A distributed-parameter (one-dimensional) anatomically detailed model for the arterialnetwork of the arm is developed in order to carry out hemodynamics simulations. This workfocuses on the specific aspects related to the model set-up. In this regard, stringentanatomical and physiological considerations have been pursued in order to construct thearterial topology and to provide a systematic estimation of the involved parameters. Themodel comprises 108 arterial segments, with 64 main arteries and 44 perforator arteries,with lumen radii ranging from 0.24 cm – axillary artery- to 0.018 cm – perforatorarteries. The modeling of blood flow in deformable vessels is governed by a well-known setof hyperbolic partial differential equations that accounts for mass and momentumconservation and a constitutive equation for the arterial wall. The variationalformulation used to solve the problem and the related numerical approach are described.The model rendered consistent pressure and flow rate outputs when compared with patientrecords already published in the literature. In addition, an application todimensionally-heterogeneous modeling is presented in which the developed arterial networkis employed as an underlying model for a three-dimensional geometry of a branching pointto be embedded in order to perform local analyses.