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Abstract We propose a conjecture that the Galois representation attached to every Hilbert modular
form is noncritical and prove it under certain conditions. Under the same condition we prove Chida, Mok
and Park’s conjecture that Fontaine-Mazur L-invariant and Teitelbaum-type L-invariant coincide with
each other.
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Introduction

Let F be a totally real number field of degree g = [F': Q] and p a prime ideal of F above
a fixed prime number p.

0.1. Noncritical Galois representations

The objects of this article are p-adic representations of the Galois group G = Gal(F/F).
Among them there is a subclass called semistable; roughly speaking, a p-adic Galois
representation is called semistable at p if its restriction to G, has periods in Fontaine’s
period ring Bygt.

Let L be an extension of F, that splits F,. Among semistable (but noncrystalline)
2-dimensional L-representations of G g, there is a subclass, called noncritical, that can
be attached to Fontaine-Mazur L-invariants. See Section 1 for its precise definition. The
importance of L-invariants is due to the fact that they occur in the exceptional zero
conjecture proposed by Mazur, Tate and Teitelbaum [19]. This conjecture was proved by
Greenberg and Stevens [16].

When F, = Q,, all semistable representations are automatically noncritical. However,
when F}, is different from Q,, a new phenomenon is that there exist critical semistable
noncrystalline 2-dimensional Galois representations.

The main result is the following.

Theorem 0.1. (=Theorem 1.2) Assume that F is a totally real field that satisfies the
following condition:

there is no place other than p above p.

P
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Let fo be a Hilbert modular form over F of even weight (ki,---,kg,w) and suppose that
foo is mew at p (and another prime ideal if [F : Q] is odd). Then the p-adic Galois
representation attached to fo is semistable and noncritical at p.

Here, the notion even weight means that ki, ---,k, and w are all even.
Inspired by Theorem 0.1, we propose the following.

Conjecture 0.2. Let fo, be a Hilbert modular form over F that is new at p. Then the
p-adic Galois representation attached to fo is semistable and noncritical at p.

The key in the proof of Theorem 0.1 is the Hodge-like decomposition of de Rham
cohomology. We state this decomposition below.

Let H be Drinfeld’s upper half plane and I" an arithmetic Schottky group that is
cocompact in PGL(2,F},). Then I' acts freely on H and the quotient Xr = I'\'H is the
rigid analytic space associated with a proper smooth curve over F,. Let ¥ be the local
system coming from an L[I'-module V, where L is a field that contains Fj,. Fix an
embedding 7 : F, — L and consider V' as an Fy[[']-module by 7. Let Hjp .(Xr,7) be the
hypercohomology of the complex ¥ ®; g, 2%_.. Then we have the following decomposition,
called the Hodge-like decomposition:

H(%R,T(erqi/) :HO(XFaqi/@T,Fp Qﬁ(r)@Hl(F,V). (01)

Let H? be the d-dimensional Drinfeld p-adic symmetric domain. The Hodge-like
decomposition for the de Rham cohomology Hz(I\H?) of certain quotient I'\H? of
H? was conjectured by Schneider [25] and proved by Iovita and Spiess [17]. When d =2 —
that is, H? is the above H — de Shalit [9] proved the Hodge-like decomposition for certain
local systems. However, neither the result of Iovita and Spiess nor the result of de Shalit
covers our situation.

We sketch the proof of (0.1). The quotient of HéRJ(Xp,“//) by H!(T,V) is isomorphic
to CL. (V)T the group of I-invariant harmonic cocycles on the Bruhat-Tits tree attached
to PGL(2,F}). By Amice-Velu and Vishik’s method we construct a map

Ckllar(v)r _>H0(XF77/®T,FP Q%(F) CHOJZ

and show that for each ¢ the image of w] by the quotient map Hgg (Xr,”?) = Cf,.(V)F
is just ¢. Combining this with a comparing dimensions argument we obtain (0.1).

Now, we sketch the proof of Theorem 0.1. The Galois representation attached to fuo
comes from the étale cohomology HZ of some local system on a Shimura curve. The
Shimura curve has a p-adic uniformisation; precisely there are some arithmetic Schottky
groups I['; such that the rigid analytic space attached to the Shimura curve is isomorphic
to the union U;T;\H.

We will give a precise description of the filtered ¢,-isocrystal, denoted by ¥, attached
to the above local system. In [6], Coleman and Iovita provided a precise description
of the monodromy on the de Rham cohomology of ¥'. By their result and the Hodge-

like decomposition, we show that the monodromy is injective on @ H®(T:\H,? ®- p,
Q). Our precise description of ¥ will imply that @ H°(T;\H,? @, Q') coincides
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whming by g

with Fil™ 2 PH (}R’T(Fi\’H,”f/ ). Then we deduce that the monodromy induces an

isomorphism

Fil 5 L D Hi  (DAH, )

l> @ HéR,'r (Fz\Hv ”f/)/Fll w+mi2"7 o @ H&R,T (Fl\Hv %)a

which implies Theorem 0.1.

When F' has more than one place (say r places) above p, our method of computing
filtered ¢4-isocrystals is not valid. To make it work, one may have to consider the Shimura
variety studied by Rapoport and Zink [23, Chapter 6] (which is of dimension r) instead of
the Shimura curve. Coleman and Iovita’s result [6] is valid only for curves and so cannot
be applied directly.

0.2. Fontaine-Mazur L-invariants and Teitelbaum-type L-invariants

Because the Galois representation attached to f. is noncritical at p, we can attach to it
the Fontaine-Mazur L-invariant, denoted by Lpar(foo)-

Chida, Mok and Park [4] attached to each automorphic form f over a totally definite
quaternion algebra (also of weight (k1, ---,kq,w)) that satisfies the following condition:

(CMP) f is new at p and U,f = N'p*/2f,

another kind of L-invariant Lp(f), called the Teitelbaum-type L-invariant. Both
Lrm(foo) and Lp(f) are vector valued. See Subsection 1.2 and Subsection 9.2 for
their precise definitions. As mentioned previously, the importance of L-invariants is due
to the fact that they occur in the exceptional zero conjecture [19]. The readers are invited
to consult Colmez’s paper [7] for a historical account on the exceptional zero conjecture
and L-invariants.

In [4], Chida, Mok and Park conjectured that Lzps(feo) = L7(f) when fo, and f are
attached to each other by Jacquet-Langlands correspondence. When F' = Q, this is already
known by Iovita and Spiess [18]. We prove their conjecture under the same assumption
as in Theorem 0.1.

Theorem 0.3. (=Theorem 9.3) Assume that F is a totally real number field that satisfies
the following condition:

there is mo place other than p above p.

Let fo and £ be as above. Then Lpp(foo) = L1 (foo)-

As in [18], we prove Theorem 0.3 by analyzing the relation among the monodromy
operator, Coleman integration and Schneider integration.

The article is organised as follows. In Section 1 we recall the notion of noncritical 2-
dimensional Galois representations and state the main theorem. Coleman and Iovita’s
result is recalled in Section 2. Section 3 is devoted to computing the filtered ¢g4-isocrystal
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attached to the universal special formal module. We introduce various Shimura curves
and study their p-adic uniformisations following Rapoport and Zink in Section 4 and
Section 5, respectively. In Section 6 we use the result in Section 3 to determine the
filtered @g-isocrystals attached to various local systems on Shimura curves. In Section 7
we recall the theory of de Rham cohomology of certain local systems and prove the Hodge-
like decomposition theorem. In Section 8, we combine results in Section 2, Section 6 and
Section 7 to prove Theorem 0.1. In Section 9 we recall Chida, Mok and Park’s construction
of Teitelbaum-type L-invariants and prove Theorem 0.3.

Notation

For two Q-algebras A and B, write A® B for A®q B. For a ring R let R* denote the
multiplicative group of invertible elements in R.

Let F be a totally real number field, g = [F : Q]. Let p be a fixed prime. Suppose that
p is inertia in F; that is, there exists exactly one place of F' above p, denoted by p. If ¢
is a power of p, we use v,(g) to denote log,,q.

Let Ay denote Q®zZ and let A% denote Q®z ([, Z¢). Similarly, for any number

field E let Ag 5 denote E®z Z, the ring of finite adeles of E.

Fix an algebraic closure of F},, denoted by Fy, and let C, be the completion of F}, with
respect to the p-adic topology. In this way we have fixed an embedding F, — C,. The
Galois group G, = Gal(F},/F,) can be naturally identified with the group of continuous
Fy-automorphisms of C,,.

1. Noncritical Galois representations

1.1. Noncritical Galois representations and Fontaine-Mazur L-invariant

Let Fyo be the maximal absolutely unramified subfield of F},, ¢ the cardinal number of
the residue field of F},.

Let Beis,Bst and Bgr be Fontaine’s period rings [15]. As is well known, there are
operators ¢ and N on By and a descending Z-filtration on Bggr; Beris is a p-stable subring
of Bs, and N vanishes on Beyis. Put By, r, := Bst ®F,, Fy; Bst,, can be considered as a
subring of Bqr. We extend the operators ¢, = (@) and N Fy-linearly to By, p, -

Let K be either a finite unramified extension of Fj, or the completion of the maximal
unramified extension of F}, in C,. By our assumption on K we have

(Beris, 7, )% = (Bot,, )9 = (Bar) 9% = K.

Let L be a finite extension of Q,,. For a 2-dimensional L-linear representation V' of G,
we put

Dy, (V) = (V ®g, Bg, r, )“¥.

This is a finite rank L ®q, K-module. If V' is semistable, then Ds r, (V) is a filtered
(¢q,N)-module: the (¢q, N)-module structure is induced from the operators ¢, = 1y ® ¢
and N =1y ® N on V ®q, B, r, ; the filtration comes from that on V ®q, Bar. Note that
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¢q and N are L ®q, K-linear. If V' is noncrystalline, then there exists a basis {ng,n1} of
Dg, r, (V) over L®q, K such that Nn; =ng and Nng = 0.

If L splits Fy, then L ®q, K is isomorphic to P, L ®,,F, K, where o runs through all
embeddings of F}, into L. Here the subscript o under ® indicates that F}, is considered
as a subfield of L via 0. Let e, be the unity of the subring L ®, r, K.

If D is a filtered (g4, N)-module, for each o we put D, = e, D. Let —ko » < —k1,, be
the Hodge-Tate weights of D,. For D to be noncritical, one demands —kp , < —k1,, for
each 0. Then there exists

(ag,b5) € (L ®o,F, K) x (L ®q, r, K)\{(0,0)}

such that
. Da‘ if 4 S kl,a
Fil'D, = (L ®Qo, F, K)(agni,o +bsno,0) i ki <i<kso
0 if i > ko o,

where n1 ., = e,n1 and ng , = eono. If for each o, a, is invertible, we say that D is
noncritical. If the filtered (¢4, N)-module attached to V' is noncritical, we say that V is
noncritical. In this case, we put Lpar, (V) = —bs/as, and we call the vector Lpps(V) =
(Lrm,o(V))o the Fontaine-Mazur L-invariant of V.

1.2. Galois representations attached to Hilbert modular forms

Let {7i,---,74} be the set of real embeddings F — R. Fix a multiweight k =
(k1, -+ kgyw) € N9T! satisfying k; > 2 and k; =w mod 2.

