p)U�,p ; this projective system admits a natural right action of G
(Ap

f ).
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Lemma 4.1.

(a) For any sufficiently small U 
,p, each geometrically connected component of M 

0,U�,p

is defined over a field that is unramified at all places above p.

(b) Let Ũp be a sufficiently small compact open subgroup of G̃(Ap
f ). Then the morphism

M̃0,Ũp →M ′′
0,α(Ũp)

induced by α is an isomorphism onto its image when restricted to every geometrically

connected component.

Proof. When U 
,p is sufficiently small, M 

0,U�,p is smooth. Let π0(M



0,U�,p) denote the

set of geometrically irreducible components of M 

0,U�,p over Q. Then Gal(Q/E) acts on

π0(M


0,U�,p). This action is explicitly described by Deligne [8, Theorem 2.6.3], from which

we deduce (a).

Because α induces an isomorphism from the derived group of G̃ to that of G′′, by [8,

Remark 2.1.16] or [21, Proposition II.2.7], we obtain (b).

4.3. Modular interpolation of M ′

Let � �→ �̄ be the involution on D=B⊗QE0 that is the product of the canonical involution

on B and the complex conjugate on E0. Choose an invertible symmetric element δ ∈D

(δ = δ̄). Then we have another involution � �→ �∗ := δ−1�̄δ on D.
Let V denote D considered as a left D-module. Let ψ be the nondegenerate alternating

form on V defined by ψ(x,y) =TrE/Q(
√
−a TrdD/E(xδy

∗)), where TrE/Q is the trace map

and TrdD/E is the reduced trace map. For � ∈D put

t(�) = tr(�;VC/Fil
0VC),

where Fil• is the Hodge structure defined by h′. We have

t(�) = (τ1+ τ̄1+2τ2+ · · ·+2τg)(trD/E(�))

for � ∈D. The subfield of C generated by t(�), � ∈D, is exactly E.
Choose an order OD of D, T the corresponding lattice in V . With a suitable choice of

δ, we may assume that OD is stable by the involution � �→ �∗ and that ψ takes integer

values on T . Put ÔD := OD⊗ Ẑ and T̂ := T ⊗ Ẑ.
In Section 5 when we consider the p-adic uniformisation of the Shimura curves, we need

to make the following assumption.

Assumption 4.2. We assume that OD and δ are chosen such that T̂ is stable by U ′
p,0.

If U ′ is a sufficiently small compact open subgroup of G′(Af ) that keeps T̂ , then M ′
U ′

represents the following functor MU ′ [24, Section 5]:

For any E-algebra R, MU ′(R) is the set of isomorphism classes of quadruples (A,ι,θ,κ)
where

• A is an isomorphism class of abelian schemes over R with an endomorphism ι :OD →
End(A) such that tr(ι(�),LieA) = t(�) for all � ∈ OD.
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• θ is a polarisation A→ Ǎ whose associated Rosati involution sends ι(�) to ι(�∗).
• κ is a U ′-orbit of OD ⊗ Ẑ-linear isomorphisms T̂ (A) :=

∏
�

T�(A)→ T̂ such that there

exists a Ẑ-linear isomorphism κ′ : T̂ (1)→ Ẑ making the diagram

T̂ (A)× T̂ (A)
(1,θ∗) ��

κ×κ

��

T̂ (A)× T̂ (Ǎ) �� T̂ (1)

κ′

��
T̂ × T̂

ψ⊗ Ẑ �� Ẑ

commutative.

Let AU ′ be the universal OD-abelian scheme over M ′
U ′ .

5. p-adic Uniformisations of Shimura curves

5.1. Preliminaries

We provide two simple facts that will be useful later.

(I) Let X be a scheme with a discrete action of a group C on the right-hand side
and let Z be a group that contains C as a normal subgroup of finite index. Fix a set of

representatives {gi}i∈C\Z of C\Z in Z. We define a scheme X ∗C Z with a right action of

Z below. As a scheme, X ∗C Z is
⊔

C\ZX(gi), where X(gi) is a copy of X. For any g ∈ Z

and x(gi) ∈ X(gi), if gig = hgk with h ∈ C, then x(gi) · g = (x ·h)(gk). It is easy to show

that up to isomorphism X ∗C Z and the right action of Z are independent of the choice

of {gi}i∈C\Z .
(II) Let X1 and X2 be two schemes whose connected components are all geometrically

connected. Suppose that each of X1 and X2 has an action of an abelian group Z; Z acts

freely on the set of components of X1 (respectively X2). Let C be a closed subgroup of
Z. Then the Z-actions on X1 and X2 induce Z/C-actions on X1/C and X2/C.

Lemma 5.1. If there exists a Z/C-equivariant isomorphism γ : X1/C → X2/C, then

there exists a Z-equivariant isomorphism γ̃ :X1 →X2 such that the following diagram

X1
γ̃ ��

π1

��

X2

π2

��
X1/C

γ �� X2/C

is commutative, where π1 and π2 are the natural projections.

Proof. We identify X1/C with X2/C by γ and write Y for it. The condition on Z-actions
implies that the action of Z/C on the set of connected components of Y is free and that

the morphism π1 (respectively π2) maps each connected component of X1 (respectively

X2) isomorphically to its image.

We choose a set of representatives {Yi}i∈I of the Z/C-orbits of components of Y . Then
{ḡYi : ḡ ∈ Z/C,i ∈ I} are all different connected components of Y . For each i ∈ I we

choose a connected component Ỹ
(1)
i (respectively Ỹ

(2)
i ) of X1 (respectively X2) that is a
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lifting of Yi. Then {gỸ (1)
i : g ∈Z,i∈ I} (respectively {gỸ (2)

i : g ∈Z,i∈ I}) are all different
connected components of X1 (respectively X2).

Because π1|Ỹi
(1) : Ỹi

(1) → Yi and π2|Ỹi
(2) : Ỹi

(2) → Yi are isomorphisms, there exists an

isomorphism γ̃i : Ỹi
(1) → Ỹi

(2)
such that π1|Ỹi

(1) = π2|Ỹi
(2) ◦ γ̃i. We define the morphism

γ̃ :X(1) →X(2) as follows: γ̃ maps gỸ
(1)
i to gỸ

(2)
i and γ̃|

gỸ
(1)
i

= g ◦ γ̃i ◦ g−1. Then γ̃ is a

Z-equivariant isomorphism and π1 = π2 ◦ γ̃.

5.2. Some Notation

Fix an isomorphism C∼=Cp. Combining the isomorphism C∼=Cp and the inclusion E0 ↪→
C, x+ y

√
−a �→ x+ yρ, we obtain inclusions E0 ↪→ Qp and E ↪→ Fp. Thus, D⊗Qp is

isomorphic to Bp⊕Bp.
Note that G(Qp) is isomorphic to B×

p , G′(Qp) is isomorphic to the subgroup

{(a,b) : a,b ∈B×
p ,āb ∈Q×

p }

of B×
p ×B×

p and G′′(Qp) is isomorphic to

{(a,b) : a,b ∈B×
p ,āb ∈ F×

p },

where a �→ ā is the canonical involution on B. Note that TE(Qp) is isomorphic to F×
p ×F×

p

and TE0
(Qp) is isomorphic to Q×

p ×Q×
p . We normalise these isomorphisms such that

G′(Qp) ↪→G′′(Qp) becomes the natural inclusion

{(a,b) : a,b ∈B×
p ,āb ∈Q×

p } ↪→{(a,b) : a,b ∈B×
p ,āb ∈ F×

p },

α :G(Qp)×TE(Qp)→G′′(Qp) becomes

B×
p × (F×

p ×F×
p ) → {(a,b) : a,b ∈B×

p ,āb ∈ F×
p }

(a,(t1,t2)) �→ (a
NFp/Qp

(t1)

t1
,a
NFp/Qp

(t2)

t2
)

and β :G(Qp)×TE(Qp)→ TE0
(Qp) becomes

B×
p × (F×

p ×F×
p ) → Q×

p ×Q×
p

(a,(t1,t2)) �→ (NFp/Qp
(t1),NFp/Qp

(t2)).

