We show that perfectoidization can be (almost) calculated by using p-root closure in certain cases, including the semiperfectoid case. To do this, we focus on the universality of perfectoidizations and uniform completions, as well as the p-root closed property of integral perfectoid rings. Through this calculation, we establish a connection between a classical closure operation “p-root closure” used by Roberts in mixed characteristic commutative algebra and a more recent concept of “perfectoidization” introduced by Bhatt and Scholze in their theory of prismatic cohomology.