Let m = ®,7, be a cuspidal automorphic representation of GL(2,A ) such that for each
Ti, T, is the holomorphic discrete series representation Dy, o_,,. See [3] for the definition
of Dy, 2—w. Let n be the level of 7.

Carayol [3] attached to such an automorphic representation (under a further condition)
an f-adic Galois representation, which is recalled as follows.

Let L be a sufficiently large number field of finite degree over QQ such that the finite part
T = ®ptooTp of m admits an L-structure 73°. The fixed part (73°)%1(") is of dimension
1 and generated by an eigenform f.,. In this case we write 7y for .

The local Langlands correspondence associates to every irreducible admissible repre-
sentation 7, of GL(2,F}) defined over L a 2-dimensional L-rational Frobenius semisimple
representation o (m,) of the Weil-Deligne group WD(F,/F,). Let (m,) denote the dual
of o(my).

For an (-adic representation p of G, let p, denote its restriction to Gr,, p, the Weil-

Deligne representation attached to p, and bg'ss the Frobenius semisimplification of p,.

Theorem 1.1. [3] Let fo be an eigenform of multiweight k satisfying the following
condition:

If g =[F:Q] is even, then there exists a finite place q such that the q-factor wy¢_ o lies in the discrete
series.
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Then for any prime number £ and a finite place N\ of L above £, there exists a \-adic
representation p = ps._ x : Gp — GLp, (Vy_ x) satisfying the following property:
For any finite place p 1 £ there is an isomorphism

1 F-ss

Prp = 0(Tf,p) ®r Lin
of representations of the Weil-Deligne group W D(Fy/F,).

Saito [24] showed that when p | £, ps. »,p is potentially semistable.

Now we assume that ¢ =p, p is the prime ideal of F' above p and L contains F'. Let B
be a prime ideal of L above p.

The main result of our article is the following.

Theorem 1.2. Let fo, be as in Theorem 1.1 and of even weight, £ =p and \=P. If foo
is new at p (when [F: Q] is odd, we demand that f is new at another prime ideal), then
Pfoop,p 15 @ noncritical semistable (noncrystalline) representation of G, .

Remark 1.3. The conditions in Theorem 1.1 and Theorem 1.2 are used to ensure that
via the Jacquet-Langlands correspondence f,, corresponds to a modular form on the
Shimura curve M associated to a quaternion algebra B that splits at exactly one real
place; in Theorem 1.2 the quaternion algebra B is demanded to be ramified at p. See
Subsection 4.1 for the construction of M.

Thus, Ds, r, (Pf..,3,p) is associated with the Fontaine-Mazur L-invariant. We define the
Fontaine-Mazur L-invariant of fu,, denoted by Lras(foo), to be that of Dg r, (pf..,9,p)-

2. Local systems and the associated filtered ¢,-isocrystals

Let X be a p-adic formal OF,-scheme. Suppose that X is analytically smooth over OF, ;
that is, the generic fibre X*" of X is smooth. Here, by a formal &, -scheme, we mean a
formal OF,-scheme locally of finite type.

The filtered convergent g-isocrystals attached to local systems are studied in [14, 6]. Tt
is more convenience for us to compute the filtered convergent ¢4-isocrystals attached to
the local systems that we will be interested in. From now on, we will ignore ‘convergent’
in the notion.

Filtered ¢q-isocrystal is a natural analogue of filtered ¢-isocrystal. To define it one
needs the notion of Fy-enlargement. An Fj-enlargement of X is a pair (T,xr) consisting
of a flat formal OF,-scheme T and a morphism of formal &', -scheme xr : Ty — X, where
Tp is the reduced closed subscheme of T' defined by the ideal 7O .

An isocrystal & on X consists of the following data:

o for every Fy-enlargement (T,z7) a coherent Or @, F,-module &r,

o for every morphism of Fj-enlargements g : (I”,x7/) — (T,2r) an isomorphism of

Or' @6, Fy-modules 6, : g* (&) — &7
The collection of isomorphisms {6y} is required to satisfy certain cocycle condition. If T
is an Fy-enlargement of X, then & may be interpreted as a coherent sheaf E5" on the
rigid space T2".
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Because X is analytically smooth over OF,, there is a natural integrable connection
Vx:E¥® = E¥ @ Q%an.

Note that an isocrystal on X depends only on Xy, the reduced closed subscheme of X
defined by the ideal 70x. Let ¢, denote the absolute g-Frobenius of Xg. A ¢q-isocrystal
on X is an isocrystal & on X together with an isomorphism of isocrystals ¢, : ;& — &
A filtered pq-isocrystal on X is a @g4-isocrystal & with a descending Z-filtration on E¥'.

The following result compares the de Rham cohomology of a filtered ¢,-isocrystal &
and the étale cohomology of the ,-local system & over the general fibre Xfp associated
to it. Let us explain what that & and £ are attached to each other means. The question
is local, so we may assume that there exists a scheme X over O, whose special fibre
is isomorphic to Xy and whose completion along the special fibre is isomorphic to X.
When Spec(R) C X is a sufficiently small affine subscheme, one may form a certain
filtered ring B(R). Evaluate & on it to get &(B(R)), which admits a Galois action and
a filtration. That & and £ are associated to each other means that functorially in R
one has &(B(R)) = B(R) ® £ respecting Galois actions and filtrations. See [12, 13] for
details.

Theorem 2.1. [1/, Theorem 3.2] Suppose that X is a semistable proper curve over
OF,. Let & be a filtered p,-isocrystal over X and & be a Qp-local system over Xfp

that are attached to each other. Then the Galois representation Hét(Xfp,S) of Gp, is
semistable and the associated filtered (g, N)-module Ds, , (Hét(Xfp,S)) is isomorphic
to Hip (X, &).

Now let X be a connected, smooth and proper curve over F, with a regular semistable
model X over ﬁpp such that all irreducible components of its special fibre X are
smooth. For a subset U of X let |U[ denote the tube of U in X®". We associate to
X a graph Gr(X). Let n: X — X be the normalisation of X. The vertices V(X) of
Gr(X) are irreducible components of X. For every vertex v let C, be the irreducible
component corresponding to v. The edges E(X) of Gr(X) are ordered pairs {z,y} where
x and y are two different liftings in X" of a singular point. Let 7 be the involution
on E(X) such that 7{z,y} = {y,x}. Below, for a module M on which 7 acts, set
M*={meM:7(m)=+m}.

Let & be a filtered @ -isocrystal over X. For any e = {z,y} € E(X), let Hiy(Je[,&)
denote Hip(Jn(z)[,&). Then 7 exchanges Hiy(le[,&) and Hiy(Je[,&) where € = {y,z}.
Note that {C,}, ey ) is an admissible covering of X*". From the Mayer-Vietoris exact
sequence with respect to this admissible covering, we obtain the following short exact
sequence:

00— (@.cnie) Hon (el €)™ /the image of @, cy(p) Hon(Cul,6) —— Hip (X*,8)

—— ker ( D,y Hin(Co16) = (D.eni Hinlle[6) ") ————0.
(2.1)
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For any e € E(X) there is a residue map Res. : Hig(Je[,&) — Hx (Je[,&) [6, Section
4.1]. These residue maps induce a map

D res: (D H(eld) — (D Hllelo))

e€E(X) e€E(X) e€E(X)

Proposition 2.2. [6, Theorem 2.6, Remark 2.7] The monodromy operator N on
Hip (X&) coincides with the composition

o P Rese)o( (X*.8) > ( €D Hin(e )

e€E(X) e€E(X)

+
where Hig (X™,&) — (@eeE@) HcllR(]e[,é”)) is the restriction map and v is the

connecting homomorphism appeared in (2.1).

3. The universal special formal module

3.1. Special formal modules and Drinfeld’s moduli theorem

Let B, be the quaternion algebra over F, with invariant 1/2. So B, is isomorphic to
Fp(z)[ﬂ]; II’ = 7 and IIa = all for all a € Fp(2). Here, 7 is a fixed uniformiser of Fj,
Fp(2) is the unramified extension of F, of degree 2 and a +— a denotes the nontrivial
F,-automorphism of Fp(z).

Let Op, be the ring of integers in By. Let k be the residue field of F}, and Fp(g) the
unramified extension of Fyo of degree 2.

Let 6™ denote the maximal unramified extension of O, and O its m-adic completion.
Fix an algebraic closure k of k. We identify ﬁ/wﬁfu\r with k. Then W (k) ®0Fg OF, = o
Let }/7‘,3‘; be the fractional field of &

We use the notion of special formal &g -module in [11].

We fix a special formal &p,-module over k, ®, as in [23, (3.54)]. Let ¢ denote the natural

embedding of Fyo into W(k)[1/p]. Then all embeddings of Fp into W(k)[1/p] are ¢’ ot
(0<j<wy(q)—1). We have the decomposition

Up(q) 1
ﬁ ®Z W H ﬁBp ®6’F0,¢JOLW(I%)
7=0

Let u € Op, ®z, W(k) be the element whose ¢/ oi-component with respect to this
decomposition is

[ O®l ifj=0,
Yol =\ 101 ifj=1,...,v,(q)— 1.

Let F be the 1® p-semilinear operator on Op, ®z, W(k) defined by

Fr=(1®p)z-u, € 0p, @z, Wk).
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Let V be the 1® ¢~ !-semilinear operator on Op, ®z, W(k) such that FV = p. Then
(OB, @z, W(k),V,F)

is a Dieudonne module over W (k) with an action of &g, by the left multiplication. Let
® be the special formal &p, -module over k whose contravariant Dieudonne crystal is

(05, ©z, W(k),V.F). !
Let ¢y and ¢; be the extensions of ¢ to Fp(g). Then
@10, P11 (0<j<wy(q)—1)
are all embeddings of F, (0) into W(k)[1/p]. We have

vp(q)— Up(q)*l
ﬁ ®Z W H ﬁBp ®0 (2> LpJOLO H ﬁBp ®ﬁ (2> ,pJouy (k)a
Jj=0 7=0

where & B, 18 considered an & F(z)—module by the left multiplication. Let X be the element
p

of Op, @z, W(k) whose ¢ o 1p-component (0 < j <wv,(g)—1) is 1®1 and whose ¢/ 01y-
component (0 < j <wv,(q)—1) is II ®1. Similarly, let Y be the element whose ¢ o 1o-
component (0 < j <w,(q)—1) is II ®1 and whose ¢’ o t1-component (0 < j <wv,(q) —1)
is @ 1. Then {X,Y'} is a basis of Op, ®z, W (k) over O o ®z, W(k).