Let B̄ be the quaternion algebra over F such that

invv(B̄) =

⎧⎨
⎩

invv(B) if v �= τ1,p,
1
2 if v = τ1,

0 if v = p.

With B̄ instead of B we can define analogues of G, G′ and G′′, denoted by Ḡ, Ḡ′ and Ḡ′′,
respectively. For � = ∅,′,′′ we have Ḡ
(Ap

f ) = G
(Ap
f ); Ḡ(Qp) is isomorphic to GL(2,Fp),

Ḡ′(Qp) is isomorphic to the subgroup

{([ a1 b1
c1 d1

]
,
[ a2 b2
c2 d2

]
) : ai,bi,ci,di ∈ Fp,

[ d1 −b1
−c1 a1

][ a2 b2
c2 d2

] ∈Q×
p }
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of GL(2,Fp)×GL(2,Fp) and Ḡ′′(Qp) is isomorphic to

{[ a1 b1
c1 d1

]
,
[ a2 b2
c2 d2

]
) : ai,bi,ci,di ∈ Fp,

[ d1 −b1
−c1 a1

][ a2 b2
c2 d2

] ∈ F×
p }.

If �= ∅, let Ḡ(Qp) act on H
F̂ur

p

as in Section 3. If �= ,̃ let ˜̄G= Ḡ×TE act on H
F̂ur

p

by

the projection to the first factor. If �=′ or ′′, let Ḡ
(Qp) act on H
F̂ur

p

by the first factor.

Let Ḡ
(Q) act on H
F̂ur

p

via its embedding into Ḡ
(Qp).

The center of Ḡ
, Z(Ḡ
), is naturally isomorphic to the center of G
, Z(G
); we denote
both of them by Z
.

5.3. The p-adic uniformisations

Let � be either ,̃ ′ or ′′. For any compact open subgroup U 
,p of G
(Ap
f ), let X



U�,p denote

M 

0,U�,p ×Spec(Fp) Spec(F̂

ur
p ).

Proposition 5.2. Suppose that Assumption 4.2 holds.

(a) Assume that �=˜,′ or ′′. For any sufficiently small compact open subgroup U 
,p of

G
(Ap
f ), writing U 
 =U 


p,0U

p, we have a Z
(Q)\Z
(Af )/(Z


(Af )∩U 
)-equivariant

isomorphism

X

U�,p

∼= Ḡ
(Q)\(H
F̂ur

p

×G
(Af )/U

). (5.1)

Here, Ḡ
(Q) acts on H
F̂ur

p

as mentioned above and acts on G
(Ap
f )/U


,p by the

embedding Ḡ
(Q) ↪→ Ḡ
(Ap
f )

�−→ G
(Ap
f ); in the case of � =′ or ′′, if g ∈ Ḡ
(Q)

satisfies gp = (a,b) with a,b ∈ GL(2,Fp), then g acts on G
(Qp)/U


p,0 via the left

multiplication by (Π vp(deta),Π vp(detb)), whereas in the case of � = ,̃ g̃ = (g,t) ∈˜̄G(Q) (g ∈ Ḡ(Q),t ∈ TE(Q)) acts on G̃(Qp)/Ũp,0 via the left multiplication by
(Π vp(detgp),tp) and Z
(Q)\Z
(Af )/(Z


(Af )∩U 
) acts on the right-hand side of

(5.1) by right multiplications on Ḡ
(Af ).

(b) The isomorphisms in (a) can be chosen such that, for either �=˜and �=′′ or �=′

and �=′′, we have a commutative diagram

X�
U�,p

��

��

Ḡ�(Q)\(H
F̂ur

p

×G�(Af )/U
�)

��
X


U�,p
�� Ḡ
(Q)\(H

F̂ur
p

×G
(Af )/U

)

compatible with the Z�(Q)\Z�(Af )/(Z
�(Af )∩U �)-actions on the upper and the

Z
(Q)\Z
(Af )/(Z

(Af )∩U 
)-actions on the lower, where the left vertical arrow is

induced from the morphism M � →M 
 and the right vertical arrow is induced by the
identity morphism H

F̂ur
p

→H
F̂ur

p

and the homomorphism α : G̃ = G×TE → G′′ or

the inclusion G′ ↪→G′′. Here, in the case of �=˜and �=′′, U 
 = α(U �); in the case

of �=′ and �=′′, U � = U 
∩G′(Af ).
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The conclusions of Proposition 5.2, especially (a), are well known [23, 28]. However, the

author has no reference for (b), so we provide some detail of the proof.

Proof. Assertion (a) in the case of �=′ comes from [23, Theorem 6.50].

For the case of �=′ and �=′′ we put

C = Z ′(Q)\Z ′(Af )/(Z
′(Af )∩U ′)

and

Z = Z ′′(Q)\Z ′′(Af )/(Z
′′(Af )∩U ′′).

Then X ′′
U ′′p is Z-equivariantly isomorphic to X ′

U ′p ∗C Z, and Ḡ′′(Q)\(H
F̂ur

p

×G′′(Af )/U
′′)

is Z-equivariantly isomorphic to
(
Ḡ′(Q)\(H

F̂ur
p

×G′(Af )/U
′)
)
∗C Z. So (a) in the case of

�=′′ and (b) in the case of �=′, �=′′ follow from (a) in the case of �=′.
Now we consider the remaining cases. Let H be the kernel of the homomorphism α :

G̃=G×TE →G′′. Put

C =H(Q)\H(Af )/(H(Af )∩ Ũ) and Z = Z̃(Q)\Z̃(Af )/(Z̃(Af )∩ Ũ).

Put X1 = X̃Ũp and X2 =
˜̄G(Q)\(H

F̂ur
p

×G̃(Af )/Ũp,0Ũ
p). By Lemma 4.1 (a), all connected

components of X1 are geometrically connected; it is obvious that all connected compo-

nents of X2 are geometrically connected. Thus, Z acts freely on the set of components

of X1 (respectively X2). Furthermore, X1/C is isomorphic to X ′′
α(Ũp)

and X2/C is

isomorphic to Ḡ′′(Q)\(H
F̂ur

p

×G′′(Af )/U
′′
p,0α(Ũ

p)). We have already proved that X1/C is

Z/C-equivariantly isomorphic to X2/C. Applying Lemma 5.1, we obtain (a) in the case
of �=˜ and (b) in the case of �=˜,�=′′.

Remark 5.3. By [28] the similar conclusion of Proposition 5.2 (a) holds for the case of
� = ∅. We use XUp to denote Ḡ(Q)\(H

F̂ur
p

×G(Af )/Up,0U
p), where the action of Ḡ(Q)

on H
F̂ur

p

×G(Af )/Up,0U
p is defined similarly.

