We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
During the SARS-CoV-2 virus pandemic, University Hospital Birmingham NHS Trust Oncology Department incorporated the ultrahypofractionated regime of 26Gy/5 fractions alongside the moderate hypofractionated regime of 40Gy/15 fractions as part of local adjuvant breast radiotherapy treatment (RT) for eligible patients. We conducted a local study to assess the real-life experience of patients undergoing ultrahypofractionated schedule to compare feasibility and toxicity to the fast-forward trial during the COVID − 19 pandemic.
Methods:
A single institution, retrospective, qualitative study. Patients included had early-stage breast cancer and received adjuvant radiotherapy between 23 March 2020 and 31 May 2020, a total of 211 patients. Inclusion was irrespective of any other neoadjuvant/adjuvant treatments. Data were collected retrospectively for treatment dose, boost dose and toxicity.
Results:
Of the total 211 patients, 85 were treated with 26Gy in 5# and 19 patients received a boost as per the fast-forward protocol. Of these 85 patients, 15·9% did not report any skin toxicity post-treatment. 63·5% of patients reported RTOG Grade 1, 15·9% had RTOG Grade 2, and 1·6% reported RTOG Grade 3 skin toxicity. 3·2% of the patients could not be contacted for follow-up. Of the 19 patients who received a breast boost, 10·53% reported no skin changes. 78·9% reported Grade 1 skin toxicity. Both Grades 2a and 2b skin toxicity were reported by 5·26% each. The patient demographics and tumour characteristics in our study cohort were comparable to those within the fast-forward trial. In terms of post-RT skin toxicity, fewer patients reported any toxicity in the UHB patient cohort versus those in the trial, and the number of Grade 2/3 toxicities reported was also low. A delay in toxicity reporting from 2 weeks for 40Gy/15 to 3 weeks for 26Gy/5 was observed.
Conclusion:
Our study concluded that offering ultrahypofractionation was convenient for patients; reducing the number of hospital visits during the SARS-CoV-2 virus pandemic appeared safe in terms of acute post-RT-related skin toxicity. The reduced hospital visits limited exposure of patients and staff to the SARS-CoV-2 virus while also ensuring efficient use of Radiotherapy Department resources. Local follow-up protocols have been amended to ensure review at 3 weeks for the 26Gy/5 schedule to acknowledge the delay in acute toxicity development. To date, there is only 5-year toxicity and relapse data available from the fast-forward trial; therefore, hypofractionation schedules should be offered to patients as long as they fulfil the criteria and understand the limitations of the study as well as accelerated peer review processes in the face of the pandemic.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.