We develop a new class of spatial voting models for binary preference data that can accommodate both monotonic and non-monotonic response functions, and are more flexible than alternative “unfolding” models previously introduced in the literature. We then use these models to estimate revealed preferences for legislators in the U.S. House of Representatives and justices on the U.S. Supreme Court. The results from these applications indicate that the new models provide superior complexity-adjusted performance to various alternatives and that the additional flexibility leads to preferences’ estimates that more closely match the perceived ideological positions of legislators and justices.