6. Local systems and the associated filtered ϕq-isocrystals on Shimura

Curves

6.1. Local systems on Shimura curves

We choose a number field L splitting F and B. We identify {τi : F → L} with I = {τi :
F → C} by the inclusion L→ C. Fix an isomorphism L⊗QB =M(2,L)I . Then we have

a natural inclusion G(Q) ↪→GL(2,L)I . Let P be a place of L above p.
For a multiweight k = (k1, · · · ,kg,w) with k1 ≡ ·· ·kg ≡ w mod 2 and k1 ≥ 2, · · · ,kg ≥

2, we define the morphism ρ(k) : G → GL(n,L) (n =
∏g

i=1(ki − 1)) to be the product

⊗i∈I [(Sym
ki−2⊗det(w−ki)/2)◦ p̌ri]. Here p̌ri denotes the contragradient representation of

the ith projection pri : GL(2,L)I →GL(2,L). The algebraic group denoted by Gc in [21,
Chapter III] is the quotient of G by ker(NF/Q : F× →Q×). Because the restriction of ρ(k)

to the center F× is the scalar multiplication by N
−(w−2)
F/Q (·), ρ(k) factors through Gc, so
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we can attach to the representation ρ(k) a G(Af )-equivariant smooth LP-sheaf F(k) on
M . We have a pairing

F(k)×F(k)→F(detw−2). (6.1)

Let p2 : G′′
E0

→ GE0
be the map induced by the second projection on (D⊗Q E0)

× =

D××D× corresponding to the conjugate E0 →E0. Because the algebraic representation

ρ′′(k) = ρ(k) ◦ p2 factors through G′′c, we can attach to it a G′′(Af )-equivariant smooth
LP-sheaf F ′′(k) on M ′′. Let F ′(k) be the restriction of F ′′(k) to M ′.
We define a character χ̄ : T0 → Gm such that on C-valued points χ̄ is the inverse of

the second projection T0C = C××C× → C×. Let F(χ̄) be the LP-sheaf attached to the

representation χ̄. By [24] one has the following G(Af )×T (Af )-equivariant isomorphism
of LP-sheaves:

pr∗1F(k)� α∗F ′′(k)⊗β∗F(χ̄−1)⊗(g−1)(w−2) (6.2)

on M ×N , where pr1 is the projection M ×N →M .

Note that L⊗Q D � (M2(L)×M2(L))
I . For each i ∈ I, the first component M2(L)

corresponds to the embedding E0 ⊂L⊂C and the second M2(L) to its conjugate. Let F ′

be the local system R1g∗LP where g :A→M ′ is the universal OD-abelian scheme; it is a

sheaf of L⊗QD-modules. For each i ∈ I, let ei ∈ L⊗QD be the idempotent whose (2,i)th

component is a rank one idempotent – for example,
[ 1 0
0 0

]
– and whose other components

are zero. Let F ′
i denote the ei-part ei ·R1g∗LP. Note that F ′

i does not depend on the
choice of the rank one idempotent. By [24] we have an isomorphism of local systems

F ′(k) =
⊗
i∈I

(
Symki−2F ′

i

⊗
(detF ′

i)
(w−ki)/2

)
.

We can define more local systems on M ′. For (k,v) = (k1, · · · ,kg;v1, · · · ,vg), put

F ′(k,v) =
⊗
i∈I

(
Symki−2F ′

i

⊗
(detF ′

i)
vi

)
. (6.3)

6.2. Filtered ϕq-isocrystals associated to the local systems

We use k̃ uniformly to denote (k,v)= (k1, · · · ,kg;v1, · · · ,vg) (respectively k= (k1, · · · ,kg,w))
in the case of �=′ (respectively �= ∅,′,′′).
We shall need the filtered ϕq-isocrystal attached to F(k̃). However, we do not know

how to compute it. Instead, we compute that attached to pr∗1F(k̃). As a middle step we

determine the filtered ϕq-isocrystals associated to F ′(k̃) and F ′′(k̃).
For any integers k and v with k ≥ 2 and any inclusion σ : Fp → LP, let Vσ(k,v) be

the space of homogeneous polynomials in two variables Xσ and Yσ of degree k−2 with

coefficients in LP; let GL(2,Fp) act on Vσ(k,v) by

[ a b
c d

]−1
P (Xσ,Yσ) = σ(ad− bc)vP (σ(a)Xσ +σ(b)Yσ,σ(c)Xσ +σ(d)Yσ).
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For (k,v) = (k1, · · · ,kg;v1, · · · ,vg) we put

V (k,v) =
⊗
σ∈I

Vσ(kσ,vσ),

where the tensor product is taken over LP.

Let Ḡ
 (� = ∅,′,′′,̃ ) be the groups defined in Section 5.2. For � = ,̃ via the projection

Ḡ
(Qp) → GL(2,Fp), V (k̃) becomes a Ḡ
(Qp)-module. For � =′ ,′′, via the projection of

Ḡ
(Qp)⊂GL(2,Fp)×GL(2,Fp) to the second factor, V (k̃) becomes a Ḡ
(Qp)-module. In
each case via the inclusion Ḡ
(Q) ↪→ Ḡ
(Qp), V (k̃) becomes a Ḡ
(Q)-module. Using the

p-adic uniformisation of X
 =X

U�,p we attach to this Ḡ
(Q)-module a local system V
(k̃)

on X
.

Let ϕq,k,v be the operator on V (k,v),⊗
σ

Pσ(Xσ,Yσ) �→
∏
σ

σ(−π)vσ ·
⊗
σ

Pσ(Yσ,σ(π)Xσ).

For k = (k1, · · · ,kg,w) we put

V (k) = V (k1, · · · ,kg; (w−k1)/2, · · · ,(w−kg)/2)

and

ϕq,k = ϕq,(k1,···,kg ;(w−k1)/2,···,(w−kg)/2).

Let F 
(k̃) be the filtered ϕq-isocrystal V
(k̃)⊗Qp
OX� on X
 with the q-Frobenius

ϕq,k̃⊗ϕq,O
X�

and the connection 1⊗d : V
(k̃)⊗Qp
OX� →V
(k̃)⊗Qp

Ω1
X� ; the filtration on

V
(k̃)⊗Qp
OX� =

⊕
τ :Fp↪→LP

V
(k̃)⊗τ,Fp
OX� (6.4)

is given by

Filj+vτ (V
(k̃)⊗τ,Fp
OX�)

=

⎧⎪⎪⎨
⎪⎪⎩

V
(k̃)⊗τ,Fp
OX� if j ≤ 0,

the OX� -submodule locally generated by polynomials

in V (k̃) divided by (zXτ +Yτ )
j if 1≤ j ≤ kτ −2

0 if j ≥ kτ −1

with the convention that vτ = w−kτ

2 in the case of k̃ = (k1, · · · ,kg,w), where z is the

canonical coordinate on H
F̂ur

p

.

Lemma 6.1. When k1 = · · · = ki−1 = ki+1 = · · · = kg = 2, ki = 3 and v1 = · · · = vg = 0,

the filtered ϕq-isocrystal attached to F ′(k,v) is isomorphic to F ′(k,v).

Proof. Let ẽi ∈ L⊗Q D be the idempotent whose (2,i)th component is
[ 1 0
0 1

]
and the

other component are zero. Let A be the universal OD-abelian scheme over M ′ and Â
the formal module on X ′ attached to A. Note that ẽi(oLP

⊗Zp
Â) is just the pullback

of oLP
⊗τi,oFp

G by the projection X ′
U ′p → (Ḡ′(Q)∩U ′pU ′

p,0)\HF̂ur
p

[23, Subsection 6.43],
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where G is the universal special formal OBp
-module (forgetting the information of ρ in

Drinfeld’s moduli problem).

Because LP splits Bp, LP contains all embeddings of F
(2)
p . The embedding τi :Fp ↪→LP

extends in two ways to F
(2)
p , denoted respectively by τi,0 and τi,1. Then,

oLP
⊗τi,oFp

oBp
= oLP

⊗τi,0,o
F

(2)
p

oBp

⊕
oLP

⊗τi,1,o
F

(2)
p

oBp
.

We decompose oLP
⊗τi,oFp

G into the sum of two direct summands according to the
action of o

F
(2)
p

⊂ oBp
: o

F
(2)
p

acts by τi,0 on the first direct summand and acts by τi,1

on the second. Without loss of generalitym we may assume that ei in the definition

of F ′
i (see Subsection 6.1) is chosen such that ei is the projection onto the first direct

summand. So ei(oLP
⊗Zp

Â) is just the pullback of oLP
⊗τi,0,o

F
(2)
p

G by the projection

X ′
U ′p → (Ḡ′(Q) ∩ U ′pU ′

p,0)\HF̂ur
p

. Now the statement of our lemma follows from the

discussion in Subsection 3.2.

