Foraminifera from two cores off eastern Vietnam and the northwestern Philippines, where modern summer and winter monsoon-driven upwelling occurs in the South China Sea, respectively, were analyzed to evaluate the changes in paleoproductivity and upper water structure over the last 220,000 yr. We observed enhanced organic carbon flux and a shoaled thermocline when upwelling intensified off eastern Vietnam during interglacial ages and off the northwestern Philippines during glacial ages. This indicates that the East Asian summer monsoon increased while the winter monsoon decreased during interglacial ages. Particularly, the upwelling reached a maximum off eastern Vietnam during late marine isotopic stage (MIS) 5 and off the northwestern Philippines during MIS 2, implying that the summer monsoon decreased gradually since MIS 5 while the winter monsoon displayed an opposite trend. The variations in upwelling proxies exhibit a distinct cyclicity with frequencies near 41,000 yr and 23,000 yr off eastern Vietnam, in contrast to a strong frequency peak near 100,000 yr off the northwestern Philippines. We suggest that the East Asian summer monsoon has been forced by changes in solar insolation associated with precession and obliquity, while ice-volume forcing is probably a primary factor in determining the strength and timing of the East Asian winter monsoon but with less important insolation forcing.