Note that GL(2,F,) = (End%Bp ®)* [23, Lemma 3.60]. We normalise the isomorphism
such that the action on the p-module

(05, ©z, W(k).F)[L/p] = (By ©q, W(K)[1/p].F)

~1 ~1
is given by [ ¢ Z] X=(a®1)X+(c®1)Y and [ ¢ Z] Y=(b®1)X+(d®1)Y. We can
also let GL(2,F,) act on the ¢-module on the right-hand side by X[ % Z} =(a®1)X +
(c@)Y and Y[* %)= (0@ )X +(d®1)Y
Let Dy denote the pg-module
(Bp ®Qp F'.;l\r?ﬁvp(q))

coming from the ¢-module (Op, ®z, W(k),F)[1/p).
We describe Drinfeld’s moduli problem. Let Nilp be the category of &"'-algebras on
which 7 is nilpotent. For any A € Nilp, let ¢ be the homomorphism k& — A/7A; let

IThe Dieudonne crystal in [23, (3.54)] is exactly the covariant Dieudonne crystal of ®. The
duality between the contravariant Dieudonne crystal and the covariant Dieudonne crystal is
induced by the trace map

<y >0, X Op, = Lp,(2,y) = t1F, /g, (5§p1/@ptrBP/Fp (xyf))

where 6, /g, is the difference of Fy, over (@p7 trp, /r, is the reduced trace map and y — y' is the

involution of By such that It=I andat=aifac F(Q) Then we have < b-z,y >=< z,b" -y >
for any be Op, .
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SFM(A) be the set of pairs (G,p) where G is a special formal €p,-module over A and
p:Pa/ma =P — G is a quasi-isogeny of height zero.

We state a part of Drinfeld’s theorem [11] as follows. In [1] Boutot and Carayol provided
more details for [11].

Let H be the Drinfeld upper half plane over Fy; that is, the rigid analytic F,-variety
whose C,-points are C, — Fj,.

Theorem 3.1. The functor SFM is represented by the Deligne formal scheme HEO™
over O™ whose generic fibre is Hf;; = ’H@Fg“.

See [1, Chapter I] for a precise description of HOHOW . Tt is closely related to the Bruhat-
Tits tree T of PGL(2,F}). Each edge e (respectively vertex v) of T is assigned an affine
formal scheme of finite type Spf(A.) (respectively Spf(A,)). Then H&O™ is the union of
these Spf(A.). If e and €’ have a common vertex v, then Spf(A.) NSpf(A.) is Spf(4,).
Otherwise, Spf(A.) NSpf(Ae) = 0.

Let G be the universal special formal ﬁBp—module over ﬁ@g‘l\r There is an action
of GL(2,F},) on G (see [1, Chapter II (9.2)]): The group GL(2,F}) acts on the functor
SFM by g (¢;G,p) = (o Frob™";G,po . (g~ oFrob™)) if vy(det g) = n. Here, vy is the
valuation of C, normalised such that v, (7) = 1.

3.2. The filtered ¢,-isocrystal attached to the universal special formal module

It is rather difficult to describe G precisely.” However, we can determine the filtered (-
isocrystal M attached to the local system V,,G, the Tate module of G tensoring with Q.

For every A € Nilp and each pair (G, p) € SFM(A), G admits a universal extension Fg
by a vector group. Considering tangent spaces we obtain a homomorphism

MG — LieG

that is functorial in A, where M¢ and Lieg are the Lie algebras of Eg and G, respectively.

Such an assignment exists even for complete flat &vr-algebra of finite type A. Indeed,
this follows from the crystalline property of the Dieudonne crystal of G®4 A/pA [20,
Chapter V (1.6)]. Tensoring with Q we obtain Mg ®Q — Lieg ® Q. Let Fil! (Mg ®Q) be
the kernel of this morphism.

We apply it to Glgps(a,) and Glgpeca,). Patching them, we obtain the filtered ¢,-
isocrystal M attached to V,G. From these data we obtain a period map of H*", the
general fibre of H, that is defined by the filtration. See [23, 3.29 and 5.18] for a more

precise construction of this period map.
Taking dual, we get the filtered ¢4-isocrystal D attached to the dual of V,,G. Precisely,
the filtration on D is defined in the way that

Fil’ D and Fil>~J M are annihilators of each other.

In the following, we write 0, &% for 0, .z and Q, gz for the differential sheaf
"y P e

2Sce [26] for some information about G and [29] for a higher rank analogue.
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Lemma 3.2. D is naturally isomorphic to the ¢q-isocrystal

Do g O

with the q-Frobenius being F»(®) ® g, - 1 and the connection being
)

1®d: D0®17p\; ﬁ?—tf‘?r — DO@EF QH,F,;TY'
Proof. What we need to show is that D is constant except for the filtration. The same
property for M is mentioned in [14, Section 5] without providing details. It follows from
the rigidity of quasi-isogeny [23, Proposition 3.62] and the Grothendieck-Messing theorem
[20, Chapter V (1.6)]. We sketch the proof for the reader’s convenience.

For any formal O _scheme (of finite type) T" and a morphism zp : T — ﬁ@éu\r’ *nG
is a special formal Op, -module over T', denoted by Gr. Let Ty be the closed subscheme
of T defined by 7 and T} the closed subscheme defined by p. Then both Tj and Tj are
k-schemes. By definition of Drinfeld’s functor, G, = Gt x1T) is quasi-isogenous to @,

the pullback of ® via Ty — Spec(k). By [23, Proposition 3.62], this quasi-isogeny uniquely

extends to a quasi-isogeny Gr := G X7 Tj) — @Té. Let D be the covariant Dieudonne
crystal functor. By the Grothendieck-Messing theorem we have

Mg =D(Gry)r =D(@1;)1 = O @ () D(®)w()- (3.1)
Here, = means that the equalty holds after tensoring with Q. See also [23, Proposition
5.15].

If f: S — T is a morphism of formal 5Ef—s;(;hemes7 put zg =xrof and Gg =z5G. We
form Sy and S} in the same way. Then we have a commutative diagram

Gsy — (fo)"Gry

L

5y — (fo) Py,

where the vertical arrows are quasi-isogenies, the horizontal arrows are natural iso-
morphisms and f} : S — T is the morphism induced from f. This implies that the
isomorphism (3.1) is functorial. Hence, the isocrystal structure of M is constant.

Let F be the absolute Frobenius. From the commutative diagram

Fop(@)
Gry =25 Gy

we obtain the constancy of the ¢,-module structure of M. O

Next, we determine the filtration on ]50 Qg ﬁ?—[ e
» Ly
For any Fy-algebras K and L, L®q, K is isomorphic to L®p, K @ (L ®q, K )non, where

(L ®q, K)non is the kernel of the homomorphism L ®q, K — L ®F, K, {®a— L@ a.
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If L is a field extension of F}, that splits F},, then L®g, K = @T:FF_}LL(X)T’FF‘ K, and
(L ®q, K )non corresponds to the nonnatural embeddings. We apply this to L = F}, and

K= fl;l\r; consider Dy = B, ®q, fﬁ as an Fy ®q, fl;l\r—module. Then Dy splits into two
parts: one is the canonical part that corresponds to the natural embedding id : F}, < F},
and the other is the noncanonical part that corresponds to the nonnatural embeddings.
Correspondingly, Dy ®F/’;\r ﬁ?—t, i splits into two parts, the canonical part By, @, ﬁ% i
and the noncanonical part. Because F, acts on the Lie algebra of any special formal
O'g,-module through the natural embedding, the filtration on the noncanonical part is
trivial.

The filtration on the canonical part is precisely described by Drinfeld’s period
morphism. Let us recall the definition of Drinfeld’s period morphism. We will use the
notations in [29, Section 2.2].

Let M(®) be the Cartier module of ®, a Z/2Z-graded module. The Z/2Z-grading
depends on a choice of Fj,-embedding of Fp(2) into f;\r . We choose the one, 7y, that restricts
to tp and denote the other Fy-embedding by ;. We fix a graded V-basis {¢°,¢'} of M (®)
such that Vg° = ITg" and Vg' = ITg'. Then {¢°,¢g*,Vg®,Vg'} is a basis of M(®)[1/p] over
FF; Fp(z) C By acts on FFQOEBFEVgl by o and acts on @Vgo@f‘p‘;gl by 7. See [11]
for the definition of Cartier module and the meaning of graded V-basis.

Let R be any flat m-adically complete Oz=r-algebra. Drinfeld constructed for each

(¥;G,p) € SEM(R) a quadruple (n,T,u,p). Let M — M(G) be the Cartier module of G,
N (M) the auxiliary module that is the quotient of M @ M by the submodule generated
by elements of the form (Vz, — IIz) and Bj; the quotient map M & M — N(M). For
(xo,21) € M & M, we write ((xg,21)) for Bar(xo,21). Then we have a map ¢pr: N(M) —
N(M). See [29, Definition 4] for its definition. Put

= N(M)#M Ty = M/VM;

both s and Ty are Z/27Z-graded. Note that Ty is exactly the tangent sheaf of G (see
[1, Subsection IL.8]).

Let uns : nar — T be the O, [I1]-linear map of degree 0 that is the composition of the
inclusion 1y < N (M) and the map

N(M)‘)M/VM, ((1‘07171))*—).%0 mod VM.
Then 7ps(a) is a free Op,-module of rank 4 with a basis

{((a°,0)), ((¢",0)).((Vg",0)),((Vg",0))},
where ((¢%,0)) and ((Vg!,0)) are in degree 0 and ((g*,0)) and ((Vg°,0)) are in degree 1.
The quasi-isogeny p : 9« ® — G'r/rr induces an isomorphism
P () Ror, Fy = M) @ow, Fp-
The Drinfeld period of (G,p) is defined by

_ ujy0p((Vg',0))

2(G,p) uh o p((99,0))
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where v, is the map 779\/[(6‘) @6, Fp — TS, @ R[1/p] induced by ups. By [23, Subsection
5.49] Drinfeld’s period map coincides with the period map defined by filtration.

By [23, (3.55)], M(®) is isomorphic to the caonical part of the covariant Dieudonne
module attached to ®. In [23] the Cartier module is called 7-Wg(L)-crystal. So, as a ¢~

module, M (®)[1/p] is the dual of By, ®p, f'?, the canonical part of Dg. Let {vo,v1,v2,v3}
be the basis of B, ®p, FF over f'pﬁ dual to {mg',g°, Vg, Vg'}.

Lemma 3.3. We have

-0
Fil Bp ®Fp ﬁ’H,F—‘p‘; = BP ®Fp ﬁ'H,F/'F
Filpr ®F, ﬁn,ﬁg\r = the ﬁﬂ)f‘?—submodule generated by

FE - (v1 + 2v3) @FE - (2vg +v2)

Fil’ By ®r, 0y, 7= = 0.

Here, z is the canonical coordinate on H g .
p

Proof. Let R and (¢;G,p) € SFM(R) be as above. Via p, as a p,-module, M (G)[1/p] is
isomorphic to M (®)[1/p] ® = R[1/p] and thus
P

M(G)[1/p] = R[1/p]-7g" ® R[1/p]-g° ® R[1/p]-Vg' & R[1/p] - Vg°.

Let z be the Drinfeld period of (G,p). Because Drinfeld’s period map coincides with the
period map defined by filtration, we have

Fil' M(G)[1/p] = R[1/p](Vg' —2¢°) © R[1/p](2Vg® —mg").

Here, we note that 7g! —2Vg® = V(Vg! — 2¢°).
Taking dual, we obtain the desired filtration structure on D. O

We decompose By @, f‘p‘; into two direct summands:

By ®F, Fy* = By Br®, 7 @ By Br®™, 1, Egr,
where B, is considered as an Ff)—module by left multiplication. Let e and e; denote
the projection to the first summand and that to the second, respectively. We may choose

¢° and g' such that vo = e X, vi =e1Y, va =eoY and vz =e; X. Thus,
)
Fil" By, ®F, ﬁ?-tff = By, ®F, ﬁ%f;\r,

FillBp ®F, 0. = the Fp(2) ®F, 05, zw=-submodule generated by 2X +VY, and

H,FE H T
2
Fil Bp ®Fp ﬁvag =0.
Finally, we note that the induced action of GL(2,F},) on H is given by [ ¢ Z]Z = %Ig.
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4. Shimura curves

Fix a real place 7, of F'. Let B be a quaternion algebra over F' that splits at 7, and is
ramified at other real places {,---,74} and p.