Proposition 6.2. The filtered ϕq-isocrystal attached to F ′(k,v) is isomorphic to F ′(k,v).

Proof. Let F ′
i denote the filtered ϕq-isocrystal attached to F ′

i . By (6.3), the filtered

ϕq-isocrystal attached to F ′(k,v) is isomorphic to⊗
i∈I

(
Symki−2F ′

i

⊗
(detF ′

i )
vi

)
. (6.5)

By Lemma 6.1, a simple computation implies our conclusion.

Corollary 6.3. The filtered ϕq-isocrystal attached to F ′′(k) is isomorphic to F ′′(k).

Proof. This follows from Proposition 6.2 and [24, Lemma 6.1].

Lemma 6.4. The filtered ϕq-isocrystal associated to the local system F(χ̄) over

(NE0,0)F̂ur
p

is F(χ̄)⊗O(NE0,0
)
F̂ur
p

, with the q-Frobenius being 1⊗ϕq,(NE0,0
)
F̂ur
p

and the

filtration being trivial.

Proof. We only need to show that any geometric point of (NE0,0)F̂ur
p

is defined over F̂ ur
p .

Let hE0
be as in Subsection 4.1 and μ the cocharacter of T0 defined over E0 attached

to hE0
. Let r be the composition

A×
E0

μ−→ T0(AE0
)

N
E0
Q−−−→ T0(A).

Let

artE0
: A×

E0
� Gal(Eab

0 /E0)

be the reciprocal of the reciprocity map from class field theory. For any compact

open subgroup U of T0(Af ), Gal(Q/E0) acts on (NE0
)U (Q) = T0(Q)\T0(Af )/U by
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σ(T0(Q)aU) = T0(Q)rf (sσ)aU , where sσ is any idèle such that artE0
(sσ) = σ|Eab and

rf is the composition

A×
E0

→ T0(A)→ T0(Af )

of r and the projection map T0(A) → T0(Af ). Let I be the subgroup of Gal(Q/E0)

consisting of σ such that sσ ∈ r−1
f (U). Put K=Q

I
. Then any geometric point of (NE0

)U
is defined over K. Observe that, when U is of the form Up,0U

p with Up a compact

open subgroup of T0(A
p
f ) and Up,0 the maximal compact open subgroup of T0(Qp), K is

unramified over p. Therefore, any geometric point of (NE0,0)F̂ur
p

is already defined over

F̂ ur
p .

Corollary 6.5. The filtered ϕq-isocrystal attached to pr∗1F(k) is pr∗1F (k).

Proof. By (6.2) the filtered ϕq-isocrystal attached to pr∗1F(k) is the tensor product of
the filtered ϕq-isocrystal attached to α∗F ′′(k) and that attached to β∗F(χ̄−1)(g−1)(w−2).

Namely, it is isomorphic to

(α∗V ′′(k)⊗β∗F(χ̄−1)(g−1)(w−2))⊗Qp
pr∗1OX

∼= pr∗1V(k)⊗Qp
pr∗1OX ;

a simple calculation shows that the ϕq-module structure and the filtration on pr∗1V(k)⊗Qp

pr∗1OX are as desired.

It is rather possible that the filtered ϕq-isocrystal attached to F(k) is F (k). But the

author does not know how to descend the conclusion of Corollary 6.5 to XUp .

7. The de Rham cohomology

In this section we prove a Hodge-like decomposition for the de Rham cohomology.

7.1. Covering filtration and Hodge filtration for de Rham cohomology

We fix an arithmetic Schottky group Γ that is cocompact in PGL(2,Fp). Then Γ acts

freely on H, and the quotient XΓ = Γ\H is the rigid analytic space associated with a

proper smooth curve over Fp. Here we write H for H
F̂ur

p

.

We denote by Ĥ the canonical formal model of H (see Theorem 3.1). The curve XΓ

has a canonical semistable module XΓ = Γ\Ĥ; the special fibre XΓ,s of XΓ is isomorphic

to Γ\Ĥs.
The graph Gr(XΓ,s) (cf. Section 2) is closely related to the Bruhat-Tits tree T for

PGL(2,Fp). The group Γ acts freely on the tree T . Let TΓ denote the quotient tree. The

set of connected components of the special fibre XΓ,s is in one-to-one correspondence
to the set V(TΓ) of vertices of TΓ. Each component is isomorphic to the projective line

over k, the residue field of Fp. Write {P1
v}v∈V(TΓ) for the set of components of XΓ,s. The

singular points of XΓ,s are ordinary k-rational double singular points; they correspond
to (unoriented) edges of TΓ. Two components P1

u and P1
v intersect if and only if u and

v are adjacent; in this case, they intersect at a singular point. For simplicity we will use

the edge e joining u and v to denote this singular point. There is a reduction map from
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Xan
Γ to XΓ,s. For a closed subset U of XΓ,s let ]U [ denote the tube of U in Xan

Γ . Then

{]P1
v[}v∈V(TΓ) is an admissible covering of Xan

Γ . Clearly ]P1
o(e)[∩]P1

t(e)[=]e[.

Let L be a field that splits Fp. Fix an embedding τ : Fp ↪→ L.
Let V be an L[Γ]-module that comes from an algebraic representation of PGL(2,Fp) of

the form V (k) with k = (k1, · · · ,kg;2). We impose that w = 2 because only when w = 2

does the action of GL(2,Fp) on V (k) factor through PGL(2,Fp). We will regard V as an
Fp-vector space by τ . Let V = V (k) be the local system on XΓ associated with V . Let

H∗
dR,τ (XΓ,V ) be the hypercohomology of the complex V ⊗τ,Fp

Ω•
XΓ

.

We consider the Mayer-Vietoris exact sequence attached to H∗
dR,τ (XΓ,V ) with respect

to the admissible covering {]P1
v[}v∈V(TΓ). As in Section 2, we obtain an injective map

ιτ : (
⊕

e∈E(TΓ)

H0
dR,τ (]e[,V ))−/the image of

⊕
v∈V(TΓ)

H0
dR,τ (]P

1
v[,V ) ↪→H1

dR,τ (X
an
Γ ,V ).

Because ]P1
v[ and ]e[ are quasi-Stein, a simple computation shows that H0

dR,τ (]P
1
v[,V )

and H0
dR,τ (]e[,V ) are isomorphic to V . Let C0(V ) be the space of V -valued functions on

V(T ) and C1(V ) the space of V -valued functions on E(T ) such that f(e) =−f(ē). Let Γ

act on Ci(V ) by f �→ γ ◦f ◦γ−1. Then we have a Γ-equivariant short exact sequence

0 �� V �� C0(V )
∂ �� C1(V ) �� 0 (7.1)

where ∂(f)(e) = f(o(e))−f(t(e)). Observe that⊕
v∈V(TΓ)

H0
dR,τ (]P

1
v[,V ) ∼= C0(V )Γ,

(
⊕

e∈E(TΓ)

H0
dR,τ (]e[,V ))− ∼= C1(V )Γ

and the map ⊕
v∈V(TΓ)

H0
dR,τ (]P

1
v[,V )→ (

⊕
e∈E(TΓ)

H0
dR,τ (]e[,V ))−

coincides with ∂. Thus,

(
⊕

e∈E(TΓ)

H0
dR,τ (]e[,V ))−/the image of

⊕
v∈V(TΓ)

H0
dR,τ (]P

1
v[,V )

is isomorphic to C1(V )Γ/∂C0(V )Γ. From (7.1) we get the injective map

δ : C1(V )Γ/∂C0(V )Γ ↪→H1(Γ,V ).

Let C1
har(V ) be the space of harmonic forms

C1
har(V ) := {f : Edge(T )→ V |f(e) =−f(ē), ∀ v,

∑
t(e)=v

f(e) = 0},

and put C0
har(V ) = ∂−1C1

har(V ). Then we have an exact sequence

0 �� V �� C0
har(V ) �� C1

har(V ) �� 0
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from which we deduce the following exact sequence:

0 �� V Γ �� C0
har(V )Γ �� C1

har(V )Γ �� H1(Γ,V ).

