A well-established provision for mass-casualty decontamination that incorporates the use of mobile showering units has been developed in the UK. The effectiveness of such decontamination procedures will be critical in minimizing or preventing the contamination of emergency responders and hospital infrastructure. The purpose of this study was to evaluate three empirical strategies designed to optimize existing decontamination procedures: (1) instructions in the form of a pictorial aid prior to decontamination; (2) provision of a washcloth within the showering facility; and (3) an extended showering period. The study was a three-factor, between-participants (or “independent”) design with 90 volunteers. The three factors each had two levels: use of washcloths (washcloth/no washcloth), washing instructions (instructions/no instructions), and shower cycle duration (three minutes/six minutes). The effectiveness of these strategies was quantified by whole-body fluorescence imaging following application of a red fluorophore to multiple, discrete areas of the skin. All five showering procedures were relatively effective in removing the fluorophore “contaminant”, but the use of a cloth (in the absence of instructions) led to a significant (∼20%) improvement in the effectiveness of decontamination over the standard protocol (p <0.05). Current mass-casualty decontamination effectiveness, especially in children, can be optimized by the provision of a washcloth. This simple but effective approach indicates the value of performing controlled volunteer trials for optimizing existing decontamination procedures.