4.1. Shimura curves M, M’ and M"

We will use three Shimura curves studied by Carayol [2] and recall their constructions in
this subsection (see also [24]).

Let G be the reductive algebraic group over Q such that G(R) = (B® R)* for any
Q-algebra R. Let Z be the center of Gj it is isomorphic to T'= Resp /Gy, Let v: G =T
be the morphism obtained from the reduced norm Nrdg,r of B. The kernel of v is Gder
the derived group of G, and thus we have a short exact sequence of algebraic groups

1 —— Gder G—2=T 1.

Let X be the G(R)-conjugacy class of the homomorphism

h: C* = GR) = GLa(R) x H* x --- x H*
-1
z=x+vV-1ly — ([””yz] N TR 1)7

where H is the Hamilton quaternion algebra. The conjugacy class X is naturally identified
with the union of upper and lower half planes. Let M = M (G,X) = (My(G,X))y be the
canonical model of the Shimura variety attached to the Shimura pair (G,X); the canonical
model is defined over F, the reflex field of (G, X). There is a natural right action of G(Ay)
on M (G, X). Here and in what follows, by abuse of terminology we call a projective system
of varieties simply a variety.

Take an imaginary quadratic field Fo = Q(v/—a) (a a square-free positive integer) such
that p splits in Ey. Put £ = FEy and D = BQp E = B®g Ey. We fix a square root p
of —a in C. Then the prolonging of 7; to E by x +yv/—a > 7;(x) +7;(y)p (respectively
r+yv/—a— 7;(x) —1i(y)p) is denoted by 7; (respectively 7;).

Let Tx be the torus Resg/gG, and Tf the subtorus of T such that TH(Q) = {z €
E: 2z =1}. We consider the amalgamate product G = G xz Tr and the morphism
G'"=GxzTg Y =T x TL defined by (g,2) + (v(g)2Zz,2/%). Consider the subtorus
T' =Gy x T4 of T and let G’ be the inverse image of 7" by the map v”’. The restriction
of v to G’ is denoted by /. Both the derived group of G’ and that of G” are identified
with G9°*, and we have two short exact sequences of algebraic groups

1 Gder G/ v T/ 1
and

1 Gdcr G// v T 1.

The complex embeddings 71, ---,7, of E identify G”(R) with GLy(R)-C* x H* -C* x
<« X H* -C*. We consider the G'(R)-conjugacy class X’ (respectively G”(R)-conjugacy

https://doi.org/10.1017/51474748021000268 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748021000268

On Noncritical Galois Representations 397

class X”') of the homomorphism

B C* = G'(R) C
G"(R) =GL2(R)-C* xH*-C* x --- x H* - C*
-1
Z:.’E+\/—1y|—) ([_xyi} (8].7 1(@2;_17 e 1®Z_1>.

Let M'= M(G',X') and M" = M(G",X") be the canonical models of the Shimura
varieties defined over their reflex field E. There are natural right actions of G’(Ay) and
G"(Ay) on M' and M", respectively.

Put Tg, = Resg“ Gy, Using the complex embeddings 7y, ---,7, of E, we identify Tg(R)
with C* x --- x C*; similarly, via the embedding = +yv/—a — z +yp, we identify T, (R)
with C*. Consider the homomorphisms

hg:C* - Te(R)=C* x---xC*, zr(z711,---,1),

hg, : C* = Tg (R) =C*, z 27t
Let Ng = M(Tg,hg) and Ng, = M(Tg,,hg,) be the canonical models attached to the
pairs (Tg,hg) and (Tr,,hE, ), respectively. Then N is defined over E and Ng, is defined

over Fj.
Consider the homomorphism « : G x Ty — G” of algebraic groups inducing

B*xE* = G"(Q)C(B®gE)*, (be)— b®NE/EO(e)e*1
on Q-valued points and the homomorphism 8 : G x T — Ty, inducing
Ng/E,opry : B* x E* = B

on Q-valued points. Here, Ng, g, denotes the norm map E* — E{ . Because h' = ao(h x
hg) and hg, =Ng/g, ohg, o and 3 induce morphisms of Shimura varieties M x N — M"
and M x Ng — Ng,, again denoted by a and 3, respectively. We have the following
diagram:

M <2 MxNg 2 M < M

|’

Ng,.

4.2. Connected components of M, M x Ng, M’ and M"

We write G for G x T and write M for M x Ng. For =730, ',”, because B is ramified
at p, there exists a unique maximal compact open subgroup Uio of G“(Qp). We have

10 =UploNG'(Qy) and Uyly = a(Ty,0).
If U is a subgroup of G“(Af) of the form UE’OUW where U%P is a compact open
subgroup of Gh(A?)7 we will write Mg for Mgh. Let Mg denote the projective system

i
(M()’Uh,p

,Ubp
)us»; this projective system admits a natural right action of Gh(A’;).
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Lemma 4.1.

. , . h
(a) For any sufficiently small U%P, each geometrically connected component of M,
1s defined over a field that is unramified at all places above p.

,Ubp

(b) Let UP be a sufficiently small compact open subgroup of é(A’}) Then the morphism

r "
My g0 = MY/ iy

induced by a is an isomorphism onto its image when restricted to every geometrically
connected component.

is smooth. Let mo(M?

Proof. When U%? is sufficiently small, M 0.U%5p

o Ut ) denote the

set of geometrically irreducible components of Mg Ut OVEr Q. Then Gal(Q/E) acts on
Wo(Mg i)+ This action is explicitly described by Deligne [8, Theorem 2.6.3], from which

we deduce (a). N
Because a induces an isomorphism from the derived group of G to that of G”, by [8,
Remark 2.1.16] or [21, Proposition I1.2.7], we obtain (b). O

4.3. Modular interpolation of M’

Let £+ £ be the involution on D = B®q Ej that is the product of the canonical involution
on B and the complex conjugate on Ey. Choose an invertible symmetric element 6 € D
(6 =6). Then we have another involution £+ ¢£* := §~*§ on D.

Let V denote D considered as a left D-module. Let i be the nondegenerate alternating
form on V' defined by (z,y) = Trg/o(v/—a Trdp,g(xdy*)), where Trg g is the trace map
and Trdp, g is the reduced trace map. For £ € D put

t(0) = tr(¢; Ve /Fil°Vp),
where Fil® is the Hodge structure defined by A’. We have
t(f) = (7'1 +7_'1 +2T2 + - +27'g)(trD/E(€))

for £ € D. The subfield of C generated by t(¢), £ € D, is exactly E.

Choose an order &p of D, T the corresponding lattice in V. With a suitable choice of
0, we may assume that Op is stable by the involution ¢ — £* and that 1 takes integer
values on T'. Put ﬁAD = O0pRZ and T :=T®Z.

In Section 5 when we consider the p-adic uniformisation of the Shimura curves, we need
to make the following assumption.

Assumption 4.2. We assume that &p and § are chosen such that 7" is stable by Uy, o

If U’ is a sufficiently small compact open subgroup of G’(A) that keeps T, then M,
represents the following functor My [24, Section 5]:

For any F-algebra R, My (R) is the set of isomorphism classes of quadruples (4,:,0,k)
where

e A is an isomorphism class of abelian schemes over R with an endomorphism ¢: &p —
End(A) such that tr(c(¢),LieA) =t(¢) for all £ € Op.
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e 0 is a polarisation A — A whose associated Rosati involution sends ¢(¢) to +(£*).
o  is a U'-orbit of Op ® Z-linear isomorphisms T'(A) := [[T¢(A) — T such that there
¢

exists a Z-linear isomorphism &' : T(l) —7 making the diagram

A) L5 Ay x A —= T(1)

YR L

TxT

commutative.
Let Ay be the universal &p-abelian scheme over M{,.

5. p-adic Uniformisations of Shimura curves

5.1. Preliminaries

We provide two simple facts that will be useful later.

(I) Let X be a scheme with a discrete action of a group C on the right-hand side
and let Z be a group that contains C' as a normal subgroup of finite index. Fix a set of
representatives {g;};cc\z of C\Z in Z. We define a scheme X *¢ Z with a right action of
Z below. As a scheme, X ¢ Z is L]C\ZX(EH), where X (9 is a copy of X. For any g € Z
and z(9) € X9 if g;g = hgy, with h € C, then 29 . g = (z-h)9). Tt is easy to show
that up to isomorphism X *¢ Z and the right action of Z are independent of the choice
of {giticorz-

(IT) Let X; and X2 be two schemes whose connected components are all geometrically
connected. Suppose that each of X; and X5 has an action of an abelian group Z; Z acts
freely on the set of components of X; (respectively X2). Let C be a closed subgroup of
Z. Then the Z-actions on X; and X5 induce Z/C-actions on X;/C and X5 /C.

Lemma 5.1. If there exists a Z/C-equivariant isomorphism v : X1/C — X5/C, then
there exists a Z-equivariant isomorphism v : X1 — Xa such that the following diagram

X1 —Zy>X2

X,/C 1= X,/C

is commutative, where w1 and mo are the natural projections.

Proof. We identify X;/C with X5/C by v and write Y for it. The condition on Z-actions
implies that the action of Z/C on the set of connected components of Y is free and that
the morphism 7; (respectively m5) maps each connected component of X; (respectively
X>) isomorphically to its image.

We choose a set of representatives {Y; }ies of the Z/C-orbits of components of Y. Then
{gYi: g€ Z/C,i €I} are all different connected components of Y. For each i € I we

choose a connected component Y( ) (respectively Y, ) of X7 (respectively X5) that is a
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lifting of Y;. Then {gf/i(l) :g € Z,i € I'} (respectively {gffi(z) :g € Z,i € I}) are all different
connected components of X; (respectively X3).

> (1) ~ (2
Because 7r1|9_<1) 1Y, —Y; and Wg‘};v(z) :Yi( )

isomorphism ; : Yﬁ(l) — }71‘(2)

— Y, are isomorphisms, there exists an
such that 7T1‘Y(1) = 7r2|?_<2) 04;. We define the morphism

7: XMW 5 X as follows: 4 maps gffi(l) to gf’i(Q) and ’y\g?(l) =god;0g9~ ! Then 7 is a
Z-equivariant isomorphism and m = mg07. ' O

5.2. Some Notation

Fix an isomorphism C = C,. Combining the isomorphism C = C,, and the inclusion Ey —
C, z+yv—a— z+yp, we obtain inclusions Ey — Q, and F < F,. Thus, D®Q, is
isomorphic to By ® By.