In the following we assume that

(coin) the map V Γ → C0
har(V )Γ is an isomorphism.

Fixing some v ∈V(T ), let ε be the map C1
har(V )Γ →H1(Γ,V ) [4, (2.26)] defined by

c �→ (γ �→
∑

e:v→γv

c(e)), (7.2)

where the sum runs over the edges joining v and γv; ε does not depend on the choice of

v. By [4, Appendix A], ε is minus the composition

C1
har(V )Γ → C1(V )Γ/∂C0(V )Γ

δ−→H1(Γ,V )

and is an isomorphism under the condition (coin). Combining this with the injectivity

of δ, we obtain that both the natural map C1
har(V )Γ → C1(V )Γ/∂C0(V )Γ and δ are

isomorphisms. Below, we will identify C1
har(V )Γ with C1(V )Γ/∂C0(V )Γ.

By [10] we have

H1
dR,τ (XΓ,V )∼= {V -valued differentials of second kind on XΓ}/

{df |f a V -valued meromorphic function on XΓ}.
(7.3)

In [10], de Shalit only considered a special case, but his argument is valued for our

general case. If ω is a Γ-invariant V -valued differential of the second kind on H, let Fω

be a primitive of it [9], which is defined by Coleman’s integral [5].3 Let P τ be the map

P τ :H1
dR,τ (XΓ,V )→H1(Γ,V ), ω �→ (γ �→ γ(Fω)−Fω).

Note that P τ ◦ ιτ coincides with δ. Thus, P τ splits the inclusion ιτ ◦ δ−1 : H1(Γ,V ) →
H1

dR,τ (XΓ,V ).

Let Iτ be the map

Iτ :H1
dR,τ (XΓ,V )→ C1

har(V )Γ,ω �→ (e �→ Rese(ω)).

Proposition 7.1. Under the condition (coin) we have an exact sequence called the

covering filtration exact sequence

0 �� H1(Γ,V )
ιτ◦δ−1

�� H1
dR,τ (XΓ,V )

Iτ
�� C1

har(V )Γ �� 0.

Proof. What we need to prove is that the map

H1
dR,τ (XΓ,V )→H1(Γ,V )⊕C1

har(V )Γ ω �→ (P τ (ω),Iτ (ω))

is an isomorphism. When V is the trivial module, this is already proved in [10]. So we
assume that V is not the trivial module. First we prove the injectivity of the above map.

3Precisely, we choose a branch of Coleman’s integral.
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For this we only need to repeat the argument in [10, Theorem 1.6]. Let ω be a Γ-invariant

V -valued differential form of second kind on H such that P τ ([ω]) = Iτ ([ω]) = 0, where [ω]

denotes the class of ω in H1
dR,τ (XΓ,V ). Let Fω be a primitive of ω. Because Iτ (ω) = 0,

the residues of ω vanish and thus Fω is meromorphic. Because P τ (ω) = 0, we may adjust

Fω by adding a constant vector in V such that it is Γ-invariant. By (7.3) we have [ω] = 0.

To show the surjectivity, we only need to compare the dimensions. By [4, Appendix A]
we have

dimFp
C1

har(V )Γ = dimFp
H1(Γ,V ).

By [25, Theorem 1] we have

dimFp
H1

dR,τ (XΓ,V ) = dimFp
H1(Γ,V )+dimFp

H1(Γ,V ∗),

where V ∗ = HomFp
(V ,Fp) is the dual Fp[Γ]-module. Because w = 2, being an Fp[Γ]-

module, V ∗ is isomorphic to V . Hence,

dimFp
H1

dR,τ (XΓ,V ) = dimFp
C1

har(V )Γ+dimFp
H1(Γ,V ),

as desired.

7.2. ωτ
c

We fix an embedding τ : Fp ↪→ L.
For each σ :Fp →L, let Lσ(k,v) be the dual of Vσ(k,v) with the right action of GL(2,Fp):

if g ∈ GL(2,Fp), P
′ ∈ Lσ(k,v) and P ∈ Vσ(k,v), then 〈P ′,g ·P 〉 = 〈P ′|g,P 〉. We realise

Lσ(k,v) by the same space as Vσ(k,v), with the pairing

〈Xj
σY

k−2−j
σ ,Xj′

σ Y k−2−j′

σ 〉=
{

1 if j = j′

0 if j �= j′

and the right GL(2,Fp)-action

P |[ a b
c d

] = σ(ad− bc)vP (σ(a)Xσ +σ(b)Yσ,σ(c)Xσ +σ(d)Yσ).

Put L(k)τ =
⊗

σ∈I,σ �=τ Lσ(kσ,
w−kσ

2 ). Put V (k)τ =
⊗

σ∈I,σ �=τ Vσ(kσ,
w−kσ

2 ). Then L(k)τ

is the dual of V (k)τ . Assume w = 2 below.

Let LPkτ−2 be the space of local polynomials on P1(Fp) of degree ≤ kτ −2. We define

a right action of GL(2,Fp) on LPkτ−2 by

f |[ a b
c d

](x) =
(cx+d)kτ−2

(ad− bc)
kτ
2 −1

f

(
ax+ b

cx+d

)
.

Let c be a nonzero harmonic cocycle in C1
har(V (k)). We attach to c a V (k)τ -valued

linear functional μτ
c of LPkτ−2 such that

〈Q,
∫
Ue

tjμτ
c (t)〉=

〈Xj
τY

kτ−2−j
τ ⊗Q,c(e)〉(

kτ −2
j

)
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for each Q ∈ LP(k)τ and j = 0, · · · ,kτ −2. By definition, we have∫
Ue

(tj |g)μτ
c (t) =

∫
gUe

tjμτ
g·c(t). (7.4)

We say c is bounded if for a fixed edge e0,

supg∈GL(2,FP)/B |g−1(c(ge0))|

exists, where B is the subgroup of GL(2,Fp) that fixes e0 and | · | is any norm on V (k).
Note that this concept does not depend on the choices of e0 and | · |.

Lemma 7.2. If c is bounded, then there exists a constant A> 0 such that

|
∫
a+πmoFp

(t−a)jμτ
c (t)| ≤A|π|m(j+1− kτ

2 )

for each a ∈ Fp.

Proof. Put g =
[ 1 −a
0 πm

]
. Then g(a+πmoFp

) = oFp
and

tj |g =
πm(kτ−2)

πm( kτ
2 −1)

(
t−a

πm
)j = πm( kτ

2 −1−j)(t−a)j .

By (7.4) we have ∫
a+πmoFp

(t−a)jμτ
c (t) = πm(j+1− kτ

2 )

∫
oFp

tjμτ
g·c(t).

Because c is bounded, this yields our lemma.

Proposition 7.3. If c is bounded, then there is a unique V (k)τ -valued analytic
distribution μτ

c on P1(Fp) such that

〈Q,
∫
Ue

tjμτ
c (t)〉=

〈Xj
τY

kτ−2−j
τ ⊗Q,c(e)〉(

kτ −2

j

) , j = 0, · · · ,kτ −2

for each Q ∈ L(k)τ .

Proof. This follows from Lemma 7.2 and a standard Amice-Velu and Vishik’s argument.

Now let c be a nonzero harmonic cocycle in C1
har(V (k))Γ. Then Γ-invariancy of c ensures

that c is bounded and so we can attach to c the distribution μτ
c . We define a V (k)τ -valued

rigid analytic function gτc , precisely, a global section of V (k)τ ⊗τ,Fp
OH, by

gτc (z) =

∫
P1(Fp)

1

z− t
μτ
c (t)

for z ∈H.
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Proposition 7.4. The function gτc satisfies the transformation property: for γ =
[ a b
c d

] ∈
Γ we have

gτc (γ ·z) =
(cz+d)kτ

det(γ)kτ/2
γ ·gτc (z).

