We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Accumulating evidence suggests that rapid eye movement sleep (REM) supports the consolidation of extinction memory. REM is disrupted in posttraumatic stress disorder (PTSD), and REM abnormalities after traumatic events increase the risk of developing PTSD. Therefore, it was hypothesized that abnormal REM in trauma-exposed individuals may pave the way for PTSD by interfering with the processing of extinction memory. In addition, PTSD patients display reduced vagal activity. Vagal activity contributes to the strengthening of memories, including fear extinction memory, and recent studies show that the role of vagus in memory processing extends to memory consolidation during sleep. Therefore, it is plausible that reduced vagal activity during sleep in trauma-exposed individuals may be an additional mechanism that impairs extinction memory consolidation. However, to date, the contribution of sleep vagal activity to the consolidation of extinction memory or any emotional memory has not been investigated.
Methods
Trauma-exposed individuals (n = 113) underwent a 2-day fear conditioning and extinction protocol. Conditioning and extinction learning phases were followed by extinction recall 24 h later. The association of extinction recall with REM characteristics and REM vagal activity (indexed as heart rate variability) during the intervening consolidation night was examined.
Results
Consistent with our hypotheses, REM disruption was associated with poorer physiological and explicit extinction memory. Furthermore, higher vagal activity during REM was associated with better explicit extinction memory, and physiological extinction memory in males.
Conclusions
These findings support the notion that abnormal REM, including reduced REM vagal activity, may contribute to PTSD by impairing the consolidation of extinction memory.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.