Note that G(Q,) is isomorphic to B, G'(Q,) is isomorphic to the subgroup

{(a,b) :a,b € B,abe Q' }
of By x By and G"(Q,) is isomorphic to
{(a,b) :a,b € B)f,abe F,f},

where a — a is the canonical involution on B. Note that Tg(Q)) is isomorphic to F,* x Fy*
and Tg,(Qp) is isomorphic to Q; X Qg. We normalise these isomorphisms such that
G'(Qp) — G"(Q,) becomes the natural inclusion

{(a,b) :a,b € By ,abe Q) } — {(a,b) : a,b € B ,ab € F,*},
a:G(Qp) xTg(Q,) — G"(Q,) becomes
By x (F) x F)) = {(a,b) :a,b€ B),ab € F,*}

aNFp/Qp (tl) aNFp/Qp (t2))

(a7<t17t2>) = ( t ’ to

and 8: G(Qp) xTe(Q,) — T, (Qp) becomes
By x (F) x F)) = Q) xQ
(a,(t1,t2)) = (N, /g, (t1):NF, g, (£2))-
Let B be the quaternion algebra over F' such that
inv,(B) if v # 7,p,

inv,(B)=1¢ 1 ifv=rmy,
0 ifv=p.
With B instead of B we can define analogues of G, G’ and G”, denoted by G, G’ and G”,
respectively. For § = (},",”” we have Gh(A?) =G"* (A%); G(Qy) is isomorphic to GL(2,Fy),
G'(Q,) is isomorphic to the subgroup

ar b az b 3 d —-b az b X
{(Te & ble @) anbicidi€ Fy, [ 50 ' 1ler 221 €Qy )
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of GL(2,F,) x GL(2,F,) and G"(Q,) is isomorphic to

b b d —b b
{[o o bles @D rapbicidi € Fy, [ °0 1 2] €FS L

—C1 ay ][ C2 dz

If f =0, let G(Q,) act on ’HFur as in Section 3. If i =7, let G=0Gx Ty act on H-x
the projection to the first factor Ifg="or", let Gh(Qp) act on Hzw
Let G%(Q) act on H = via its embedding into G%(Q,).

The center of G%, Z (Gh), is naturally isomorphic to the center of G¥, Z(G?); we denote
both of them by Zh.

Fur
e by the first factor.

Fur

5.3. The p-adic uniformisations

Let § be either? / or ”. For any compact open subgroup U%P of G (A ) let X[h]h , denote
M§7Uh,p ><Spec(F'p) SpeC(F};H>‘
Proposition 5.2. Suppose that Assumption 4.2 holds.

(a) Assume that h="," or". For any sufficiently small compact open subgroup U%P of
G (A %), writing Uh U£70Uhp, we have a Z*(Q)\Z(A)/(Z%(Ay)NU?)-equivariant
isomorphism

Xy = GHQN\(Hp x GH(Af) /U (5.1)

Here, G*(Q) acts on ’HFm. as mentioned above and acts on Gh(A?)/Uh’p by the
embedding G*(Q) — Gh(A?) = Gh(AI}); in the case of =" or ", if g € G*(Q)
satisfies g, = (a,b) with a,b € GL(2,Fy), then g acts on Gh(Qp)/UgO via the left
multiplication by (ITV»(det@) [Tve(At®)y “wyhereas in the case of § =", § = (g,t) €
é(@) (9 € GQ),t € Tp(Q)) acts on G(Q,)/Upo via the left multiplication by
(1Tve(detan) ¢ ) and Z5(Q )\Zh(Af)/(Zh(Af)ﬁUh) acts on the right-hand side of
(5.1) by right multiplications on GP(Ay).

(b) The isomorphisms in (a) can be chosen such that, for either § =" and §j ="

and 1 =", we have a commutative diagram

or ="

Xop — CHQ\(Hpe x GH(A))/UF)

|

Xfrep — GHQ\ (e x GH(Ag) /UY)

compatible with the Z¥(Q)\Z*(Ay)/(Z*(Ay) NU*)-actions on the upper and the

ZAQN\Z8(Af)/(ZA(Ay)NU")-actions on the lower, where the left vertical arrow is
induced from the morphism M — M and the right vertical arrow is induced by the
identity morphism HFur — Hfu\r and the homomorphism o : G=Gx Ty — G" or

the inclusion G' — G” Here, in the case of § = and § =", U% = a(U*); in the case
of t="and h =", Ut = UhﬁG'(Af)
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The conclusions of Proposition 5.2, especially (a), are well known [23, 28]. However, the
author has no reference for (b), so we provide some detail of the proof.

Proof. Assertion (a) in the case of §f =’ comes from [23, Theorem 6.50].
For the case of § =" and f§ =" we put

C=Z'Q\Z'(Ap)/(Z'(Af)NT")
and
Z=7"(Q\Z"(Ap)/(Z"(Ag)NTU").
Then X[}, is Z-equivariantly isomorphic to X/, *¢ Z, and G’"(Q)\(’Hﬁ; xG"(Ay)/U")
e X G’(Af)/U’)) *c Z. So (a) in the case of
1=" and (b) in the case of § =/, § =" follow from (a) in the case of f =/

_Now we consider the remaining cases. Let H be the kernel of the homomorphism « :
G=GxTg —G". Put

C=H(Q\H(As)/(H(A)NT) and Z=Z(Q\Z(As)/(Z(Af)ND).

is Z-equivariantly isomorphic to (G' (Q\(Hz=

Put X; = X'ﬁ,) and X5 = 5’(@)\(7—[F X G(Af)/Up 0UP). By Lemma 4.1 (a), all connected
p
components of X; are geometrically connected; it is obvious that all connected compo-

nents of X, are geometrically connected. Thus, Z acts freely on the set of components

of X, (respectively Xs3). Furthermore, X;/C is isomorphic to X”(U ») and X5/C is

isomorphic to G”(Q)\(H == x G" (A )/U”Oa(Up)) We have already proved that X;/C is

Fur
Z/ C—equlvamantly 1somorphlc to Xo/ C Applying Lemma 5.1, we obtain (a) in the case
of f =" and (b) in the case of § =", =" O

Remark 5.3. By [28] the similar conclusion of Proposition 5.2 (a) holds for the case of
h=10. We use Xy» to denote G(Q)\(’HF“, x G(Af)/U, oUP), where the action of G(Q)

on ”HFM x G(Ayf) /U, oUP is defined simllarly

6. Local systems and the associated filtered ¢,-isocrystals on Shimura
Curves

6.1. Local systems on Shimura curves

We choose a number field L splitting F' and B. We identify {r; : F — L} with I = {r;:
F — C} by the inclusion L — C. Fix an isomorphism L ®g B = M(2,L)!. Then we have
a natural inclusion G(Q) < GL(2,L)!. Let B be a place of L above p.

For a multiweight k = (k1, -+ ,kg,w) with k1 =---k; =w mod 2 and ky > 2,--- ,k; >
2, we define the morphism p® : G — GL(n,L) (n =[]’ (ki — 1)) to be the product
®iel[(5ymki_2 ®det(“’_ki)/2) opr;]. Here pr; denotes the contragradient representation of
the ith projection pr; : GL(2,L)! — GL(2,L). The algebraic group denoted by G¢ in [21,
Chapter II1] is the quotient of G by ker(Np,q : F* — Q). Because the restriction of p®)

to the center F'* is the scalar multiplication by NF% 2)(-), p®) factors through G¢, so
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we can attach to the representation p*) a G(A)-equivariant smooth Lsy-sheaf F(k) on
M. We have a pairing

F(k) x F(k) — F(det“?). (6.1)

Let ps : G, — G, be the map induced by the second projection on (D ®q Ep)* =
D* x D* corresponding to the conjugate Ey — Ey. Because the algebraic representation
p"1) = p¥) o py factors through G¢, we can attach to it a G”(A)-equivariant smooth
Log-sheaf F’(k) on M". Let F'(k) be the restriction of F” (k) to M.

We define a character x : Ty — G, such that on C-valued points ¥ is the inverse of
the second projection Toec = C* x C* — C*. Let F(x) be the Ly-sheaf attached to the
representation x. By [24] one has the following G(Af) x T'(A¢)-equivariant isomorphism
of Lyz-sheaves:

priF(k) ~ o F' (k)@ p* F(y H)®lo-Dw=2) (6.2)

on M x N, where pry is the projection M x N — M.

Note that L ®g D ~ (Ma(L) x Ma(L))!. For each i € I, the first component My(L)
corresponds to the embedding Fy C L C C and the second Ms(L) to its conjugate. Let F’
be the local system R!g, Ly where g: A— M’ is the universal p-abelian scheme; it is a
sheaf of L ®g D-modules. For each i € I, let e; € L®g D be the idempotent whose (2,7)th
component is a rank one idempotent — for example, | é 8 ] — and whose other components
are zero. Let F! denote the e;-part ei~ng*ng. Note that F/ does not depend on the
choice of the rank one idempotent. By [24] we have an isomorphism of local systems

F(k) = @) (Sym* 2 F @) (det 7)) k/2).

iel
We can define more local systems on M’. For (k,v) = (ki,---,kg;v1, -+ ,vq), put
Flkv) =& (Symk"'_Q}'{@(det]:{)”i). (6.3)
i€l

6.2. Filtered ¢, -isocrystals associated to the local systems
We use k uniformly to denote (k,v) = (K1, ,kg;v1, -+ ,vg) (respectively k= (k1, -+, kg,w))
in the case of j =" (respectively §=10,",").

We shall need the filtered ¢4-isocrystal attached to F (1~<) However, we do not know
how to compute it. Instead, we compute that attached to prjF (f() As a middle step we
determine the filtered @ -isocrystals associated to F'(k) and F” (k).

For any integers k and v with k > 2 and any inclusion o : F, — L, let V,(k,v) be
the space of homogeneous polynomials in two variables X, and Y, of degree k —2 with
coefficients in Ly; let GL(2,F}) act on V(k,v) by

-1

[a Z] P(X,,Y,)=0(ad—bc)’P(o(a)Xs+0(b)Ys,0(c) X, +0(d)Yy).
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For (k,V) = (kh e 7‘l€g;v17 e 71}9) we put
Vikv)= ®Vg(kzg,vg),
oel

where the tensor product is taken over Lep.

Let G* (1=0,,"7") be the groups defined in Section 5.2. For f§ =, via the projection
G*(Q,) — GL(2,F,), V(k) becomes a G%(Q,)-module. For §j =',", via the projection of
G*(Q,) € GL(2,F,) x GL(2,F}) to the second factor, V (k) becomes a G%(Q,)-module. In
each case via the inclusion G*(Q) — G*(Q,), V (k) becomes a G(Q)-module. Using the

p-adic uniformisation of X% = X?  we attach to this G*(Q)-module a local system V¥ (k)

Ub.p
on X*.
Let @4 kv be the operator on V(k,v),

QP (X0, Yo) = [[o (=) - Q) Po (Yo,0(m) Xo).

For k = (k1, -+ ,kg,w) we put
V(k) = V(kh ’kg; (w_ kl)/za e ,(’LU— kg)/Q)
and
SD‘Iak = SDQv(klv"'7kg;(w_k1)/2v'”a(w_kg)/Q)'

Let .Z%(k) be the filtered ¢ -isocrystal Vi(k) ®q, Ox: on X% with the g-Frobenius
©,.5 ®¢q,0,, and the connection 1®d: Vi(k) ®q, Ox: — Vi(k) ®q, Q- the filtration on

Vik)®g, Ox:= P Vik) @5, Ox: (6.4)
T:Fy— Ly
is given by
FilV ' (Vi(k) @, Ox:)
Vi(k) ®r, 5, Oxe if 5 <0,

the Oxy-submodule locally generated by polynomials

in V (k) divided by (2X, +Y,)? if1<j <k, —2

0 ifj>k,—1
with the convention that v, = “’*Tk’ in the case of k = (k1,---,kg,w), where z is the
canonical coordinate on H .
p
Lemma 6.1. When k1 =--- =k;_1 :ki+1 = ... :kg =2, ki=3 and vy = --- =1y =0,

the filtered @q-isocrystal attached to F'(k,v) is isomorphic to F'(k,v).