Proof. This follows from an argument similar to the proof of [27, Theorem 3].

Put

ωτ
c = gτc (z)(zXτ +Yτ )

kτ−2dz.

Then ωτ
c is a Γ-invariant section of V (k)⊗τ,Fp

Ω1
H that descends to a section of V (k)⊗τ,Fp

Ω1
XΓ

.

7.3. Hodge-like decomposition

We have also a Hodge filtration exact sequence

0 �� H0(XΓ,V ⊗τ,Fp
Ω1

XΓ
) �� H1

dR,τ (XΓ,V ) �� H1(XΓ,V ⊗τ,Fp
OXΓ

) �� 0.

Thus, we may regard ωτ
c ∈H0(XΓ,V ⊗τ,Fp

Ω1
XΓ

) as an element of H1
dR,τ (XΓ,V ).

The Hodge filtration exact sequence and the covering filtration exact sequence fit into
the following commutative diagram:

0

��
H1(Γ,V )

ι◦δ−1

�� �����
���

���
���

��

0 �� H0(XΓ,V ⊗τ,Fp
Ω1

XΓ
)

�����
����

����
���

�� H1
dR,τ (XΓ,V ) ��

Iτ

��

H1(XΓ,V ⊗τ,Fp
OXΓ

) �� 0.

C1
har(V )Γ

��
0

Lemma 7.5. Iτ (ωτ
c ) = c.

Proof. The proof is similar to that of [27, Theorem 3]. Recall that

gτc (z) =

∫
P1(Fp)

1

z− t
μτ
c (t).

For each edge e of T , let B(e) be the affinoid open disc in P1(Cp) that corresponds to e.

Assume that B(e) meets the limits set P1(Fp) in a compact open subset U(e). Put

gτc,e(z) =

∫
U(e)

1

z− t
μτ
c (t).
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Let a(e) be a point in U(e). Expanding 1
z−t at a(e) we obtain that

gτc,e(z) =

+∞∑
n=0

1

(z−a(e))n+1

∫
U(e)

(t−a(e))nμτ
c (t)

and thus gτc,e(z) converges on the complement of B(e). By the same reason,

(gτc −gτc,e)(z) =

∫
P1(Fp)\U(e)

1

z− t
μτ
c (t) =−

+∞∑
n=0

(z−a(e))n
∫
P1(Fp)\U(e)

1

(t−a(e))n+1
μτ
c (t)

is analytic on B(e). So, we have

Iτ (gτc (zXτ +Yτ )
kτ−2dz)(e) = Rese

(
gτc (zXτ +Yτ )

kτ−2dz
)
=Rese

(
gτc,e(zXτ +Yτ )

kτ−2dz
)

=Rese

(∫
U(e)

(zXτ +Yτ )
kτ−2

z− t
μτ
c (t)

)
=

∫
U(e)

(tXτ +Yτ )
kτ−2μτ

c (t) = c(e),

where the fourth equality follows from the fact that Rese commutes with
∫
U(e)

· μτ
c (t).

Theorem 7.6. Under the assumption (coin) we have the following decomposition:

H1
dR,τ (XΓ,V ) =H0(XΓ,V ⊗τ,Fp

Ω1
XΓ

)⊕H1(Γ,V ).

This decomposition is called the Hodge-like decomposition.

Proof. We only need to prove that the composition

H0(XΓ,V ⊗τ,Fp
Ω1

XΓ
)→H1

dR,τ (XΓ,V )→ C1
har(V )Γ

is an isomorphism. By Lemma 7.5 this is surjective. So

dimH0(XΓ,V ⊗τ,Fp
Ω1

XΓ
)≥ dimC1

har(V )Γ = dimH1
dR,τ (XΓ,V )/2.

To show the injectivity of the above composition map it suffices to show that

dimH0(XΓ,V ⊗τ,Fp
Ω1

XΓ
)≤ dimH1

dR,τ (XΓ,V )/2. (7.5)

Note that as an L[Γ]-module V is dual to itself. Thus, there is a Poincaré pairing on

H1
dR,τ (XΓ,V ). For this pairing, H0(XΓ,V ⊗τ,Fp

Ω1
XΓ

) is orthogonal to itself, which implies
(7.5).

8. Proof of Theorem 1.2

Let k = (k1, · · · ,kg,w) be a multiweight such that k1 ≡ ·· ·kg ≡w mod 2 and k1, · · · ,kg are

all even and ≥ 2.

Let f∞ be a (Hilbert) cusp eigenform of weight k as in Theorem 1.2. By the condition in
Theorem 1.2 there exists a quaternion algebra B over F that satisfies the condition at the

beginning of Section 4 such that by Jacquet-Langlands correspondence f∞ corresponds to

a modular form fB over the Shimura curve M attached to B. Let U =Up,0U
p, a compact

open subgroup of G(Af ), be the level of fB . Let n− be the ideal of F such that pn− is

the discriminant of B.

Let L be a (sufficiently large) finite extension of F that splits B and contains all Hecke

eigenvalues acting on f∞, λ a place of L above p.
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Lemma 8.1. [24, Lemma 3.1] There is an isomorphism

H1
et(MF ,F(k)λ)�

⊕
f ′

π∞
f ′,L(f ′)⊗L(f ′) (

⊕
λ′|λ

ρf ′,λ′)

of representations of G(Af )×Gal(F/F ) over Lλ. Here f ′ runs through the conjugacy
classes over L, up to scalars, of eigen newforms of multiweight k that are new at primes

dividing pn−. The extension of L generated by the Hecke eigenvalues acting on f ′ is

denoted by L(f ′), and λ′ runs through places of L(f ′) above λ.

Let B̄ be as in Subsection 5.2. Put ̂̄B×
:= (B̄

⊗
Af )

× and ̂̄Bp,×
:= (B̄

⊗
Ap

f )
×. We

identify Up =
∏
l �=p

Ul with a subgroup of ̂̄Bp,×
. Write ̂̄Bp,×

= �h
i=1B̄

×xiU
p. For each i =

1, · · · ,h we put

Γ̃i := {γ ∈ B̄× : γl ∈ (xi)lUl(xi)
−1
l

for l �= p}.

Then XUp is isomorphic to

B̄×\(H
F̂ur

p

×G(Qp)/Up,0× ̂̄Bp,×
/Up)∼= �h

i=1Γ̃i\(HF̂ur
p

×Z).

Here we identify Z with G(Qp)/Up,0. Note that Γ̃i acts transitively on Z =G(Qp)/Up,0;

for every point in Z=G(Qp)/Up,0 it is fixed by γ ∈ B̄× if and only if |det(γp)|p = 1. Put

Γ̃i,0 = {γ ∈ Γ̃i : |det(γp)|p = 1}
= {γ ∈ B̄× : γl ∈ (xi)lUl(xi)

−1
l

for l �= p and |det(γp)|p = 1}.

Let Γi,0 be the image of Γ̃i,0 in PGL(2,Fp). Then we have an isomorphism

XUp ∼= �h
i=1Γi,0\HF̂ur

p

. (8.1)

Now we come to the proof of Theorem 1.2. Twisting fB by a central character, we may

assume that w = 2.

To show that ρfB,P,p is semistable, we only need to prove that H1
et((XUp)F̄p

,F(k)) is
semistable, because ρfB,P,p is a quotient of H1

et((XUp)F̄p
,F(k)). But this follows from

Theorem 2.1 and the fact that XUp has a semistable reduction.

Being a Shimura variety, NE is a family of varieties. But in the following we will
use NE to denote any one in this family that corresponds to a level subgroup whose

p-factor is O×
Ep

. By the proof of Lemma 6.4, any geometric point of (NE)F̂ur
p

is defined

over F̂ ur
p . In other words, (NE)F̂ur

p

is the product of several copies of Spec(F̂ ur
p ). Thus, the

Gal(F p/F
ur
p )-representation H0

et((NE)
F̂p

,Qp) is crystalline and the associated filtered ϕq-

module is H0
dR((NE)F̂ur

p

,Qp) with trivial filtration. Let H0 denote this filtered ϕq-module

for simplicity.

Let pr1 be the projection XUp × (NE)F̂ur
p

→XUp . Corollary 6.5 tells us that the filtered

ϕq-isocrystal attached to pr∗1F(k) is pr∗1F (k). Therefore, the filtered (ϕq,N)-module
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attached to H1
et((MU ×N)F ,pr

∗
1F(k)λ) is

H1
dR(XUp × (NE)F̂ur

p

,pr∗1F (k))∼=H0⊗Qp
H1

dR(XUp,F (k)).

Applying the constructions in Subsection 7.1 to each part Γi,0\HF̂ur
p

of XUp , we obtain

operators ιτ , P τ and Iτ . By Proposition 2.2 the restriction of N to H1
dR,τ ((MU ×

N)
F̂ur

p

,pr∗1F (k)) coincides with ιτ ◦ Iτ . By [4, Appendix], each Γi,0 satisfies (coin). So

we can apply Theorem 7.6 to obtain that the restriction of N to H0⊗Qp
H0(XUp,F ⊗Qp

Ω1
XUp ) is injective.
In the proof of Theorem 7.6 we show that each element of H0(XUp,F (k)⊗τ,Fp

Ω1
XUp

)

is of the form gτc (z)(zXτ +Yτ )
kτ−2dz. So,

H0(XUp,F (k)⊗τ,Fp
Ω1)⊆ Fil

w+kτ
2 −1H1

dR,τ (XUp,F (k)).

We consider the pullback of the pairing (6.1) toXUp ×NE , which induces a perfect pairing

on H0⊗Qp
H1

dR,τ (XUp,F (k)). The filtered ϕq-isocrystal attached to F(detw−2), denoted

by F (w−2), satisfies that

FiliH1
dR,τ (XUp,F (w−2)) =

{
H1

dR,τ (XUp,F (w−2)) if i≤ w−1,

0 if i≥ w.

Hence, with respect to the above pairing,

Fil
w−kτ

2 +1H0⊗Qp
H1

dR,τ (XUp,F (k))

is orthogonal to

Fil
w+kτ

2 −1H0⊗Qp
H1

dR,τ (XUp,F (k)).

Comparing dimensions, we obtain

H0⊗Qp
H0(XUp,F (k)⊗τ,Fp

Ω1
XUp ) = Fil

w+minσ kσ
2 −1H0⊗Qp

H1
dR,τ (XUp,F (k)).

Therefore, N induces an isomorphism

Fil
w+minσ kσ

2 −1H0⊗Qp
H1

dR,τ (XUp,F (k))

∼−→H0⊗Qp
H1

dR,τ (XUp,F (k))/Fil
w+minσ kσ

2 −1H0⊗Qp
H1

dR,τ (XUp,F (k))

for each τ .
Because the filtered (ϕq,N)-module of ρfB,P,p, denoted by D, is a quotient of H0⊗Qp

H1
dR(XUp,F (k)), N induces an isomorphism

Fil
w+minσ kσ

2 −1Dτ
∼−→Dτ/Fil

w+minσ kσ
2 −1Dτ ,

where Dτ is the τ -component of D. It follows that D is noncritical.

9. Comparing two kinds of L-invariants

9.1. Automorphic forms on totally definite quaternion algebras

We recall the theory of automorphic forms on totally definite quaternion algebras.
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Let B̄ be as in Subsection 5.2, which is a totally definite quaternion algebra over F .

Let Σ =
∏

l
Σl be a compact open subgroup of ̂̄B×

.

Let χF,cyc :A
×
F /F

× →Z×
p be the Hecke character obtained by composing the cyclotomic

character χQ,cyc : A
×
Q/Q

× → Z×
p and the norm map from A×

F to A×
Q .

Definition 9.1. An automorphic form on B̄×, of weight k = (k1, · · · ,kg,w) and level Σ,

is a function f : ̂̄B×
→ V (k) that satisfies

f(zγbu) = χ2−w
F,cyc(z)(u

−1
p · f(b))

for all γ ∈ B̄×, u ∈ Σ, b ∈ ̂̄B×
and z ∈ F̂×. Denote by SB̄

k (Σ) the space of such forms.

Remark that our SB̄
k (Σ) coincides with SB̄

k′,v(Σ) for k′ = (k1 − 2, · · · ,kg − 2) and v =

(w−k1

2 , w−k2

2 , · · · , w−kg

2 ) in [4].

Observe that a form f of level Σ is determined by its values on the finite set B̄×\ ̂̄B×
/Σ.

As in Section 8, we write ̂̄Bp,×
= �h

i=1B̄
×xiΣ; for i= 1, · · · ,h, put

Γ̃i = {γ ∈ B̄× : γl ∈ (xi)lΣl(xi)
−1
l

for l �= p}.

Then we have a bijection

�h
i=1Γ̃i\GL(2,Fp)/Σp

∼−→ B̄×\ ̂̄B×
/Σ.

The class of g in Γ̃i\GL(2,Fp)/Σp corresponds to the class of xi,pgp in B̄×\ ̂̄B×
/Σ, where

gp is the element of ̂̄B×
that is equal to g at the place p and equal to the identity

at other places. Using this, we can attach to an automorphic form f of weight k and
level Σ an h-tuple of functions (f1, · · · ,fh) on GL(2,Fp) with values in V (k) defined by

fi(g) = f(xi,pgp). The function fi satisfies

fi(γpguz) = χ2−w
F,cyc(z)u

−1 ·fi(g)

for all γp ∈ Γ̃i, g ∈GL(2,Fp), u ∈ Σp and z ∈ F×
p .

For each prime l of F such that B̄ splits at l, l �= p, and Σl is maximal, one defines a
Hecke operator Tl on SB̄

k (Σ) as follows. Fix an isomorphism ιl : Bl →M2(Fl) such that

Σl becomes identified with GL2(oFl
). Let πl be a uniformiser of oFl

. Given a double coset

decomposition

GL2(oFl
)
[ 1 0
0 πl

]
GL2(oFl

) =
∐

biGL2(oFl
),

we define the Hecke operator Tl on SB̄
k (Σ) by

(Tlf)(b) =
∑
i

f(bbi).

We define Up similarly. Let TΣ be the Hecke algebra generated by Up and these Tl.

Denote by o
(p)
F the ring of p-integers of F and (o

(p)
F )× the group of p-units of F . We have

Γ̃i ∩F× = (o
(p)
F )×. For i = 1, · · · ,h, put Γi = Γ̃i/(o

(p)
F )×. Consider the following twisted
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action of Γ̃i on V (k):

γ �v = |NrdB̄/F γ|
w−2

2
p γp ·v.

Then (o
(p)
F )× is trivial on V (k), so we may consider V (k) as a Γi-module via the above

twisted action.

9.2. Teitelbaum-type L-invariants

Chida, Mok and Park [4] defined Teitelbaum-type L-invariants for automorphic forms
f ∈ SB̄

k (Σ) satisfying the condition (CMP) given in the Introduction:

f is new at p and Upf =Npw/2f .

We recall their construction below.

We attach to each fi a Γi-invariant V (k)-valued cocycle cfi , where Γi acts on V (k) via �.