Proof. Let é; € L®g D be the idempotent whose (2,i)th component is [(1) 97 and the

other component are zero. Let A be the universal Op-abelian scheme over M’ and A

the formal module on X’ attached to .A. Note that éi(oL‘43 ®z, A) is just the pullback
of 014 @7, 05, G by the projection X7y, — (G'(Q)NUPU}, o)\Hgw [23, Subsection 6.43],
’ p
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where G is the universal special formal &p,-module (forgetting the information of p in
Drinfeld’s moduli problem).

Because Lgs splits By, Ly contains all embeddings of Fé2). The embedding 7; : F}, — L

. 2 .
extends in two ways to Fp( ), denoted respectively by 7; o and 7; 1. Then,
ULrg (8‘1'7;701:"J on - UL% ®Ti’07oFé2) OBP @ong ®T7;,1,0F'52) on .

We decompose o Ly 7505, G into the sum of two direct summands according to the
action of 0, CO0p,: 0, acts by 7,9 on the first direct summand and acts by 7; 1
P p

on the second. Without loss of generalitym we may assume that e; in the definition
of F/ (see Subsection 6.1) is chosen such that e; is the projection onto the first direct

T o~
summand. So e;(or,, ®z, A) is just the pullback of oz, ®-, G by the projection

0,2
_ Ty
X — (G(Q) ﬂU”’UI’J,O)\H@;. Now the statement of our lemma follows from the

discussion in Subsection 3.2. O
Proposition 6.2. The filtered pq-isocrystal attached to F'(k,v) is isomorphic to F'(k,v).

Proof. Let %/ denote the filtered ¢,-isocrystal attached to F,. By (6.3), the filtered
pq-isocrystal attached to F'(k,v) is isomorphic to

® (Symki_zﬂi’®(det 57[)”1) (6.5)
i€l

By Lemma 6.1, a simple computation implies our conclusion. O
Corollary 6.3. The filtered pq-isocrystal attached to F" (k) is isomorphic to F" (k).
Proof. This follows from Proposition 6.2 and [24, Lemma 6.1]. O

Lemma 6.4. The filtered @q-isocrystal associated to the local system F(X) over
(NEo,O)F;;Tr 18 ]:(X)®ﬁ(NEo,o)F/§r’ with the q-Frobenius being 1®S0q7(NE0yU)E‘?\r and the

filtration being trivial.

Proof. We only need to show that any geometric point of (Ng,,0)z= is defined over FF .
p

Let hg, be as in Subsection 4.1 and p the cocharacter of Ty defined over Ey attached
to hg,. Let r be the composition

Eo

Ng
Af 5 To(Ag,) —— To(A).
Let
artp, : A, — Gal(E§"/Ey)

be the reciprocal of the reciprocity map from class field iheory. For any compact
open subgroup U of Ty(Ay), Gal(Q/Ey) acts on (Ng,)v(Q) = To(Q)\To(As)/U by
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o(Th(Q)al) = To(Q)rs(sy)al, where s, is any idele such that artg,(s,) = o|E*" and
r¢ is the composition

Ag, = To(A) = To(Ay)

of r and the projection map To(A) — To(Af). Let Z be the subgroup of Gal(Q/Ejp)

consisting of o such that s, € T;l(U). Put € = @I. Then any geometric point of (Ng, )
is defined over K. Observe that, when U is of the form U, UP with UP a compact
open subgroup of Tj (A’;) and Up, o the maximal compact open subgroup of Tp(Qy), K is
unramified over p. Therefore, any geometric point of (Ng, o)z is already defined over

P
By O

Corollary 6.5. The filtered ypq-isocrystal attached to priF(k) is pri# (k).

Proof. By (6.2) the filtered ¢4-isocrystal attached to priF(k) is the tensor product of
the filtered ¢,-isocrystal attached to a*F” (k) and that attached to f*F(y!)9—1(w=2),
Namely, it is isomorphic to

(a*V”(k) ®B*]_—()—(—1)(9—1)(w—2)) ®Qp pr’i< Ox = priV(k) ®Qp pr’i< Ox;

a simple calculation shows that the ¢,-module structure and the filtration on pryV(k) ®q,
priOx are as desired.

It is rather possible that the filtered ¢,-isocrystal attached to F(k) is # (k). But the
author does not know how to descend the conclusion of Corollary 6.5 to Xy».

7. The de Rham cohomology

In this section we prove a Hodge-like decomposition for the de Rham cohomology.

7.1. Covering filtration and Hodge filtration for de Rham cohomology

We fix an arithmetic Schottky group I' that is cocompact in PGL(2,F},). Then I' acts
freely on H, and the quotient Xp = I'\H is the rigid analytic space associated with a

proper smooth curve over Fy,. Here we write H for H .
p

We denote by # the canonical formal model of (see Theorem 3.1). The curve Xp
has a canonical semistable module A = F\’;Q; the special fibre AT ; of AT is isomorphic
to I\ H,.

The graph Gr(Xr ) (cf. Section 2) is closely related to the Bruhat-Tits tree T for
PGL(2,F}). The group I' acts freely on the tree 7. Let 7r denote the quotient tree. The
set of connected components of the special fibre Ap s is in one-to-one correspondence
to the set V(Tr) of vertices of Tr. Each component is isomorphic to the projective line
over k, the residue field of Fy,. Write {P}},cv(7;.) for the set of components of X . The
singular points of A 4 are ordinary k-rational double singular points; they correspond
to (unoriented) edges of 7r. Two components PL and P! intersect if and only if u and
v are adjacent; in this case, they intersect at a singular point. For simplicity we will use
the edge e joining uw and v to denote this singular point. There is a reduction map from
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X2 to Ar . For a closed subset U of A1, let JU[ denote the tube of U in X{". Then
{IP3}vev(r) is an admissible covering of X{". Clearly [P} [N]P; . [=le[-

Let L be a field that splits F},. Fix an embedding 7: F}, < L.

Let V be an L[I']-module that comes from an algebraic representation of PGL(2,F}) of
the form V(k) with k = (k1,---,k4;2). We impose that w = 2 because only when w =2
does the action of GL(2,F}) on V (k) factor through PGL(2,F,). We will regard V' as an
Fy-vector space by 7. Let #" = ¥(k) be the local system on Xt associated with V. Let
Hjg ,(Xr,7) be the hypercohomology of the complex ¥ @ r, Q%

We consider the Mayer-Vietoris exact sequence attached to Hjg ,(Xr,?’) with respect
to the admissible covering {|P}[},ev(7)- As in Section 2, we obtain an injective map

L ( @ H(?R,T(}e[;y/))i/the ima‘ge of @ H(?R,T(]Pilz[vdi/) — H(}R,T(X%nvnj/)'
ecE(Tr) veV(Tr)

Because |P}[ and Je[ are quasi-Stein, a simple computation shows that Hgp _(JP[,%)
and Hgg, . (Je[,7) are isomorphic to V. Let C°(V) be the space of V-valued functions on
V(T) and C'(V) the space of V-valued functions on E(T) such that f(e) = —f(€). Let '
act on C*(V) by f+ ~vo foy~l. Then we have a I'-equivariant short exact sequence

00—V —=C%V) 2= Y (V) —=0 (7.1)

where 9(f)(e) = f(o(e)) — f(t(e)). Observe that

P Hi . (PLLY)=CO(V),
veV(Tr)

( @ Hir-(el.7))” =CH(V)"
ecE(Tr)

and the map

@ H((i)R,T(]Pilz[77/)_>( @ HgR,T(]eL,V))_

veV(Tr) e€E(Tr)

coincides with 9. Thus,

( €@ Hir.(e[7))" /the image of € Hip (PLLY)
c€B(TT) veV(Tr)

is isomorphic to C*(V)1'/0C°(V)L'. From (7.1) we get the injective map
s: ot jac® (vt — HYT,V).
Let Cl, (V) be the space of harmonic forms

Char(V) :={f : Bdge(T) = V|f(e) = —f(e), Vv, Y f(e) =0},

t(e)=v

and put CP, (V) =071C], (V). Then we have an exact sequence

0——=V —= (V) — Cip (V) —0
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from which we deduce the following exact sequence:

0—— VF - Cl?ar(v)r - Clllar

(V) ——= HY(T,V).
In the following we assume that

(coin) the map V' — CP

0 (V)T is an isomorphism.

Fixing some v € V(T), let € be the map C}, (V)I' — HY(I',V) [4, (2.26)] defined by
e (Y= Y ele)), (7.2)
erv—yv
where the sum runs over the edges joining v and yv; € does not depend on the choice of
v. By [4, Appendix A], € is minus the composition
Ol (V)T = Cc* (V)T fac® (V)T & HY(T,V)

and is an isomorphism under the condition (coin). Combining this with the injectivity
of §, we obtain that both the natural map CL_(V)I' — CY(V)I'/oC(V)F and § are
isomorphisms. Below, we will identify C, (V) with C*(V)¥'/oC®(V)T.
By [10] we have
HéR)T(Xp,”I/) = {V-valued differentials of second kind on Xr}/ (7.3)
{df|f a V-valued meromorphic function on Xr}. .

In [10], de Shalit only considered a special case, but his argument is valued for our
general case. If w is a I'-invariant V-valued differential of the second kind on H, let F,
be a primitive of it [9], which is defined by Coleman’s integral [5].® Let P™ be the map

P Hig (X0, ) = H'(I,V), we (v (F,) = Fo).

Note that P o.7 coincides with 6. Thus, P” splits the inclusion (706~ ! : HY(I,V) —
H(%R’T(XF,%).
Let I™ be the map

I" : Hig (X1, 7) — CL. (V)T w (e Rese(w)).
Proposition 7.1. Under the condition (coin) we have an exact sequence called the
covering filtration exact sequence

0 — HY(D,V) L 1L (X, 7) L}

har

(V)F ——0.

Proof. What we need to prove is that the map
Hip (X0, 7) = H'(T,V)© Cipe (V)T w0 (PT(w),17 (W)

is an isomorphism. When V is the trivial module, this is already proved in [10]. So we
assume that V' is not the trivial module. First we prove the injectivity of the above map.

3Precisely7 we choose a branch of Coleman’s integral.
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For this we only need to repeat the argument in [10, Theorem 1.6]. Let w be a I'-invariant
V-valued differential form of second kind on # such that P7([w]) = I7 (Jw]) =0, where [w]
denotes the class of w in Hgg (Xr,7). Let F,, be a primitive of w. Because I”(w) =0,
the residues of w vanish and thus F,, is meromorphic. Because P7(w) =0, we may adjust
F,, by adding a constant vector in V' such that it is I-invariant. By (7.3) we have [w] = 0.
To show the surjectivity, we only need to compare the dimensions. By [4, Appendix A]
we have

dimp, Cp,, (V)" = dimp, H' (I, V).
By [25, Theorem 1] we have
dimp, Hig ,(Xr,%) = dimg, H'(L,V) +dimg, H'(L,V*),

where V* = Homp, (V,F,) is the dual Fy[I'l-module. Because w = 2, being an Fy[I']-
module, V* is isomorphic to V. Hence,

dimp, Hig (X1, %) = dimp, Cp,, (V)" +dimp, H'(T,V),
as desired. O

7.2, w]

We fix an embedding 7 : F, < L.

For each o : F, — L, let L, (k,v) be the dual of V,(k,v) with the right action of GL(2, F}):
if g € GL(2,F}), P’ € L,(k,v) and P € V,(k,v), then (P',g-P) = (P'|4,P). We realise
L, (k,v) by the same space as V,(k,v), with the pairing

; i v 1 ifj=y4
ivk—2—j 7 v k—2—3"\ _ J J
<X0'Y0' 7Xo’ Ya > - { 0 lfj 7&]/

and the right GL(2, F}, )-action

[ 1= olad—bc)’Plo(a)Xs +0(b)Yy,0(c) Xy +0(d)Yy).
Put L&) = @,/ gopr Lo (Ko, 2552). Put V()" = @,/ yoir Vo (koy 255=). Then L(k)"
is the dual of V(k)7. Assume w =2 below.

Let LP* =2 be the space of local polynomials on P!(F,) of degree < k, —2. We define
a right action of GL(2,F},) on LP* 2 by

2 — (cx+d)Fr—2 (am+b>
(e 2] (ad—be)F-1" \cx+d/)’

Pl

o e
[SURS )

fl

Let ¢ be a nonzero harmonic cocycle in Cf, (V(k)). We attach to ¢ a V (k) -valued
linear functional u7 of LP* =2 such that

IYkr—2-J cle

| (")
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for each @ € Ly(k)™ and 5 =0, - ,k; — 2. By definition, we have

/ (1) () = / . (7.4)

e

We say c is bounded if for a fixed edge eg,

SUPgeGL(2, Fy)/B lg~" (c(geo))|

exists, where B is the subgroup of GL(2,F},) that fixes ey and |- | is any norm on V' (k).
Note that this concept does not depend on the choices of eg and |- |.

Lemma 7.2. If ¢ is bounded, then there exists a constant A >0 such that
| (t—ay u7 (0)] < A0 1= F)
aJrﬂ'm(JFp
for each a € F,.

Proof. Put g = [, -+ ]. Then g(a+7"0p,) =0p, and

gm(kr—2) (t —a
am(5F-1)

t], = )7 :Wm(%f—l—j)(t_a)j.

,n—m
By (7.4) we have
/ (t—a) u7 () = 70 H1=5) / V11 o(0):
a+7rman OF,

Because ¢ is bounded, this yields our lemma. O

Proposition 7.3. If ¢ is bounded, then there is a wunique V(k)T-valued analytic
distribution p7 on P1(F,) such that

<Q7 / tJNZ(t» = <X¥YTkT_2_j = Q’C(e»a ] = 07 e ak'r -2

| (57)

for each Q € L(k)7.

Proof. This follows from Lemma 7.2 and a standard Amice-Velu and Vishik’s argument.
O

Now let ¢ be a nonzero harmonic cocycle in C, (V(k))''. Then I'-invariancy of ¢ ensures
that ¢ is bounded and so we can attach to ¢ the distribution pZ. We define a V' (k)"-valued
rigid analytic function g7, precisely, a global section of V (k)™ ®- , O, by

1
gTZ :/ ’LLTt
(D= [ T

for z € H.
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Proposition 7.4. The function g} satisfies the transformation property: fory =% Z} €

I' we have
(et
9 ('Y Z) - det(’}/)k"'/Q’y 9e (Z)
Proof. This follows from an argument similar to the proof of [27, Theorem 3]. O
Put

wl =gl (2)(2 X, +Y;)F2dz.
Then w] is a I-invariant section of ¥ (k) ®;, i, 3, that descends to a section of ¥ (k) ®;, p,

1
QL.

7.3. Hodge-like decomposition

We have also a Hodge filtration exact sequence
0 —— HY(X1,? ®; 5, Q%) — Hlg .(Xr,?) — HY X1,V ®; F, Ox;) —> 0.

Thus, we may regard w? € H*(Xr, ¥ ®; r, Q) as an element of Hgg (Xt,7).
The Hodge filtration exact sequence and the covering filtration exact sequence fit into
the following commutative diagram:

H'\(T,V)

L06_1\

0—— HO(XF,"f/@T,FF Q}XF) e H&R’T(Xp,nf/) —_— ]{1()(1“,"//(@7-71:'p OXF) — 0.

~— |

Cl (V)F

har

Lemma 7.5. I"(w]) =c.

Proof. The proof is similar to that of [27, Theorem 3]. Recall that

1
d@=/ b (8).
( Pi(Fy) 21

For each edge e of T, let B(e) be the affinoid open disc in P!(C,) that corresponds to e.
Assume that B(e) meets the limits set P!(F},) in a compact open subset U(e). Put

1
)= [ .
’ U(e)z_t
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Let a(e) be a point in U(e). Expanding - at a(e) we obtain that

“+o0
T () = ; —aleN™u”
9e.e(2) T;)(z—a(e))wrl /U(e)(t () ()

and thus g7 . (z) converges on the complement of B(e). By the same reason,
1 =2 1

CEUSERY| HEO ==Yz a@)" [ Tt

PY(Fy)\U(e) # oy PL(F,\U(e) (E—ale

is analytic on B(e). So, we have

17 (g7 (2X, + Y, ) ~2dz) (e) = Rese(gg(zXT + YT)’“T*de) - Rese(g; (2 X+ Yf)kﬂdz)
X, +Y. kr—2
Res ([ BRI ) < [ vie i = o)
U(e) z=t U(e)
where the fourth equality follows from the fact that Res. commutes with fU(e) Spl(t). O
Theorem 7.6. Under the assumption (coin) we have the following decomposition.:
Higp (Xr,?) = H'(Xp,¥ @, 5, Q)@ H'(I,V).

This decomposition is called the Hodge-like decomposition.
Proof. We only need to prove that the composition

HOX0, Y 1, Oh,) = Hip o (X0, 9) = Gl (V)
is an isomorphism. By Lemma 7.5 this is surjective. So
dim H(Xr,? &, Q%) > dimCy,, (V)" = dim Hig (X1, 7)/2.
To show the injectivity of the above composition map it suffices to show that
dim H(Xr,? ®; 5, O,.) < dim Hig (X7,%)/2. (7.5)

Note that as an L[T']-module V is dual to itself. Thus, there is a Poincaré pairing on
Hjg (X, 7). For this pairing, H’(Xt,¥ ®;, r, Q%,.) is orthogonal to itself, which implies
(7.5). 0

8. Proof of Theorem 1.2

Let k= (k1, -+ ,kg,w) be a multiweight such that k1 =---k; =w mod 2 and ky, - -+ ,k, are
all even and > 2.

Let fo be a (Hilbert) cusp eigenform of weight k as in Theorem 1.2. By the condition in
Theorem 1.2 there exists a quaternion algebra B over F' that satisfies the condition at the
beginning of Section 4 such that by Jacquet-Langlands correspondence f., corresponds to
a modular form fp over the Shimura curve M attached to B. Let U = U, o(U?, a compact
open subgroup of G(Ay), be the level of fg. Let n~ be the ideal of F' such that pn~ is
the discriminant of B.

Let L be a (sufficiently large) finite extension of F' that splits B and contains all Hecke
eigenvalues acting on f, A a place of L above p.
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Lemma 8.1. [2/, Lemma 3.1] There is an isomorphism

H g\ (Mz, F (k) @Wf/ () OL(f) @Pf’N
NA

of representations of G(Ay) x Gal(F/F) over Ly. Here f' runs through the conjugacy
classes over L, up to scalars, of eigen newforms of multiweight k that are new at primes
dividing pn~. The extension of L generated by the Hecke eigenvalues acting on f’ is
denoted by L(f"), and X' runs through places of L(f') above .

_ ~ X _ ~p, X _
Let B be as in Subsection 5.2. Put B := (B®Af)X and B = (BQAL)*. We
~p, X , X _
identify UP = [] Uy with a subgroup of B Wiite B = Uk, B*x;UP. For each i =
I#p
-, h we put

Ty :={y€B* vy € (x;)Uiz;); " for [£p}.

Then Xy» is isomorphic to
B*\(H g x G(Qp)/Up,o % B" jury = L Fa\(H Hpw X L)-

Here we identify Z with G(Q,)/U, ¢. Note that T; acts transitively on Z = G(Qp)/Uyp0;
for every point in Z = G(Q,)/Up,o it is fixed by v € B* if and only if |det(vy)|, = 1. Put

fz’,o ={yel;: |det(vp)|p =1}
={ve B iy € (x:)Ui(z;); ' for [#p and |det(y,)], = 1}.

Let I'; o be the image of I:i’o in PGL(2,F}). Then we have an isomorphism
Xor 22U T 0\ H (8.1)
P

Now we come to the proof of Theorem 1.2. Twisting fp by a central character, we may
assume that w = 2.

To show that pf, s p is semistable, we only need to prove that He ((Xp»)p,,F(k)) is
semistable, because ps, g, is a quotient of Hgt((XUp)F ,F(k)). But this follows from
Theorem 2.1 and the fact that Xy» has a semistable reductlon.

Being a Shimura variety, Ng is a family of varieties. But in the following we will
use Ng to denote any one in this family that corresponds to a level subgroup whose
p-factor is ﬁgp. By the proof of Lemma 6.4, any geometric point of (NE)F; is defined
over I*/jﬁl\r . In other words, (Ng) = i is the product of several copies of Spec(F ur). Thus, the
Gal(F,/ FJ'")-representation HY, ( (N, E)fp ,Qp) is crystalline and the associated filtered ¢,-
module is HJ; ((Ng) 7, Qp) with trivial filtration. Let H 0 denote this filtered ¢ ,-module
for simplicity. ’

Let pry be the projection Xy» x (NE)FUr — Xy». Corollary 6.5 tells us that the filtered

pq-isocrystal attached to priF(k) is pri.% (k). Therefore, the filtered (4, /N)-module
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attached to HY ((My x N)zpriF(k),) is
Hig(Xu» x (Np) .1 7 (k) = H' @g, Hog (Xur, 7 (k).

Applying the constructions in Subsection 7.1 to each part I'; o\ Hz= of Xy», we obtain

Py
operators ¢7, PT and I”. By Proposition 2.2 the restriction of N to H&R’T((MU X
N)I;F,prfgf(k)) coincides with " o I7. By [4, Appendix], each T'; o satisfies (coin). So
we can apply Theorem 7.6 to obtain that the restriction of N to H°®q, H*(Xu»,.Z ®q,
Q%,,) is injective.

In the proof of Theorem 7.6 we show that each element of H%(Xy»,.Z (k) ®r r, 0, ,)
is of the form g7 (2)(2X, +Y;)* ~2dz. So,

HO(Xy», Z (K) @, Q') C Fil 57

ir - (Xvn, 7 (k).