For e= (s,t)∈E(T ), represent s and t by lattices Ls and Lt such that Ls contains Lt with

index Np. Let ge ∈ GL(2,Fp) be such that ge(o
2
Fp

) = Ls and ge(oFp
⊕ poFp

) = Lt. Then

we define cfi(e) := |det(g)|
w−2

2
p ge �fi(ge). If f satisfies (CMP), then cfi is in C1

har(V (k))Γi

[4, Proposition 2.7]. Thus, we obtain a vector of harmonic cocycles cf = (cf1, · · · ,cfh).
For each c ∈ C1

har(V (k))Γi we define κsch
c to be the following V (k)-valued function on

Γi: fixing some v ∈V(T ), for each γ ∈ Γi we put

κsch
c (γ) :=

∑
e:v→γv

c(e),

where e runs over the edges in the geodesic joining v and γv. Because c is Γi-invariant,

κsch
c is a 1-cocycle on Γi. Furthermore, the class of κsch

c in H1(Γi,V (k)) is independent of
the choice of v. Hence, we obtain a map

κsch :

h⊕
i=1

C1
har(V (k))Γi →

h⊕
i=1

H1(Γi,V (k)).

By [4, Proposition 2.9], κsch is an isomorphism.
For each harmonic cocycle c ∈ C1

har(V (k))Γi , in Subsection 7.2 we attached to it the

V (k)τ -valued function gτc . We define a V (k)-valued cocycle λτ
c as follows. Fix a point

z0 ∈H. For each γ ∈ Γi the value λτ
c (γ) is given by the formula: for Q ∈ LP(k)τ ,

〈Xj
τY

kτ−2−j
τ ⊗Q,λτ

c (γ)〉=
(

kτ −2
j

)
〈Q,

∫ γz0

z0

zjgτc (z)dz〉

(0 ≤ j ≤ kτ − 2), where the integral is the branch of Coleman’s integral chosen in
Subsection 7.1. Then λτ

c is a 1-cocycle on Γi and the class of λτ
c in H1(Γi,V (k)), denoted

by [λτ
c ], is independent of the choice of z0. This defines a map

κcol,τ :

h⊕
i=1

C1
har(T ,V (k))Γi →

h⊕
i=1

H1(Γi,V (k)), (ci)i �→ ([λτ
ci ])i.
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Because κsch is an isomorphism, for each τ there exists a unique �τ ∈ LP such that

κcol,τ (cf ) = �τκ
sch(cf ).

The Teitelbaum-type L-invariant of f , denoted by LT (f), is defined to be the vector (�τ )τ
[4, Section 3.2]. We also write LT,τ (f) for �τ .

9.3. Comparing L-invariants

Let B, B̄, G and Ḡ be as before. Let n− be the conductor of B̄. By our assumption on

B̄, p � n− and the conductor of B is pn−. Let n+ be an ideal of oF that is prime to pn−

and put n := pn+n−.
For any prime ideal l of oF , put

R̄l :=

⎧⎨
⎩

an maximal compact open subgroup of B̄×
l

if l is prime to n,

the maximal compact open subgroup of B̄×
l

if l divides n−,

1+ an Eichler order of B̄l of level l
vall(pn

+) if l divides pn+.

Let Σ̄ = Σ(pn+,n−) be the level
∏

l
R̄l. Similarly, we put Σ =Σ(n+,pn−), a compact open

subgroup of G(Af ).

Let k = (k1, · · · ,kg,w) be a multiweight such that k1 ≡ ·· ·kg ≡ w mod 2 and k1, · · · ,kg
are all even and ≥ 2. We write SB̄

k (pn+,n−) for SB̄
k (Σ(pn+,n−)). Let SB

k (n+,pn−) be the

space of modular forms on the Shimura curve M of weight k and level Σ.

Let f∞ be a (Hilbert) cusp eigen newform of weight k and level n. Let f ∈ SB̄
k (pn+,n−)

(respectively fB ∈SB
k (n+,pn−)) be an eigen newform corresponding to f∞ by the Jacquet-

Langlands correspondence; f (respectively fB) is unique up to scalars.

We further assume that f satisfies (CMP), so that we can attach to f the Teitelbaum-

type L-invariant LT (f). We define LT (f∞) to be LT (f). The goal of this section is to
compare LFM (f∞) and LT (f∞).

Let L be a (sufficiently large) finite extension of F that splits B and contains all Hecke

eigenvalues acting on f∞. Let λ be a place of L above p.
By the strong multiplicity one theorem [22], there exists a primitive idempotent efB ∈

TΣ̄ such that efBTΣ̄ = LefB and efB ·SB̄
k (Σ(pn+,n−)) = L · fB . Lemma 8.1 tells us that

efB ·H1
et(MF ,F(k)λ)

Σ is exactly ρfB,λ.

In Section 8 and Subsection 9.1 we associate to Σ̄ the groups Γ̃i,0,Γ̃i,Γi and Γi,0 (i =

1, · · · ,h). By (8.1), XΣ is isomorphic to
∐

iXΓi,0
, where XΓi,0

= Γi,0\HF̂ur
p

. In Subsection

9.2 we attached to f = (f1, · · · ,fh) an h-tuple gτ = (gτ1 , · · · ,gτh) where gτi = gτcfi
. Put

ωτ
f :=

(
gτi (z)(zXτ +Yτ )

kτ−2dz
)
1≤i≤h

,

which is an element of
⊕

iH
1
dR,τ (XΓi,0

,F (k)).

Let P τ , ιτ and Iτ be the operators attached to F (k).

Lemma 9.2. We have

P τ (ωτ
f ) = κcol,τ (cf ), Iτ (ωτ

f ) = cf .
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Proof. The first formula comes from the definitions and the second follows from
Lemma 7.5.

Theorem 9.3. Let f∞ be as above. Then LFM (f∞) = LT (f∞).

Proof. Twisting f∞ by a central character, we may assume that w = 2.

We use notations in Section 8. Let H0 be the filtered ϕq-module H0
dR((NE)F̂ur

p

,Qp) and

putDτ =H0⊗Qp
efBH

1
dR,τ (XΣ,F (k)). Note that the restriction ofN toDτ coincides with

ιτ ◦Iτ . Because the kernel of N coincides with the image of ιτ ◦δ−1 and P τ splits ιτ ◦δ−1,
we have Dτ = ker(N)⊕ker(P τ ). Write ωτ

f = x+y according to this decomposition. Then

ιτ ◦ δ−1 ◦P τ (ωτ
f ) = x. (9.1)

By the proof of Theorem 1.2, y is nonzero and so N(y) �= 0.

By Lemma 9.2 and the definition of Teitelbaum-type L-invariant, LT,τ (f∞) is charac-

terised by the property

(P τ −LT,τ (f∞)ε◦ Iτ )ωτ
f = 0, (9.2)

where ε is the map defined by (7.2) that coincides with κsch. Because δ−1 ◦ ε = −id and
ιτ ◦ Iτ =N , we have

ιτ ◦ δ−1 ◦ ε◦ Iτ (ωτ
f ) =−N(ωτ

f ). (9.3)

By (9.1), (9.2) and (9.3) we get

LT,τ (f∞)N(ωτ
f )+x= 0. (9.4)

By the definition of Fontaine-Mazur L-invariant, LFM,τ (f∞) is characterised by the

property

y−LFM,τ (f∞)N(y) ∈H0⊗Qp
Fil

w+minσ{kσ}
2 −1H1

dR,τ (XΣ,F (k)). (9.5)

Combining (9.4) and (9.5) we obtain

(LFM,τ (f∞)−LT,τ (f∞))N(y)

= LFM,τ (f∞)N(y)−LT,τ (f∞)N(ωτ
f )

∈ ωτ
f +H0⊗Qp

Fil
w+minσ{kσ}

2 −1H1
dR,τ (XΣ,F (k))

= H0⊗Qp
Fil

w+minσ{kσ}
2 −1H1

dR,τ (XΣ,F (k)).

But N(y) is in ker(N) and is nonzero. Again by the proof of Theorem 1.2,

ker(N)∩H0⊗Qp
Fil

w+minσ{kσ}
2 −1H1

dR,τ (XΣ,F (k)) = 0.

Therefore,

LFM,τ (f∞)−LT,τ (f∞) = 0,

as wanted.
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