We consider the pullback of the pairing (6.1) to Xy» X Ng, which induces a perfect pairing
on H’®q, Hig . (Xu», 7 (k)). The filtered p,-isocrystal attached to F(det”~?), denoted
by .7 (w — 2), satisfies that

H. (Xyr,F(w-2 ifi<w-—1,
Fil* HdRT(XUp7 (w 2)) { OdR,T( U ( )) >

if 1> w.
Hence, with respect to the above pairing,
Fil 7 M H g , Hig - (Xur, 7 (k)
is orthogonal to
Fil*“s "~ H 9g, Hip , (Xus, 7 (K)).
Comparing dimensions, we obtain
H @, H(Xus, Z (k) @, 1, U, ) = FIl“ 55T H 0, Hip (Xw, Z (K)).

Therefore, N induces an isomorphism

wtming kg

Fil 0 00 H (Xo, 7 (K)

w+m ma ko

= H° ®q, Hyp ,(Xu», 7 (k) /Fil “HH® ®o, Hag - (Xur, 7 (k)

for each 7.
Because the filtered (¢q4, N)-module of py, 4., denoted by D, is a quotient of H® ®q,
Hlg (Xy»,Z(k)), N induces an isomorphism

wtming kg

Fil© 2z~ “"'D, = D,/Fil

w+m1ng ko

—1
D-,

where D, is the T7-component of D. It follows that D is noncritical.

9. Comparing two kinds of L-invariants

9.1. Automorphic forms on totally definite quaternion algebras

We recall the theory of automorphic forms on totally definite quaternion algebras.
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Let B be as in Subsection 5.2, which is a totally definite quaternion algebra over F.

~ X
Let ¥ =[], X be a compact open subgroup of B .
Let Xp,cyc 1 AR /F* — Z, be the Hecke character obtained by composing the cyclotomic
character xqg,cyc : Ag/Q* — Z, and the norm map from Ay to Aj.

Definition 9.1. An automorphic form on B>, of weight k = (kj, oL kg,w) and level 3,
~ X
is a function f: B — V/(k) that satisfies

E(29bu) = X3 (=) (uy - £(8))

— ~ X ~ —
for all y € BX, u€ X, be B and z € F*. Denote by SP(X) the space of such forms.
Remark that our SP(X) coincides with SE,,V(E) for k' = (k1 —2,--+ kg —2) and v =

(w;k17w;k2’___ 7’LU;]CQ) in [4}

— ~ X
Observe that a form f of level ¥ is determined by its values on the finite set B*\B /X.
~p, X _
As in Section 8, we write Bp =Uh  BXx;¥; fori=1,--- h, put
Ty ={v€B* iy € () Si(w;); " for [#p}.

Then we have a bijection
~ _ -~ X
U T\GL(2,F,) /%, = B*\B /%.

~ — =~ X
The class of ¢ in I';\GL(2,F,)/%, corresponds to the class of z; ,g, in B*\B /%, where

gp is the element of BX that is equal to g at the place p and equal to the identity
at other places. Using this, we can attach to an automorphic form f of weight k and
level ¥ an h-tuple of functions (fi,---,fs) on GL(2,F,) with values in V' (k) defined by
fi(g) =f(z; pgp). The function f; satisfies

fi(vpguz) = X%TCI}U,C(Z)U_I “fi(9)

for all 7, € L, g € GL(2,F,), u€ Xy and z € F,".

For each prime [ of F' such that B splits at [, [# p, and ¥ is maximal, one defines a
Hecke operator Ty on SZ(X) as follows. Fix an isomorphism ¢ : By — Mz (Fy) such that
¥ becomes identified with GLa(0f,). Let 7 be a uniformiser of op,. Given a double coset
decomposition

GL2(0r)[ ¢ » 1GL2(0r) = [ [0:GLa(0R,),
we define the Hecke operator Ty on SZ(X) by

(T()(b) = > £ (bby).

We define U, similarly. Let Ty, be the Hecke algebra generated by U, and these T7.
Denote by o;?) the ring of p-integers of F' and (o(PP)) X the group of p-units of F'. We have

I,NF* = (ogf))x. Fori=1,---,h, put I'; = fi/(o%p))x. Consider the following twisted
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action of T'; on V(k):

w—2
yxv=|Nrdg/pylp® Yp-v.

Then (ogf))X is trivial on V'(k), so we may consider V'(k) as a I';-module via the above
twisted action.

9.2. Teitelbaum-type L-invariants

Chida, Mok and Park [4] defined Teitelbaum-type L-invariants for automorphic forms
f € SP(X) satisfying the condition (CMP) given in the Introduction:

f is new at p and U,f = N'p*/>f.

We recall their construction below.

We attach to each f; a I';-invariant V' (k)-valued cocycle ¢y, , where I'; acts on V' (k) via .
For e = (s,t) € E(T), represent s and t by lattices Ly and L; such that Ly contains L; with
index Np. Let ge € GL(2,F}) be such that g.(o% ) = Ls and ge(or, ®por,) = L;. Then

w—2
we define cy, (e) :=|det(g)|p > ge* fi(ge). If £ satisfies (CMP), then cy, is in Cf,, (V (k)"
[4, Proposition 2.7]. Thus, we obtain a vector of harmonic cocycles cg = (cg,, -+ ,cy, ).

For each ¢ € Cl, (V (k)T we define x5 to be the following V (k)-valued function on
I';: fixing some v € V(T), for each v € I'; we put

KM= ) cle),
ev—yv
where e runs over the edges in the geodesic joining v and ~v. Because c¢ is I';-invariant,
k5N is a 1-cocycle on T';. Furthermore, the class of x5® in H(T;,V (k)) is independent of

the choice of v. Hence, we obtain a map

h h
K P Ol (V)T = P HN T,V (K)).
i=1 i=1
By [4, Proposition 2.9], k" is an isomorphism.
For each harmonic cocycle ¢ € CL, (V(k))I'#, in Subsection 7.2 we attached to it the
V(k)"-valued function g7. We define a V(k)-valued cocycle A as follows. Fix a point
2o € H. For each v € I'; the value A](7) is given by the formula: for Q € Ly (k)™,

avisonon = (M0 )@ [ P

(0 < j <k;—2), where the integral is the branch of Coleman’s integral chosen in
Subsection 7.1. Then M7 is a 1-cocycle on I'; and the class of A7 in H'(T';,V (k)), denoted
by [AZ], is independent of the choice of zg. This defines a map

h h
oL @C}IIM(T,VG())FL N @Hl (F“V(k)), (Cz)z — ([)\;])z

i=1 i=1
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h

Because £°°" is an isomorphism, for each 7 there exists a unique £, € Ly such that

HCOI’T(Cf) _ [Tﬁsch(cf) )

The Teitelbaum-type L-invariant of £, denoted by Lr(f), is defined to be the vector (¢;),
[4, Section 3.2]. We also write Lp ,(f) for ¢;.

9.3. Comparing L-invariants

Let B, B, G and G be as before. Let n~ be the conductor of B. By our assumption on
B, pfn~ and the conductor of B is pn~. Let n* be an ideal of o that is prime to pn~
and put n:=pntn~.

For any prime ideal [ of oy, put

an maximal compact open subgroup of B[X if [ is prime to n,
R;:={ the maximal compact open subgroup of B[X if [ divides n—,
1+ an Eichler order of B of level ralien™) if [ divides pnt.

Let ¥ =X(pn*,n~) be the level [, R;. Similarly, we put ¥ = X(nT,pn~), a compact open
subgroup of G(Ay).

Let k= (k1,---,kg,w) be a multiweight such that k; =---k; =w mod 2 and ky, ---,k,
are all even and > 2. We write S (pn*,n™) for SZ(X(pn*,n7)). Let SZ(nT,pn~) be the
space of modular forms on the Shimura curve M of weight k and level X. )

Let fo be a (Hilbert) cusp eigen newform of weight k and level n. Let f € SP(pn* n™)
(respectively fp € SE(n*,pn~)) be an eigen newform corresponding to fo, by the Jacquet-
Langlands correspondence; f (respectively fp) is unique up to scalars.

We further assume that f satisfies (CMP), so that we can attach to f the Teitelbaum-
type L-invariant Lr(f). We define L7(fx) to be Lr(f). The goal of this section is to
compare Lrpr(foo) and Lo (foo)-

Let L be a (sufficiently large) finite extension of F' that splits B and contains all Hecke
eigenvalues acting on fo.. Let A be a place of L above p.

By the strong multiplicity one theorem [22], there exists a primitive idempotent ey, €
Ty, such that ef, Ty, = Les, and ef, - SP(E(pnt,n7)) = L- fp. Lemma 8.1 tells us that
ey - HYy (Mz F(k)\)® is exactly prya.

In Section 8 and Subsection 9.1 we associate to & the groups fi,o,fi,I‘i and I'; o (i =
1,---,h). By (8.1), X is isomorphic to [ [, Xr, ,, where Xr, ; = Fi,o\Hﬁ;. In Subsection

9.2 we attached to f = (f1,---, fr) an h-tuple g7 = (¢7,---,g7,) where g7 = gc, - Put

$,09

Wl = (g;(z)(zXT +Y7)kf*2dz)1<i<h,

which is an element of @, Hig (X1, ,,Z (k).
Let P7, ™ and I™ be the operators attached to .7 (k).

Lemma 9.2. We have

PT(wf) =K (ce), I (wf) =cx.
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Proof. The first formula comes from the definitions and the second follows from
Lemma 7.5. O

Theorem 9.3. Let fo be as above. Then Lpp(foo) = L1 (foo)-
Proof. Twisting fo, by a central character, we may assume that w = 2.

We use notations in Section 8. Let H° be the filtered pg-module H3, ((Ng)zm,Qp) and
P

put D, = H’®q, ey, H(%R)T(Xg,f(k)). Note that the restriction of N to D, coincides with
1" oI". Because the kernel of N coincides with the image of .7 06~ ! and P7 splits .7 08!,
we have D, =ker(N) @ ker(P7). Write wf = xz+y according to this decomposition. Then

LTo(S_loPT(wF) =x. (9.1

By the proof of Theorem 1.2, y is nonzero and so N(y) # 0.
By Lemma 9.2 and the definition of Teitelbaum-type L-invariant, L1 (fs) is charac-
terised by the property

(P™ = L7 (foc)eo I =0, (9.2)
where ¢ is the map defined by (7.2) that coincides with x". Because § ! oe = —id and
tTolI™ = N, we have

tTod toeoI™(wf) = —N(wf). (9.3)
By (9.1), (9.2) and (9.3) we get
L7 +(foo)N(wf)+z=0. (9.4)

By the definition of Fontaine-Mazur L-invariant, Lpar,-(fso) is characterised by the
property

w+ming {kg }
2

Y~ L+ (f)N(y) € H g, Fil
Combining (9.4) and (9.5) we obtain

(EFM,T(fOO) - ET,T(fOO))N(y)
= ﬁFM,T(fOO)N(y) 7£T,T(fOO)N(WtZ)

wtming {kg

}
€wi+H®q, Fil 2 'Hig,(Xs,Z(k)

T Hig (X5, 7 (K)). (9-5)

wtming {ko }

= H'®q, Fil 2 'Hig,(Xs,Z(k)).

But N(y) is in ker(N) and is nonzero. Again by the proof of Theorem 1.2,
ker(N) N H @g, Fil ™5 T HY, (X5, 7 (k) =0.
Therefore,

‘CFM,T(fOO) _LT7T(fOO) = Oa

as wanted. O
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